cs473: Algorithms Lecture 4: Dynamic Programming

Michael A. Forbes

University of Illinois at Urbana-Champaign

September 4, 2019

logistics:

logistics:

■ pset1 out,

logistics:

■ pset1 out, due R5

logistics:

lacksquare pset1 out, due R5 — can submit in *groups* of ≤ 3

logistics:

lacksquare pset1 out, due R5 — can submit in *groups* of ≤ 3

logistics:

lacksquare pset1 out, due R5 — can submit in *groups* of ≤ 3

last lecture:

recursion

logistics:

lacksquare pset1 out, due R5 — can submit in groups of ≤ 3

- recursion
- memoization

logistics:

lacksquare pset1 out, due R5 — can submit in groups of ≤ 3

- recursion
- memoization
- dynamic programming

logistics:

lacksquare pset1 out, due R5 — can submit in groups of ≤ 3

- recursion
- memoization
- dynamic programming
 - fibonacci numbers

logistics:

lacktriangle pset1 out, due R5 — can submit in *groups* of ≤ 3

- recursion
- memoization
- dynamic programming
 - fibonacci numbers
 - edit distance

logistics:

lacksquare pset1 out, due R5 — can submit in groups of ≤ 3

- recursion
- memoization
- dynamic programming
 - fibonacci numbers
 - edit distance
 - knapsack

logistics:

lacktriangle pset1 out, due R5 — can submit in groups of ≤ 3

last lecture:

- recursion
- memoization
- dynamic programming
 - fibonacci numbers
 - edit distance
 - knapsack

today:

logistics:

lacksquare pset1 out, due R5 — can submit in groups of ≤ 3

last lecture:

- recursion
- memoization
- dynamic programming
 - fibonacci numbers
 - edit distance
 - knapsack

today:

logistics:

lacksquare pset1 out, due R5 — can submit in *groups* of ≤ 3

last lecture:

- recursion
- memoization
- dynamic programming
 - fibonacci numbers
 - edit distance
 - knapsack

today:

dynamic programming on trees

logistics:

■ pset1 out, due R5 — can submit in *groups* of ≤ 3

last lecture:

- recursion
- memoization
- dynamic programming
 - fibonacci numbers
 - edit distance
 - knapsack

today:

- dynamic programming on trees
- maximum independent set

logistics:

■ pset1 out, due R5 — can submit in *groups* of ≤ 3

last lecture:

- recursion
- memoization
- dynamic programming
 - fibonacci numbers
 - edit distance
 - knapsack

today:

- dynamic programming on trees
- maximum independent set
- dominating set

dynamic programming:

develop recursive algorithm

- develop recursive algorithm
- understand structure of subproblems

- develop recursive algorithm
- understand structure of subproblems
 - names of subproblems

- develop recursive algorithm
- understand structure of subproblems
 - names of subproblems
 - number of subproblems

- develop recursive algorithm
- understand structure of subproblems
 - names of subproblems
 - number of subproblems
 - dependency graph amongst subproblems

- develop recursive algorithm
- understand structure of subproblems
 - names of subproblems
 - number of subproblems
 - dependency graph amongst subproblems
- memoize

- develop recursive algorithm
- understand structure of subproblems
 - names of subproblems
 - number of subproblems
 - dependency graph amongst subproblems
- memoize (implicitly,

- develop recursive algorithm
- understand structure of subproblems
 - names of subproblems
 - number of subproblems
 - dependency graph amongst subproblems
- memoize (implicitly, or explicitly)

- develop recursive algorithm
- understand structure of subproblems
 - names of subproblems
 - number of subproblems
 - dependency graph amongst subproblems
- memoize (implicitly, or explicitly)
- analysis

- develop recursive algorithm
- understand structure of subproblems
 - names of subproblems
 - number of subproblems
 - dependency graph amongst subproblems
- memoize (implicitly, or explicitly)
- analysis (time,

- develop recursive algorithm
- understand structure of subproblems
 - names of subproblems
 - number of subproblems
 - dependency graph amongst subproblems
- memoize (implicitly, or explicitly)
- analysis (time, space)

- develop recursive algorithm
- understand structure of subproblems
 - names of subproblems
 - number of subproblems
 - dependency graph amongst subproblems
- memoize (implicitly, or explicitly)
- analysis (time, space)
- further optimization

dynamic programming:

- develop recursive algorithm
- understand structure of subproblems
 - names of subproblems
 - number of subproblems
 - dependency graph amongst subproblems
- memoize (implicitly, or explicitly)
- analysis (time, space)
- further optimization

remarks:

dynamic programming:

- develop recursive algorithm
- understand structure of subproblems
 - names of subproblems
 - number of subproblems
 - dependency graph amongst subproblems
- memoize (implicitly, or explicitly)
- analysis (time, space)
- further optimization

remarks:

memoizing a recursive algorithm does not necessarily lead to an efficient algorithm

dynamic programming:

- develop recursive algorithm
- understand structure of subproblems
 - names of subproblems
 - number of subproblems
 - dependency graph amongst subproblems
- memoize (implicitly, or explicitly)
- analysis (time, space)
- further optimization

remarks:

 memoizing a recursive algorithm does not necessarily lead to an efficient algorithm (e.g., knapsack problem)

dynamic programming:

- develop recursive algorithm
- understand structure of subproblems
 - names of subproblems
 - number of subproblems
 - dependency graph amongst subproblems
- memoize (implicitly, or explicitly)
- analysis (time, space)
- further optimization

remarks:

 memoizing a recursive algorithm does not necessarily lead to an efficient algorithm (e.g., knapsack problem) — you need the *right* recursion

Dynamic Programming

dynamic programming:

- develop recursive algorithm
- understand structure of subproblems
 - names of subproblems
 - number of subproblems
 - dependency graph amongst subproblems
- memoize (implicitly, or explicitly)
- analysis (time, space)
- further optimization

- memoizing a recursive algorithm does not necessarily lead to an efficient algorithm (e.g., knapsack problem) — you need the *right* recursion
- recognizing that dynamic programming applies to a problem can be non-obvious

fact:

many computational problems ask to optimize an objective over a graph

- many computational problems ask to optimize an objective over a graph
- many graph optimization problems are NP-hard

- many computational problems ask to optimize an objective over a graph
- many graph optimization problems are NP-hard
- yet:

- many computational problems ask to optimize an objective over a graph
- many graph optimization problems are NP-hard
- yet: many NP-hard graph optimization problems can be efficiently solved

- many computational problems ask to optimize an objective over a graph
- many graph optimization problems are NP-hard
- *yet*: many NP-hard graph optimization problems can be efficiently solved when the graph is a *tree*

fact:

- many computational problems ask to optimize an objective over a graph
- many graph optimization problems are NP-hard
- *yet*: many NP-hard graph optimization problems can be efficiently solved when the graph is a *tree*

fact:

- many computational problems ask to optimize an objective over a graph
- many graph optimization problems are NP-hard
- *yet*: many NP-hard graph optimization problems can be efficiently solved when the graph is a *tree*

remarks:

dynamic programming over graphs

fact:

- many computational problems ask to optimize an objective over a graph
- many graph optimization problems are NP-hard
- yet: many NP-hard graph optimization problems can be efficiently solved when the graph is a *tree*

remarks:

dynamic programming over graphs often relies on decomposing the graph into subgraphs,

fact:

- many computational problems ask to optimize an objective over a graph
- many graph optimization problems are NP-hard
- yet: many NP-hard graph optimization problems can be efficiently solved when the graph is a *tree*

remarks:

dynamic programming over graphs often relies on decomposing the graph into subgraphs, but there are many subgraphs

fact:

- many computational problems ask to optimize an objective over a graph
- many graph optimization problems are NP-hard
- yet: many NP-hard graph optimization problems can be efficiently solved when the graph is a *tree*

remarks:

 dynamic programming over graphs often relies on decomposing the graph into subgraphs, but there are many subgraphs and they relate to each other in complicated ways

fact:

- many computational problems ask to optimize an objective over a graph
- many graph optimization problems are NP-hard
- *yet*: many NP-hard graph optimization problems can be efficiently solved when the graph is a *tree*

- dynamic programming over graphs often relies on decomposing the graph into subgraphs, but there are many subgraphs and they relate to each other in complicated ways
- trees can be easily decomposed into sub-trees,

fact:

- many computational problems ask to optimize an objective over a graph
- many graph optimization problems are NP-hard
- yet: many NP-hard graph optimization problems can be efficiently solved when the graph is a *tree*

- dynamic programming over graphs often relies on decomposing the graph into subgraphs, but there are many subgraphs and they relate to each other in complicated ways
- trees can be easily decomposed into sub-trees, which are easily related to each other

fact:

- many computational problems ask to optimize an objective over a graph
- many graph optimization problems are NP-hard
- yet: many NP-hard graph optimization problems can be efficiently solved when the graph is a *tree*

- dynamic programming over graphs often relies on decomposing the graph into subgraphs, but there are many subgraphs and they relate to each other in complicated ways
- trees can be easily decomposed into sub-trees, which are easily related to each other ⇒ trees are amenable to divide and conquer,

fact:

- many computational problems ask to optimize an objective over a graph
- many graph optimization problems are NP-hard
- yet: many NP-hard graph optimization problems can be efficiently solved when the graph is a *tree*

- dynamic programming over graphs often relies on decomposing the graph into subgraphs, but there are many subgraphs and they relate to each other in complicated ways
- trees can be easily decomposed into sub-trees, which are easily related to each other ⇒ trees are amenable to divide and conquer, and dynamic programming more generally

fact:

- many computational problems ask to optimize an objective over a graph
- many graph optimization problems are NP-hard
- *yet*: many NP-hard graph optimization problems can be efficiently solved when the graph is a *tree*

- dynamic programming over graphs often relies on decomposing the graph into subgraphs, but there are many subgraphs and they relate to each other in complicated ways
- trees can be easily decomposed into sub-trees, which are easily related to each other ⇒ trees are amenable to divide and conquer, and dynamic programming more generally
- dynamic programming on trees often generalizes to graphs that have low treewidth

Definition

Definition

Let G = (V, E) be an undirected (simple) graph.

Definition

Let G = (V, E) be an undirected (simple) graph. An **independent set of** G

Definition

Let G = (V, E) be an undirected (simple) graph. An **independent set of** G is a subset $S \subseteq V$

Definition

Let G = (V, E) be an undirected (simple) graph. An **independent set of** G is a subset $S \subseteq V$ such that there are no edges in G between vertices in G.

Definition

Let G = (V, E) be an undirected (simple) graph. An **independent set of** G is a subset $S \subseteq V$ such that there are no edges in G between vertices in S. That is, for all $u, v \in S$

Definition

Let G = (V, E) be an undirected (simple) graph. An **independent set of** G is a subset $S \subseteq V$ such that there are no edges in G between vertices in S. That is, for all $u, v \in S$ that $(u, v) \notin E$.

Definition

Let G = (V, E) be an undirected (simple) graph. An **independent set of** G is a subset $S \subseteq V$ such that there are no edges in G between vertices in S. That is, for all $u, v \in S$ that $(u, v) \notin E$.

ex:

Definition

Let G = (V, E) be an undirected (simple) graph. An **independent set of** G is a subset $S \subseteq V$ such that there are no edges in G between vertices in S. That is, for all $u, v \in S$ that $(u, v) \notin E$.

ex:

Definition

Let G = (V, E) be an undirected (simple) graph. An **independent set of** G is a subset $S \subseteq V$ such that there are no edges in G between vertices in S. That is, for all $u, v \in S$ that $(u, v) \notin E$.

ex:

Independent sets include \emptyset ,

Definition

Let G = (V, E) be an undirected (simple) graph. An **independent set of** G is a subset $S \subseteq V$ such that there are no edges in G between vertices in S. That is, for all $u, v \in S$ that $(u, v) \notin E$.

ex:

Independent sets include \emptyset , $\{a, c\}$,

Definition

Let G = (V, E) be an undirected (simple) graph. An **independent set of** G is a subset $S \subseteq V$ such that there are no edges in G between vertices in S. That is, for all $u, v \in S$ that $(u, v) \notin E$.

ex:

Independent sets include \emptyset , $\{a, c\}$, and $\{b, e, f\}$.

Definition

Definition

The maximum independent set (MIS) problem is to,

Definition

The **maximum independent set (MIS)** problem is to, given a undirected (simple) graph G = (V, E)

Definition

The **maximum independent set (MIS)** problem is to, given a undirected (simple) graph G = (V, E) output the size of the largest independent set in G.

Definition

The **maximum independent set (MIS)** problem is to, given a undirected (simple) graph G = (V, E) output the size of the largest independent set in G. That is, output

$$\alpha(G) := \max_{S \subseteq V,} \quad \max \quad |S| .$$

Definition

The **maximum independent set (MIS)** problem is to, given a undirected (simple) graph G = (V, E) output the size of the largest independent set in G. That is, output

$$\alpha(G) := \max_{S \subseteq V, S \text{ independent set of } G} |S| .$$

Definition

The **maximum independent set (MIS)** problem is to, given a undirected (simple) graph G = (V, E) output the size of the largest independent set in G. That is, output

$$\alpha(G) := \max_{S \subseteq V, S \text{ independent set of } G} |S| .$$

ex:

Definition

The **maximum independent set (MIS)** problem is to, given a undirected (simple) graph G = (V, E) output the size of the largest independent set in G. That is, output

$$\alpha(G) := \max_{S \subseteq V, S \text{ independent set of } G} |S| .$$

ex:

Definition

The **maximum independent set (MIS)** problem is to, given a undirected (simple) graph G = (V, E) output the size of the largest independent set in G. That is, output

$$\alpha(G) := \max_{S \subseteq V, S \text{ independent set of } G} |S|$$
.

ex:

 $\alpha(G)$

Definition

The **maximum independent set (MIS)** problem is to, given a undirected (simple) graph G = (V, E) output the size of the largest independent set in G. That is, output

$$\alpha(G) := \max_{S \subseteq V, S \text{ independent set of } G} |S|$$
.

ex:

$$\alpha(G)=3$$

Definition

The maximum weight independent set problem is to,

Definition

The **maximum weight independent set** problem is to, given a undirected (simple) graph G = (V, E)

Definition

The **maximum weight independent set** problem is to, given a undirected (simple) graph G = (V, E) and a weight function $w : V \to \mathbb{N}$,

Definition

The **maximum weight independent set** problem is to, given a undirected (simple) graph G = (V, E) and a weight function $w : V \to \mathbb{N}$, output the weight of the maximum weight independent set in G.

Definition

The **maximum weight independent set** problem is to, given a undirected (simple) graph G = (V, E) and a weight function $w : V \to \mathbb{N}$, output the weight of the maximum weight independent set in G. That is, output

$$\max_{\substack{S \subseteq V \\ S \text{ independent set of } G}} \sum_{v \in S} w(v) .$$

Definition

The **maximum weight independent set** problem is to, given a undirected (simple) graph G = (V, E) and a weight function $w : V \to \mathbb{N}$, output the weight of the maximum weight independent set in G. That is, output

$$\max_{\substack{S \subseteq V \\ S \text{ independent set of } G}} \sum_{v \in S} w(v) \;.$$

Definition

The **maximum weight independent set** problem is to, given a undirected (simple) graph G = (V, E) and a weight function $w : V \to \mathbb{N}$, output the weight of the maximum weight independent set in G. That is, output

$$\max_{\substack{S \subseteq V \\ S \text{ independent set of } G}} \sum_{v \in S} w(v) .$$

remarks:

■ maximum (weight) independent set (MIS) is solvable via brute force:

remarks:

maximum (weight) independent set (MIS) is solvable via brute force: try all possible subsets

remarks:

■ maximum (weight) independent set (MIS) is solvable via brute force: try all possible subsets \implies solvable in time $O(n^{O(1)}2^n)$

- maximum (weight) independent set (MIS) is solvable via brute force: try all possible subsets \implies solvable in time $O(n^{O(1)}2^n)$
- no efficient algorithm *currently* known

- maximum (weight) independent set (MIS) is solvable via brute force: try all possible subsets \implies solvable in time $O(n^{O(1)}2^n)$
- no efficient algorithm *currently* known
- MIS is NP-hard

- maximum (weight) independent set (MIS) is solvable via brute force: try all possible subsets \implies solvable in time $O(n^{O(1)}2^n)$
- no efficient algorithm *currently* known
- \blacksquare MIS is NP-hard \Longrightarrow an efficient algorithm *not* expected to exist

- maximum (weight) independent set (MIS) is solvable via brute force: try all possible subsets \implies solvable in time $O(n^{O(1)}2^n)$
- no efficient algorithm *currently* known
- \blacksquare MIS is NP-hard \Longrightarrow an efficient algorithm *not* expected to exist
- MIS is efficiently solvable if the underlying graph is a *tree*

For vertex v,

For vertex v, let N(v) denote the subset $S \subseteq V$ of *neighbors* of v.

For vertex v, let N(v) denote the subset $S \subseteq V$ of *neighbors* of v.

For vertex v, let N(v) denote the subset $S \subseteq V$ of *neighbors* of v.

$$G=(V,E)$$
,

For vertex v, let N(v) denote the subset $S \subseteq V$ of *neighbors* of v.

$$G = (V, E), w : V \to \mathbb{N},$$

For vertex v, let N(v) denote the subset $S \subseteq V$ of *neighbors* of v.

$$G = (V, E), w : V \to \mathbb{N}, with |V| \ge 1.$$

For vertex v, let N(v) denote the subset $S \subseteq V$ of *neighbors* of v.

$$G = (V, E)$$
, $w : V \to \mathbb{N}$, with $|V| \ge 1$. Then for any $v \in V$,

$$MIS(G) =$$

For vertex v, let N(v) denote the subset $S \subseteq V$ of *neighbors* of v.

$$G = (V, E), w : V \to \mathbb{N}, with |V| \ge 1.$$
 Then for any $v \in V$,

$$MIS(G) = max$$

For vertex v, let N(v) denote the subset $S \subseteq V$ of *neighbors* of v.

$$G = (V, E)$$
, $w : V \to \mathbb{N}$, with $|V| \ge 1$. Then for any $v \in V$,

$$MIS(G) = \max \{ MIS(G - v),$$

For vertex v, let N(v) denote the subset $S \subseteq V$ of *neighbors* of v.

$$G = (V, E)$$
, $w : V \to \mathbb{N}$, with $|V| \ge 1$. Then for any $v \in V$,

$$MIS(G) = \max \left\{ MIS(G - v), MIS(G - v - N(v)) + w(v) \right\}.$$

For vertex v, let N(v) denote the subset $S \subseteq V$ of *neighbors* of v.

Lemma

$$G = (V, E)$$
, $w : V \to \mathbb{N}$, with $|V| \ge 1$. Then for any $v \in V$,

$$MIS(G) = \max \left\{ MIS(G - v), MIS(G - v - N(v)) + w(v) \right\}.$$

Proof.

For vertex v, let N(v) denote the subset $S \subseteq V$ of *neighbors* of v.

Lemma

$$G = (V, E)$$
, $w : V \to \mathbb{N}$, with $|V| \ge 1$. Then for any $v \in V$,

$$MIS(G) = \max \left\{ MIS(G - v), MIS(G - v - N(v)) + w(v) \right\}.$$

Proof.

For any set S independent in G,

For vertex v, let N(v) denote the subset $S \subseteq V$ of *neighbors* of v.

Lemma

$$G = (V, E)$$
, $w : V \to \mathbb{N}$, with $|V| \ge 1$. Then for any $v \in V$,

$$MIS(G) = \max \left\{ MIS(G - v), MIS(G - v - N(v)) + w(v) \right\}.$$

Proof.

For any set S independent in G, either $v \notin S$

For vertex v, let N(v) denote the subset $S \subseteq V$ of *neighbors* of v.

Lemma

$$G = (V, E)$$
, $w : V \to \mathbb{N}$, with $|V| \ge 1$. Then for any $v \in V$,

$$MIS(G) = \max \left\{ MIS(G - v), MIS(G - v - N(v)) + w(v) \right\}.$$

Proof.

For vertex v, let N(v) denote the subset $S \subseteq V$ of *neighbors* of v.

Lemma

$$G = (V, E)$$
, $w : V \to \mathbb{N}$, with $|V| \ge 1$. Then for any $v \in V$,

$$MIS(G) = \max \left\{ MIS(G - v), MIS(G - v - N(v)) + w(v) \right\}.$$

Proof.

For vertex v, let N(v) denote the subset $S \subseteq V$ of *neighbors* of v.

Lemma

$$G = (V, E)$$
, $w : V \to \mathbb{N}$, with $|V| \ge 1$. Then for any $v \in V$,

$$MIS(G) = \max \left\{ MIS(G - v), MIS(G - v - N(v)) + w(v) \right\}.$$

Proof.

For any set S independent in G, either $v \notin S$ or $v \in S$.

■ G - v: any set $T \subseteq V \setminus \{v\}$ independent in G - v

For vertex v, let N(v) denote the subset $S \subseteq V$ of *neighbors* of v.

Lemma

$$G = (V, E)$$
, $w : V \to \mathbb{N}$, with $|V| \ge 1$. Then for any $v \in V$,

$$MIS(G) = \max \left\{ MIS(G - v), MIS(G - v - N(v)) + w(v) \right\}.$$

Proof.

For any set S independent in G, either $v \notin S$ or $v \in S$.

■ G - v: any set $T \subseteq V \setminus \{v\}$ independent in G - v has $T \subseteq V$ independent in G

For vertex v, let N(v) denote the subset $S \subseteq V$ of *neighbors* of v.

Lemma

$$G = (V, E)$$
, $w : V \to \mathbb{N}$, with $|V| \ge 1$. Then for any $v \in V$,

$$MIS(G) = \max \left\{ MIS(G - v), MIS(G - v - N(v)) + w(v) \right\}.$$

Proof.

- G v: any set $T \subseteq V \setminus \{v\}$ independent in G v has $T \subseteq V$ independent in G
- G v N(v):

For vertex v, let N(v) denote the subset $S \subseteq V$ of *neighbors* of v.

Lemma

$$G = (V, E)$$
, $w : V \to \mathbb{N}$, with $|V| \ge 1$. Then for any $v \in V$,

$$MIS(G) = \max \left\{ MIS(G - v), MIS(G - v - N(v)) + w(v) \right\}.$$

Proof.

- G v: any set $T \subseteq V \setminus \{v\}$ independent in G v has $T \subseteq V$ independent in G
- G v N(v): any set $T \subseteq V \setminus (\{v\} \cup N(v))$ independent in G v N(v)

For vertex v, let N(v) denote the subset $S \subseteq V$ of *neighbors* of v.

Lemma

$$G = (V, E)$$
, $w : V \to \mathbb{N}$, with $|V| \ge 1$. Then for any $v \in V$,

$$MIS(G) = \max \left\{ MIS(G - v), MIS(G - v - N(v)) + w(v) \right\}.$$

Proof.

- G v: any set $T \subseteq V \setminus \{v\}$ independent in G v has $T \subseteq V$ independent in G
- G v N(v): any set $T \subseteq V \setminus (\{v\} \cup N(v))$ independent in G v N(v) has $T \cup \{v\} \subseteq V$ independent in G

For vertex v, let N(v) denote the subset $S \subseteq V$ of *neighbors* of v.

Lemma

$$G = (V, E)$$
, $w : V \to \mathbb{N}$, with $|V| \ge 1$. Then for any $v \in V$,

$$MIS(G) = \max \left\{ MIS(G - v), MIS(G - v - N(v)) + w(v) \right\}.$$

Proof.

For any set S independent in G, either $v \notin S$ or $v \in S$.

- G v: any set $T \subseteq V \setminus \{v\}$ independent in G v has $T \subseteq V$ independent in G
- G v N(v): any set $T \subseteq V \setminus (\{v\} \cup N(v))$ independent in G v N(v) has $T \cup \{v\} \subseteq V$ independent in G

Any set S independent in G must be of the above two cases.

For vertex v, let N(v) denote the subset $S \subseteq V$ of *neighbors* of v.

Lemma

$$G = (V, E)$$
, $w : V \to \mathbb{N}$, with $|V| \ge 1$. Then for any $v \in V$,

$$MIS(G) = \max \left\{ MIS(G - v), MIS(G - v - N(v)) + w(v) \right\}.$$

Proof.

For any set S independent in G, either $v \notin S$ or $v \in S$.

- G v: any set $T \subseteq V \setminus \{v\}$ independent in G v has $T \subseteq V$ independent in G
- G v N(v): any set $T \subseteq V \setminus (\{v\} \cup N(v))$ independent in G v N(v) has $T \cup \{v\} \subseteq V$ independent in G

Any set S independent in G must be of the above two cases. Now maximize.

$$MIS(G) = \max \begin{cases} MIS(G-v) \\ MIS(G-v-N(v)) + w(v) \end{cases}$$

$$MIS(G) = \max \begin{cases} MIS(G-v) \\ MIS(G-v-N(v)) + w(v) \end{cases}$$

$$MIS(G)=\max \begin{cases} MIS(G-v) \\ MIS(G-v-N(v))+w(v) \end{cases}$$

recursive-MIS($G = (V, E), w : V \rightarrow \mathbb{N}$):

```
recursive-MIS(G = (V, E), w : V \to \mathbb{N}): if V = \emptyset
```

```
recursive-MIS(G = (V, E), w : V \to \mathbb{N}): if V = \emptyset return 0
```

```
recursive-MIS(G = (V, E), w : V \to \mathbb{N}):

if V = \emptyset

return 0

choose v \in V
```

```
 \begin{aligned} & \text{recursive-MIS}(G = (V, E), w : V \to \mathbb{N}): \\ & & \text{if } V = \emptyset \\ & & \text{return } 0 \\ & & \text{choose } v \in V \\ & & \text{return } \max \left( \right. \end{aligned}
```

```
\begin{split} & \text{recursive-MIS}(G = (V, E), w : V \to \mathbb{N}): \\ & \text{if } V = \emptyset \\ & \text{return 0} \\ & \text{choose } v \in V \\ & \text{return max} \left( \text{recursive-MIS}(G - v), \right. \end{split}
```

```
\begin{split} & \text{recursive-MIS}(G = (V, E), w : V \to \mathbb{N}): \\ & \text{ if } V = \emptyset \\ & \text{ return } 0 \\ & \text{ choose } v \in V \\ & \text{ return } \max \left( \text{recursive-MIS}(G - v), \text{recursive-MIS}(G - v - N(v)) + w(v) \right) \end{split}
```

```
\begin{aligned} &\text{recursive-MIS}(G = (V, E), w : V \to \mathbb{N}): \\ & & \text{if } V = \emptyset \\ & & \text{return } 0 \\ & & \text{choose } v \in V \\ & & \text{return } \max \left( \text{recursive-MIS}(G - v), \text{recursive-MIS}(G - v - N(v)) + w(v) \right) \end{aligned}
```

```
\begin{aligned} &\text{recursive-MIS}(G = (V, E), w : V \to \mathbb{N}): \\ & & \text{if } V = \emptyset \\ & & \text{return } 0 \\ & & \text{choose } v \in V \\ & & \text{return } \max \left( \text{recursive-MIS}(G - v), \text{recursive-MIS}(G - v - N(v)) + w(v) \right) \end{aligned}
```

correctness:

```
\begin{aligned} &\text{recursive-MIS}(G = (V, E), w : V \to \mathbb{N}): \\ & & \text{if } V = \emptyset \\ & & \text{return } 0 \\ & & \text{choose } v \in V \\ & & \text{return } \max \left( \text{recursive-MIS}(G - v), \text{recursive-MIS}(G - v - N(v)) + w(v) \right) \end{aligned}
```

correctness: clear

```
\begin{aligned} &\text{recursive-MIS}(G = (V, E), w : V \to \mathbb{N}): \\ & & \text{if } V = \emptyset \\ & & \text{return } 0 \\ & & \text{choose } v \in V \\ & & \text{return } \max \left( \text{recursive-MIS}(G - v), \text{recursive-MIS}(G - v - N(v)) + w(v) \right) \end{aligned}
```

correctness: clear

complexity:

```
\begin{aligned} &\text{recursive-MIS}(G = (V, E), w : V \to \mathbb{N}): \\ & & \text{if } V = \emptyset \\ & & \text{return } 0 \\ & & \text{choose } v \in V \\ & & \text{return } \max \left( \text{recursive-MIS}(G - v), \text{recursive-MIS}(G - v - N(v)) + w(v) \right) \end{aligned}
```

```
\begin{aligned} &\text{recursive-MIS}(G = (V, E), w : V \to \mathbb{N}): \\ & & \text{if } V = \emptyset \\ & & \text{return } 0 \\ & & \text{choose } v \in V \\ & & \text{return } \max \left( \text{recursive-MIS}(G - v), \text{recursive-MIS}(G - v - N(v)) + w(v) \right) \end{aligned}
```

```
correctness: clear complexity: n := |V| \qquad T(0), T(1) \ge \Omega(1).
```

```
\begin{aligned} &\text{recursive-MIS}(G = (V, E), w : V \to \mathbb{N}): \\ & & \text{if } V = \emptyset \\ & & \text{return } 0 \\ & & \text{choose } v \in V \\ & & \text{return } \max \left( \text{recursive-MIS}(G - v), \text{recursive-MIS}(G - v - N(v)) + w(v) \right) \end{aligned}
```

```
correctness: clear complexity: n:=|V| T(0), T(1) \ge \Omega(1). T(n) \ge T(n-1) + T(n-1-\deg(v))
```

```
\begin{aligned} &\text{recursive-MIS}(G = (V, E), w : V \to \mathbb{N}): \\ & & \text{if } V = \emptyset \\ & & \text{return } 0 \\ & & \text{choose } v \in V \\ & & \text{return } \max \left( \text{recursive-MIS}(G - v), \text{recursive-MIS}(G - v - N(v)) + w(v) \right) \end{aligned}
```

```
correctness: clear complexity: n := |V|

T(0), T(1) \ge \Omega(1). T(n) \ge T(n-1) + T(n-1-\deg(v))
silly case:
```

silly case: G has no edges

```
\begin{aligned} &\text{recursive-MIS}(G = (V, E), w : V \to \mathbb{N}): \\ & & \text{if } V = \emptyset \\ & & \text{return } 0 \\ & & \text{choose } v \in V \\ & & \text{return } \max \left( \text{recursive-MIS}(G - v), \text{recursive-MIS}(G - v - N(v)) + w(v) \right) \end{aligned}
```

```
correctness: clear complexity: n := |V| \blacksquare T(0), T(1) \ge \Omega(1). T(n) \ge T(n-1) + T(n-1 - \deg(v))
```

```
\begin{aligned} &\text{recursive-MIS}(G = (V, E), w : V \to \mathbb{N}): \\ & & \text{if } V = \emptyset \\ & & \text{return } 0 \\ & & \text{choose } v \in V \\ & & \text{return } \max \left( \text{recursive-MIS}(G - v), \text{recursive-MIS}(G - v - N(v)) + w(v) \right) \end{aligned}
```

```
correctness: clear complexity: n := |V| \qquad T(0), T(1) \ge \Omega(1). T(n) \ge T(n-1) + T(n-1-\deg(v))
```

■ silly case: G has no edges \implies for all v, $\deg(v) = 0$

```
 \begin{aligned} &\text{recursive-MIS}(G = (V, E), w : V \to \mathbb{N}): \\ & & \text{if } V = \emptyset \\ & & \text{return } 0 \\ & & \text{choose } v \in V \\ & & \text{return } \max \left( \text{recursive-MIS}(G - v), \text{recursive-MIS}(G - v - N(v)) + w(v) \right) \end{aligned}
```

```
correctness: clear complexity: n := |V|

T(0), T(1) \ge \Omega(1). T(n) \ge T(n-1) + T(n-1 - \deg(v))

silly case: G has no edges \Longrightarrow for all v, \deg(v) = 0
```

 $\implies T(n) \ge 2T(n-1)$

```
 \begin{aligned} & \text{recursive-MIS}(G = (V, E), w : V \to \mathbb{N}) : \\ & & \text{if } V = \emptyset \\ & & \text{return } 0 \\ & & \text{choose } v \in V \\ & & \text{return } \max \left( \text{recursive-MIS}(G - v), \text{recursive-MIS}(G - v - N(v)) + w(v) \right) \end{aligned}
```

```
correctness: clear complexity: n := |V|
```

- $T(0), T(1) \ge \Omega(1)$. $T(n) \ge T(n-1) + T(n-1 \deg(v))$
- silly case: G has no edges \implies for all v, $\deg(v) = 0$

$$\implies T(n) \ge 2T(n-1) \ge 4T(n-2)$$

```
\begin{aligned} &\text{recursive-MIS}(G = (V, E), w : V \to \mathbb{N}): \\ & & \text{if } V = \emptyset \\ & & \text{return } 0 \\ & & \text{choose } v \in V \\ & & \text{return } \max \left( \text{recursive-MIS}(G - v), \text{recursive-MIS}(G - v - N(v)) + w(v) \right) \end{aligned}
```

```
correctness: clear complexity: n := |V|
```

- $T(0), T(1) \ge \Omega(1)$. $T(n) \ge T(n-1) + T(n-1 \deg(v))$
- silly case: G has no edges \implies for all v, $\deg(v) = 0$

$$\implies T(n) \ge 2T(n-1) \ge 4T(n-2) \ge \cdots \ge$$

```
\begin{aligned} &\text{recursive-MIS}(G = (V, E), w : V \to \mathbb{N}): \\ & & \text{if } V = \emptyset \\ & & \text{return } 0 \\ & & \text{choose } v \in V \\ & & \text{return } \max \left( \text{recursive-MIS}(G - v), \text{recursive-MIS}(G - v - N(v)) + w(v) \right) \end{aligned}
```

```
correctness: clear complexity: n := |V|
```

- $T(0), T(1) \ge \Omega(1)$. $T(n) \ge T(n-1) + T(n-1 \deg(v))$
- silly case: G has no edges \implies for all v, $\deg(v) = 0$

$$\implies T(n) \ge 2T(n-1) \ge 4T(n-2) \ge \cdots \ge 2^n \cdot T(1)$$

```
\begin{aligned} &\text{recursive-MIS}(G = (V, E), w : V \to \mathbb{N}): \\ & & \text{if } V = \emptyset \\ & & \text{return } 0 \\ & & \text{choose } v \in V \\ & & \text{return } \max \left( \text{recursive-MIS}(G - v), \text{recursive-MIS}(G - v - N(v)) + w(v) \right) \end{aligned}
```

```
correctness: clear complexity: n := |V|
```

- $T(0), T(1) \ge \Omega(1)$. $T(n) \ge T(n-1) + T(n-1 \deg(v))$
- silly case: G has no edges \implies for all v, $\deg(v) = 0$

$$\implies T(n) \ge 2T(n-1) \ge 4T(n-2) \ge \cdots \ge 2^n \cdot T(1) \ge \Omega(2^n).$$

```
\begin{aligned} &\text{recursive-MIS}(G = (V, E), w : V \to \mathbb{N}): \\ & & \text{if } V = \emptyset \\ & & \text{return } 0 \\ & & \text{choose } v \in V \\ & & \text{return } \max \left( \text{recursive-MIS}(G - v), \text{recursive-MIS}(G - v - N(v)) + w(v) \right) \end{aligned}
```

correctness: clear **complexity:** n := |V|

- $T(0), T(1) \ge \Omega(1)$. $T(n) \ge T(n-1) + T(n-1 \deg(v))$
- silly case: G has no edges \implies for all v, $\deg(v) = 0$

$$\implies T(n) \ge 2T(n-1) \ge 4T(n-2) \ge \cdots \ge 2^n \cdot T(1) \ge \Omega(2^n).$$

• when G has no edges then clearly MIS(G) = |V|,

```
\begin{aligned} &\text{recursive-MIS}(G = (V, E), w : V \to \mathbb{N}): \\ & & \text{if } V = \emptyset \\ & & \text{return } 0 \\ & & \text{choose } v \in V \\ & & \text{return } \max \left( \text{recursive-MIS}(G - v), \text{recursive-MIS}(G - v - N(v)) + w(v) \right) \end{aligned}
```

correctness: clear **complexity:** n := |V|

- $T(0), T(1) \ge \Omega(1)$. $T(n) \ge T(n-1) + T(n-1 \deg(v))$
- silly case: G has no edges \implies for all v, $\deg(v) = 0$

$$\implies T(n) \ge 2T(n-1) \ge 4T(n-2) \ge \cdots \ge 2^n \cdot T(1) \ge \Omega(2^n).$$

• when G has no edges then clearly MIS(G) = |V|, but this worst-case runtime is hard to avoid

```
\begin{aligned} &\text{recursive-MIS}(G = (V, E), w : V \to \mathbb{N}): \\ & & \text{if } V = \emptyset \\ & & \text{return } 0 \\ & & \text{choose } v \in V \\ & & \text{return } \max \left( \text{recursive-MIS}(G - v), \text{recursive-MIS}(G - v - N(v)) + w(v) \right) \end{aligned}
```

- $T(0), T(1) \ge \Omega(1)$. $T(n) \ge T(n-1) + T(n-1 \deg(v))$
- silly case: G has no edges \implies for all v, $\deg(v) = 0$

$$\implies T(n) \ge 2T(n-1) \ge 4T(n-2) \ge \cdots \ge 2^n \cdot T(1) \ge \Omega(2^n).$$

- when G has no edges then clearly MIS(G) = |V|, but this worst-case runtime is hard to avoid
- memoization does not obviously help

```
\begin{aligned} &\text{recursive-MIS}(G = (V, E), w : V \to \mathbb{N}): \\ & & \text{if } V = \emptyset \\ & & \text{return } 0 \\ & & \text{choose } v \in V \\ & & \text{return } \max \left( \text{recursive-MIS}(G - v), \text{recursive-MIS}(G - v - N(v)) + w(v) \right) \end{aligned}
```

- $T(0), T(1) \ge \Omega(1)$. $T(n) \ge T(n-1) + T(n-1 \deg(v))$
- silly case: G has no edges \implies for all v, deg(v) = 0

$$\implies T(n) \ge 2T(n-1) \ge 4T(n-2) \ge \cdots \ge 2^n \cdot T(1) \ge \Omega(2^n).$$

- when G has no edges then clearly MIS(G) = |V|, but this worst-case runtime is hard to avoid
- memoization does not obviously help subproblems correspond to subgraphs,

```
\begin{aligned} &\text{recursive-MIS}(G = (V, E), w : V \to \mathbb{N}): \\ & & \text{if } V = \emptyset \\ & & \text{return } 0 \\ & & \text{choose } v \in V \\ & & \text{return } \max \left( \text{recursive-MIS}(G - v), \text{recursive-MIS}(G - v - N(v)) + w(v) \right) \end{aligned}
```

- $T(0), T(1) \ge \Omega(1)$. $T(n) \ge T(n-1) + T(n-1 \deg(v))$
- silly case: G has no edges \implies for all v, $\deg(v) = 0$

$$\implies T(n) \ge 2T(n-1) \ge 4T(n-2) \ge \cdots \ge 2^n \cdot T(1) \ge \Omega(2^n).$$

- when G has no edges then clearly MIS(G) = |V|, but this worst-case runtime is hard to avoid
- memoization does not obviously help subproblems correspond to subgraphs, of which there are possibly exponentially many

question:

question: maximum weight independent set,

question: maximum weight independent set, in trees?

question: maximum weight independent set, in trees?

question: maximum weight independent set, in trees?

question:

question: maximum weight independent set, in trees?

question:

■ how to bound the number of subproblems in recursive algorithm?

question: maximum weight independent set, in trees?

question:

- how to bound the number of subproblems in recursive algorithm?
- how to pick which vertex $v \in V$ to eliminate?

$$MIS(G) = \max \begin{cases} MIS(G-v) & a \\ MIS(G-v-N(v))+w(v) & c & d \end{cases}$$

$$MIS(G)=\max \begin{cases} MIS(G-v) & a \\ MIS(G-v-N(v))+w(v) & c & d \end{cases}$$

Lemma

Lemma

Let T = (V, E) be a tree,

Lemma

Let T = (V, E) be a tree, with **root** $v \in V$.

Lemma

Let T = (V, E) be a tree, with **root** $v \in V$. Then

Lemma

Let T = (V, E) be a tree, with **root** $v \in V$. Then

 \blacksquare T - v is a forest,

Lemma

Let T = (V, E) be a tree, with **root** $v \in V$. Then

 \blacksquare T - v is a forest, with each tree associated to a child u of v.

Lemma

Let T = (V, E) be a tree, with **root** $v \in V$. Then

- \blacksquare T v is a forest, with each tree associated to a child u of v.
- \blacksquare T v N(v) is a forest,

Lemma

Let T = (V, E) be a tree, with **root** $v \in V$. Then

- \blacksquare T-v is a forest, with each tree associated to a child u of v.
- \blacksquare T v N(v) is a forest, with each tree associated to a grandchild w of v.

Lemma

Let T = (V, E) be a tree, with **root** $v \in V$. Then

- \blacksquare T v is a forest, with each tree associated to a child u of v.
- T v N(v) is a forest, with each tree associated to a grandchild w of v.

Proof.

Lemma

Let T = (V, E) be a tree, with **root** $v \in V$. Then

- \blacksquare T-v is a forest, with each tree associated to a child u of v.
- \blacksquare T v N(v) is a forest, with each tree associated to a grandchild w of v.

Proof.

Lemma

Let T = (V, E) be a tree, with **root** $v \in V$. Then

- \blacksquare T-v is a forest, with each tree associated to a child u of v.
- \blacksquare T v N(v) is a forest, with each tree associated to a grandchild w of v.

Lemma

Let T = (V, E) be a tree, with **root** $v \in V$. Then

- \blacksquare T v is a forest, with each tree associated to a child u of v.
- \blacksquare T v N(v) is a forest, with each tree associated to a grandchild w of v.

Corollary

Let T = (V, E) be a tree.

Lemma

Let T = (V, E) be a tree, with **root** $v \in V$. Then

- \blacksquare T-v is a forest, with each tree associated to a child u of v.
- T v N(v) is a forest, with each tree associated to a grandchild w of v.

Corollary

Let T = (V, E) be a tree. Pick a root $r \in V$ for T to create the rooted tree (T, r).

Lemma

Let T = (V, E) be a tree, with **root** $v \in V$. Then

- \blacksquare T v is a forest, with each tree associated to a child u of v.
- T v N(v) is a forest, with each tree associated to a grandchild w of v.

Corollary

Let T = (V, E) be a tree. Pick a root $r \in V$ for T to create the rooted tree (T, r). Running recursive-MIS on T

Lemma

Let T = (V, E) be a tree, with **root** $v \in V$. Then

- \blacksquare T v is a forest, with each tree associated to a child u of v.
- T v N(v) is a forest, with each tree associated to a grandchild w of v.

Corollary

Let T = (V, E) be a tree. Pick a root $r \in V$ for T to create the rooted tree (T, r). Running recursive-MIS on T and eliminating nodes closest to r in T,

Lemma

Let T = (V, E) be a tree, with **root** $v \in V$. Then

- \blacksquare T v is a forest, with each tree associated to a child u of v.
- \blacksquare T v N(v) is a forest, with each tree associated to a grandchild w of v.

Corollary

Let T = (V, E) be a tree. Pick a root $r \in V$ for T to create the rooted tree (T, r). Running recursive-MIS on T and eliminating nodes closest to r in T, then the result subproblems exactly correspond to forests of rooted subtrees of (T, r),

Lemma

Let T = (V, E) be a tree, with **root** $v \in V$. Then

- \blacksquare T v is a forest, with each tree associated to a child u of v.
- \blacksquare T v N(v) is a forest, with each tree associated to a grandchild w of v.

Corollary

Let T = (V, E) be a tree. Pick a root $r \in V$ for T to create the rooted tree (T, r). Running recursive-MIS on T and eliminating nodes closest to r in T, then the result subproblems exactly correspond to forests of rooted subtrees of (T, r), and disjoint rooted subtrees can be solved independently

Lemma

Let T = (V, E) be a tree, with **root** $v \in V$. Then

- \blacksquare T v is a forest, with each tree associated to a child u of v.
- \blacksquare T v N(v) is a forest, with each tree associated to a grandchild w of v.

Corollary

Let T = (V, E) be a tree. Pick a root $r \in V$ for T to create the rooted tree (T, r). Running recursive-MIS on T and eliminating nodes closest to r in T, then the result subproblems exactly correspond to forests of rooted subtrees of (T, r), and disjoint rooted subtrees can be solved independently

 $\implies \le |V|$ subproblems

Lemma

Let T = (V, E) be a tree, with **root** $v \in V$. Then

- \blacksquare T v is a forest, with each tree associated to a child u of v.
- \blacksquare T v N(v) is a forest, with each tree associated to a grandchild w of v.

Corollary

Let T = (V, E) be a tree. Pick a root $r \in V$ for T to create the rooted tree (T, r). Running recursive-MIS on T and eliminating nodes closest to r in T, then the result subproblems exactly correspond to forests of rooted subtrees of (T, r), and disjoint rooted subtrees can be solved independently

- $\implies \le |V|$ subproblems
- ⇒ memoized recursive algorithm is efficient

For a rooted tree T with root r,

For a rooted tree T with root r, for $v \in V$ define T(v) to be the subtree of T descending from v.

For a rooted tree T with root r, for $v \in V$ define T(v) to be the subtree of T descending from v. The recursive formula is then:

$$MIS(T) = max$$

For a rooted tree T with root r, for $v \in V$ define T(v) to be the subtree of T descending from v. The recursive formula is then:

$$MIS(T) = \max \left\{ \sum_{v \in N(v)} MIS(T(v)) \right\}$$

For a rooted tree T with root r, for $v \in V$ define T(v) to be the subtree of T descending from v. The recursive formula is then:

$$MIS(T) = \max \left\{ \frac{\sum_{v \in N(v)} MIS(T(v))}{\left(\sum_{v \in N(N(v))} MIS(T(v))\right) + w(v)} \right\}$$

For a rooted tree T with root r, for $v \in V$ define T(v) to be the subtree of T descending from v. The recursive formula is then:

$$MIS(T) = \max \left\{ \frac{\sum_{v \in N(v)} MIS(T(v))}{\left(\sum_{v \in N(N(v))} MIS(T(v))\right) + w(v)} \right.$$

dependency graph:

For a rooted tree T with root r, for $v \in V$ define T(v) to be the subtree of T descending from v. The recursive formula is then:

$$MIS(T) = \max \left\{ \frac{\sum_{v \in N(v)} MIS(T(v))}{\left(\sum_{v \in N(N(v))} MIS(T(v))\right) + w(v)} \right.$$

dependency graph:

■ subproblems are rooted subtrees of (T, r)

For a rooted tree T with root r, for $v \in V$ define T(v) to be the subtree of T descending from v. The recursive formula is then:

$$MIS(T) = \max \left\{ \frac{\sum_{v \in N(v)} MIS(T(v))}{\left(\sum_{v \in N(N(v))} MIS(T(v))\right) + w(v)} \right.$$

dependency graph:

- \blacksquare subproblems are rooted subtrees of (T, r)
- \blacksquare a subtree T(v) depends on all of subtrees T(u) where u is a descendent of v

For a rooted tree T with root r, for $v \in V$ define T(v) to be the subtree of T descending from v. The recursive formula is then:

$$MIS(T) = \max \left\{ \frac{\sum_{v \in N(v)} MIS(T(v))}{\left(\sum_{v \in N(N(v))} MIS(T(v))\right) + w(v)} \right.$$

dependency graph:

- \blacksquare subproblems are rooted subtrees of (T, r)
- \blacksquare a subtree T(v) depends on all of subtrees T(u) where u is a descendent of v
- \implies iterating over V in post-order traversal of ${\mathcal T}$ will satisfy the dependency graph

iterative algorithm:

 $iter-MIS-tree(T = (V, E), w : V \rightarrow \mathbb{N}):$

```
iter-MIS-tree(T=(V,E),w:V\to\mathbb{N}):
let v_1,v_2,\ldots,v_n be a post-order traversal of nodes of T
```

```
iter-MIS-tree(T = (V, E), w : V \to \mathbb{N}):
let v_1, v_2, \dots, v_n be a post-order traversal of nodes of T \implies v_n is the root
```

```
iter-MIS-tree(T=(V,E), w:V\to\mathbb{N}):
let v_1,v_2,\ldots,v_n be a post-order traversal of nodes of T
\implies v_n is the root
for 1\leq i\leq n
```

```
\begin{split} \text{iter-MIS-tree}(T = (V, E), w : V \to \mathbb{N}) : \\ \text{let } v_1, v_2, \dots, v_n \text{ be a post-order traversal of nodes of } T \\ &\Longrightarrow v_n \text{ is the root} \\ \text{for } 1 \leq i \leq n \\ M[i] = \max \left\{ \right. \end{split}
```

```
\begin{split} \text{iter-MIS-tree}(T = (V, E), w : V \to \mathbb{N}) : \\ \text{let } v_1, v_2, \dots, v_n \text{ be a post-order traversal of nodes of } T \\ &\Longrightarrow v_n \text{ is the root} \\ \text{for } 1 \le i \le n \\ M[i] = \max \left\{ \sum_{j: v_j \in N(v_i)} M[j] \right. \end{split}
```

```
\begin{split} & \text{iter-MIS-tree}(T = (V, E), w: V \to \mathbb{N}): \\ & \text{let } v_1, v_2, \dots, v_n \text{ be a post-order traversal of nodes of } T \\ & \Longrightarrow v_n \text{ is the root} \\ & \text{for } 1 \leq i \leq n \\ & M[i] = \max \left\{ \sum_{j: v_j \in N(v_i)} M[j] \\ & \left( \sum_{j: v_j \in N(N(v_i))} M[j] \right) + w(v_i) \right. \end{split}
```

iterative algorithm:

```
\begin{split} & \text{iter-MIS-tree}(T = (V, E), w: V \to \mathbb{N}): \\ & \text{let } v_1, v_2, \dots, v_n \text{ be a post-order traversal of nodes of } T \\ & \Longrightarrow v_n \text{ is the root} \\ & \text{for } 1 \leq i \leq n \\ & M[i] = \max \left\{ \sum_{j: v_j \in N(v_i)} M[j] \\ & \left( \sum_{j: v_j \in N(N(v_i))} M[j] \right) + w(v_i) \right. \end{split} & \text{return } M[n] \end{split}
```

iterative algorithm:

```
\begin{split} \text{iter-MIS-tree}(T = (V, E), w : V \to \mathbb{N}) : \\ \text{let } v_1, v_2, \dots, v_n \text{ be a post-order traversal of nodes of } T \\ & \Longrightarrow v_n \text{ is the root} \\ \text{for } 1 \le i \le n \\ M[i] = \max \left\{ \sum_{j: v_j \in N(v_i)} M[j] \\ \left( \sum_{j: v_j \in N(N(v_i))} M[j] \right) + w(v_i) \right. \end{split} return M[n]
```

iterative algorithm:

```
iter-MIS-tree(T = (V, E), w : V \to \mathbb{N}):
let v_1, v_2, \dots, v_n be a post-order traversal of nodes of T
\implies v_n is the root
for 1 \le i \le n
M[i] = \max \left\{ \sum_{j: v_j \in N(v_i)} M[j] \left( \sum_{j: v_j \in N(N(v_i))} M[j] \right) + w(v_i) \right\}
return M[n]
```

correctness:

iterative algorithm:

```
\begin{aligned} & \text{iter-MIS-tree}(T=(V,E),w:V\to\mathbb{N}):\\ & \text{let } v_1,v_2,\dots,v_n \text{ be a post-order traversal of nodes of } T\\ &\Longrightarrow v_n \text{ is the root}\\ & \text{for } 1\leq i\leq n\\ & M[i]=\max\left\{ \sum_{j:v_j\in N(v_i)} M[j]\\ &\left(\sum_{j:v_j\in N(N(v_i))} M[j]\right)+w(v_i)\\ & \text{return } M[n] \end{aligned} \right.
```

correctness: clear

iterative algorithm:

```
\begin{split} \text{iter-MIS-tree}(T = (V, E), w : V \to \mathbb{N}) : \\ \text{let } v_1, v_2, \dots, v_n \text{ be a post-order traversal of nodes of } T \\ & \Longrightarrow v_n \text{ is the root} \\ \text{for } 1 \le i \le n \\ M[i] = \max \left\{ \sum_{j: v_j \in N(v_i)} M[j] \\ \left( \sum_{j: v_j \in N(N(v_i))} M[j] \right) + w(v_i) \right. \end{split} return M[n]
```

correctness: clear

iterative algorithm:

```
\begin{aligned} & \text{iter-MIS-tree}(T=(V,E),w:V\to\mathbb{N}):\\ & \text{let } v_1,v_2,\dots,v_n \text{ be a post-order traversal of nodes of } T\\ & \Longrightarrow v_n \text{ is the root}\\ & \text{for } 1\leq i\leq n\\ & M[i] = \max\left\{ \sum_{j:v_j\in N(v_i)} M[j]\\ & \left(\sum_{j:v_j\in N(N(v_i))} M[j]\right) + w(v_i) \right. \end{aligned} & \text{return } M[n]
```

correctness: clear
complexity:

■ O(n) space to store $M[\cdot]$

iterative algorithm:

```
\begin{split} \text{iter-MIS-tree}(T = (V, E), w : V \to \mathbb{N}) : \\ \text{let } v_1, v_2, \dots, v_n \text{ be a post-order traversal of nodes of } T \\ &\Longrightarrow v_n \text{ is the root} \\ \text{for } 1 \leq i \leq n \\ M[i] = \max \left\{ \sum_{j: v_j \in N(v_i)} M[j] \\ \left( \sum_{j: v_j \in N(N(v_i))} M[j] \right) + w(v_i) \right. \\ \text{return } M[n] \end{split}
```

correctness: clear

- O(n) space to store $M[\cdot]$
- time

iterative algorithm:

```
\begin{aligned} & \text{iter-MIS-tree}(T=(V,E),w:V\to\mathbb{N}):\\ & \text{let } v_1,v_2,\dots,v_n \text{ be a post-order traversal of nodes of } T\\ & \Longrightarrow v_n \text{ is the root}\\ & \text{for } 1\leq i\leq n\\ & M[i] = \max\left\{ \sum_{j:v_j\in N(v_i)} M[j]\\ & \left(\sum_{j:v_j\in N(N(v_i))} M[j]\right) + w(v_i) \right. \end{aligned} & \text{return } M[n]
```

correctness: clear

- O(n) space to store $M[\cdot]$
- time
 - naive:

iterative algorithm:

```
\begin{split} \text{iter-MIS-tree}(T = (V, E), w : V \to \mathbb{N}) : \\ \text{let } v_1, v_2, \dots, v_n \text{ be a post-order traversal of nodes of } T \\ & \Longrightarrow v_n \text{ is the root} \\ \text{for } 1 \le i \le n \\ M[i] = \max \left\{ \sum_{j: v_j \in N(v_i)} M[j] \\ \left( \sum_{j: v_j \in N(N(v_i))} M[j] \right) + w(v_i) \right. \end{split} return M[n]
```

correctness: clear

- O(n) space to store $M[\cdot]$
- time
 - \blacksquare naive: O(n) time per node,

iterative algorithm:

```
\begin{split} \text{iter-MIS-tree}(T = (V, E), w : V \to \mathbb{N}) : \\ \text{let } v_1, v_2, \dots, v_n \text{ be a post-order traversal of nodes of } T \\ & \Longrightarrow v_n \text{ is the root} \\ \text{for } 1 \le i \le n \\ M[i] = \max \left\{ \sum_{j: v_j \in N(v_i)} M[j] \\ \left( \sum_{j: v_j \in N(N(v_i))} M[j] \right) + w(v_i) \right. \end{split} return M[n]
```

correctness: clear

- lacksquare O(n) space to store $M[\cdot]$
- time
 - \blacksquare naive: O(n) time per node, n nodes

iterative algorithm:

```
\begin{split} \text{iter-MIS-tree}(T = (V, E), w : V \to \mathbb{N}) : \\ \text{let } v_1, v_2, \dots, v_n \text{ be a post-order traversal of nodes of } T \\ & \Longrightarrow v_n \text{ is the root} \\ \text{for } 1 \le i \le n \\ M[i] = \max \left\{ \sum_{j: v_j \in N(v_i)} M[j] \\ \left( \sum_{j: v_j \in N(N(v_i))} M[j] \right) + w(v_i) \right. \end{split} return M[n]
```

correctness: clear

- lacksquare O(n) space to store $M[\cdot]$
- time
 - naive: O(n) time per node, n nodes $\implies O(n^2)$

iterative algorithm:

```
iter-MIS-tree(T = (V, E), w : V \to \mathbb{N}):
let v_1, v_2, \ldots, v_n be a post-order traversal of nodes of T
\implies v_n is the root
for 1 \le i \le n
M[i] = \max \left\{ \sum_{j:v_j \in N(v_i)} M[j] \right.
return M[n]
```

correctness: clear

- lacksquare O(n) space to store $M[\cdot]$
- time
 - naive: O(n) time per node, n nodes $\implies O(n^2)$
 - better:

iterative algorithm:

```
iter-MIS-tree(T = (V, E), w : V \to \mathbb{N}):
let v_1, v_2, \dots, v_n be a post-order traversal of nodes of T
\implies v_n \text{ is the root}
for 1 \le i \le n
M[i] = \max \left\{ \sum_{j:v_j \in N(v_i)} M[j] \right.
\left( \sum_{j:v_j \in N(N(v_i))} M[j] \right) + w(v_i)
return M[n]
```

correctness: clear

- lacksquare O(n) space to store $M[\cdot]$
- time
 - *naive*: O(n) time per node, n nodes $\implies O(n^2)$
 - better: each node v_j has its M[j] value read by

iterative algorithm:

```
\begin{aligned} & \text{iter-MIS-tree}(T=(V,E),w:V\to\mathbb{N}):\\ & \text{let } v_1,v_2,\dots,v_n \text{ be a post-order traversal of nodes of } T\\ & \Longrightarrow v_n \text{ is the root}\\ & \text{for } 1\leq i\leq n\\ & M[i] = \max\left\{ \sum_{j:v_j\in N(v_i)} M[j]\\ & \left(\sum_{j:v_j\in N(N(v_i))} M[j]\right) + w(v_i) \right. \end{aligned} & \text{return } M[n]
```

correctness: clear

- lacksquare O(n) space to store $M[\cdot]$
- time
 - *naive*: O(n) time per node, n nodes $\implies O(n^2)$
 - better: each node v_j has its M[j] value read by parent,

iterative algorithm:

```
\begin{split} \text{iter-MIS-tree}(T = (V, E), w : V \to \mathbb{N}) : \\ \text{let } v_1, v_2, \dots, v_n \text{ be a post-order traversal of nodes of } T \\ & \Longrightarrow v_n \text{ is the root} \\ \text{for } 1 \le i \le n \\ M[i] = \max \left\{ \sum_{j: v_j \in N(v_i)} M[j] \\ \left( \sum_{j: v_j \in N(N(v_i))} M[j] \right) + w(v_i) \right. \end{split} return M[n]
```

correctness: clear

- O(n) space to store $M[\cdot]$
- time
 - *naive*: O(n) time per node, n nodes $\implies O(n^2)$
 - **better:** each node v_j has its M[j] value read by parent, and by grandparent

iterative algorithm:

```
\begin{split} & \text{iter-MIS-tree}(T=(V,E),w:V\to\mathbb{N}):\\ & \text{let } v_1,v_2,\ldots,v_n \text{ be a post-order traversal of nodes of } T\\ &\Longrightarrow v_n \text{ is the root}\\ & \textbf{for } 1\leq i\leq n\\ & M[i]=\max\left\{ \sum_{j:v_j\in N(v_i)}M[j]\\ &\left(\sum_{j:v_j\in N(N(v_i))}M[j]\right)+w(v_i)\\ & \textbf{return } M[n] \end{split} \right.
```

correctness: clear

- lacksquare O(n) space to store $M[\cdot]$
- time
 - *naive*: O(n) time per node, n nodes $\implies O(n^2)$
 - better: each node v_j has its M[j] value read by parent, and by grandparent \Longrightarrow O(1) work per n nodes

iterative algorithm:

correctness: clear

- lacksquare O(n) space to store $M[\cdot]$
- time
 - *naive*: O(n) time per node, n nodes $\implies O(n^2)$
 - better: each node v_j has its M[j] value read by parent, and by grandparent \Longrightarrow O(1) work per n nodes \Longrightarrow O(n) time

question:

question: why does dynamic programming work on trees?

question: why does dynamic programming work on trees?

Definition

question: why does dynamic programming work on trees?

Definition

$$G=(V,E).$$

question: why does dynamic programming work on trees?

Definition

$$G = (V, E)$$
. A set of nodes $S \subseteq V$ is a **separator for** G

question: why does dynamic programming work on trees?

Definition

G = (V, E). A set of nodes $S \subseteq V$ is a **separator for** G if G - S has at ≥ 2 connected components,

question: why does dynamic programming work on trees?

Definition

G = (V, E). A set of nodes $S \subseteq V$ is a **separator for** G if G - S has at ≥ 2 connected components, that is,

question: why does dynamic programming work on trees?

Definition

G = (V, E). A set of nodes $S \subseteq V$ is a **separator for** G if G - S has at ≥ 2 connected components, that is, G - S is disconnected.

question: why does dynamic programming work on trees?

Definition

G = (V, E). A set of nodes $S \subseteq V$ is a **separator for** G if G - S has at ≥ 2 connected components, that is, G - S is disconnected.

e.g., in trees,

question: why does dynamic programming work on trees?

Definition

G = (V, E). A set of nodes $S \subseteq V$ is a **separator for** G if G - S has at ≥ 2 connected components, that is, G - S is disconnected.

e.g., in trees, every vertex is a separator,

question: why does dynamic programming work on trees?

Definition

G = (V, E). A set of nodes $S \subseteq V$ is a **separator for** G if G - S has at ≥ 2 connected components, that is, G - S is disconnected.

S is a **balanced** if each connected component of G - S has $\leq \frac{2}{3} \cdot |V|$ vertices.

e.g., in trees, every vertex is a separator,

question: why does dynamic programming work on trees?

Definition

G = (V, E). A set of nodes $S \subseteq V$ is a **separator for** G if G - S has at ≥ 2 connected components, that is, G - S is disconnected.

S is a **balanced** if each connected component of G - S has $\leq \frac{2}{3} \cdot |V|$ vertices.

e.g., in trees, every vertex is a separator, but not all are balanced.

question: why does dynamic programming work on trees?

Definition

G = (V, E). A set of nodes $S \subseteq V$ is a **separator for** G if G - S has at ≥ 2 connected components, that is, G - S is disconnected.

S is a **balanced** if each connected component of G - S has $\leq \frac{2}{3} \cdot |V|$ vertices.

e.g., in trees, *every* vertex is a separator, but not all are *balanced*. **remarks:**

question: why does dynamic programming work on trees?

Definition

G = (V, E). A set of nodes $S \subseteq V$ is a **separator for** G if G - S has at ≥ 2 connected components, that is, G - S is disconnected.

S is a **balanced** if each connected component of G - S has $\leq \frac{2}{3} \cdot |V|$ vertices.

e.g., in trees, every vertex is a separator, but not all are balanced.

remarks:

lacktriangle every tree $\mathcal T$ has a balanced separator consisting of a single node

question: why does dynamic programming work on trees?

Definition

G = (V, E). A set of nodes $S \subseteq V$ is a **separator for** G if G - S has at ≥ 2 connected components, that is, G - S is disconnected.

S is a **balanced** if each connected component of G - S has $\leq \frac{2}{3} \cdot |V|$ vertices.

e.g., in trees, every vertex is a separator, but not all are balanced.

remarks:

- lacktriangle every tree T has a balanced separator consisting of a single node
- dynamic-programming

question: why does dynamic programming work on trees?

Definition

G = (V, E). A set of nodes $S \subseteq V$ is a **separator for** G if G - S has at ≥ 2 connected components, that is, G - S is disconnected.

S is a **balanced** if each connected component of G - S has $\leq \frac{2}{3} \cdot |V|$ vertices.

e.g., in trees, every vertex is a separator, but not all are balanced.

remarks:

- lacktriangle every tree T has a balanced separator consisting of a single node
- dynamic-programming + small balanced separators

question: why does dynamic programming work on trees?

Definition

G = (V, E). A set of nodes $S \subseteq V$ is a **separator for** G if G - S has at ≥ 2 connected components, that is, G - S is disconnected.

S is a **balanced** if each connected component of G - S has $\leq \frac{2}{3} \cdot |V|$ vertices.

e.g., in trees, every vertex is a separator, but not all are balanced.

remarks:

- lacktriangle every tree T has a balanced separator consisting of a single node
- dynamic-programming + small balanced separators $\implies 2^{O(\sqrt{n})}$ -time MIS algorithm for *planar* graphs

Minimum Dominating Set

Definition

Definition

Let G = (V, E) be an undirected (simple) graph.

Definition

Let G = (V, E) be an undirected (simple) graph. A **dominating set of** G

Definition

Let G = (V, E) be an undirected (simple) graph. A **dominating set of** G is a subset $S \subseteq V$

Definition

Let G = (V, E) be an undirected (simple) graph. A **dominating set of** G is a subset $S \subseteq V$ such that for all $v \in V$,

Definition

Let G = (V, E) be an undirected (simple) graph. A **dominating set of** G is a subset $S \subseteq V$ such that for all $v \in V$, either $v \in S$,

Definition

Let G = (V, E) be an undirected (simple) graph. A **dominating set of** G is a subset $S \subseteq V$ such that for all $v \in V$, either $v \in S$, or v has neighbor $u \in N(v)$ with $u \in S$.

Definition

Let G = (V, E) be an undirected (simple) graph. A **dominating set of** G is a subset $S \subseteq V$ such that for all $v \in V$, either $v \in S$, or v has neighbor $u \in N(v)$ with $u \in S$.

ex:

Definition

Let G = (V, E) be an undirected (simple) graph. A **dominating set of** G is a subset $S \subseteq V$ such that for all $v \in V$, either $v \in S$, or v has neighbor $u \in N(v)$ with $u \in S$.

ex:

Definition

Let G = (V, E) be an undirected (simple) graph. A **dominating set of** G is a subset $S \subseteq V$ such that for all $v \in V$, either $v \in S$, or v has neighbor $u \in N(v)$ with $u \in S$.

ex:

Dominating sets include $\{a, b, c, d, e, f\}$,

Definition

Let G = (V, E) be an undirected (simple) graph. A **dominating set of** G is a subset $S \subseteq V$ such that for all $v \in V$, either $v \in S$, or v has neighbor $u \in N(v)$ with $u \in S$.

ex:

Dominating sets include $\{a, b, c, d, e, f\}$, $\{e, c, f\}$,

Definition

Let G = (V, E) be an undirected (simple) graph. A **dominating set of** G is a subset $S \subseteq V$ such that for all $v \in V$, either $v \in S$, or v has neighbor $u \in N(v)$ with $u \in S$.

ex:

Dominating sets include $\{a, b, c, d, e, f\}$, $\{e, c, f\}$, and $\{a, b, f\}$.

Definition

The minimum weight dominating set problem is to,

Definition

The **minimum weight dominating set** problem is to, given a undirected (simple) graph G = (V, E)

Definition

The **minimum weight dominating set** problem is to, given a undirected (simple) graph G = (V, E) and a weight function $w : V \to \mathbb{N}$,

Definition

The **minimum weight dominating set** problem is to, given a undirected (simple) graph G = (V, E) and a weight function $w : V \to \mathbb{N}$, output the weight of the minimum weight dominating set in G.

Definition

The **minimum weight dominating set** problem is to, given a undirected (simple) graph G = (V, E) and a weight function $w : V \to \mathbb{N}$, output the weight of the minimum weight dominating set in G. That is, output

$$\max_{\substack{S \subseteq V \\ S \text{ dominating set of } G}} \sum_{v \in S} w(v) .$$

Definition

The **minimum weight dominating set** problem is to, given a undirected (simple) graph G = (V, E) and a weight function $w : V \to \mathbb{N}$, output the weight of the minimum weight dominating set in G. That is, output

$$\max_{\substack{S\subseteq V\\ S \text{ dominating set of } G}} \sum_{v\in S} w(v) \ .$$

Definition

The **minimum weight dominating set** problem is to, given a undirected (simple) graph G = (V, E) and a weight function $w : V \to \mathbb{N}$, output the weight of the minimum weight dominating set in G. That is, output

$$\max_{\substack{S\subseteq V\\ S \text{ dominating set of } G}} \sum_{v\in S} w(v) \ .$$

remarks:

- minimum (weight) dominating set is solvable via brute force: try *all* possible subsets \implies solvable in time $O(n^{O(1)}2^n)$
- no efficient algorithm *currently* known
- lacktriangleright minimum weight dominating set is NP-hard \Longrightarrow an efficient algorithm not expected to exist
- minimum weight dominating set is efficiently solvable if the underlying graph is a tree

question:

question: copy&paste from MIS on trees?

question: copy&paste from MIS on trees?

question: copy&paste from MIS on trees?

Let T(v) denote the subtree rooted at $v \in V$,

question: copy&paste from MIS on trees?

Let T(v) denote the subtree rooted at $v \in V$, and let S(v) be any minimum weight dominating set for T(v).

question: copy&paste from MIS on trees? **building** S(r):

Let T(v) denote the subtree rooted at $v \in V$, and let S(v) be any minimum weight dominating set for T(v).

question: copy&paste from MIS on trees?

Let T(v) denote the subtree rooted at $v \in V$, and let S(v) be any minimum weight dominating set for T(v).

building S(r):

 $r \in S$:

question: copy&paste from MIS on trees?

Let T(v) denote the subtree rooted at $v \in V$, and let S(v) be any minimum weight dominating set for T(v).

- $r \in S$:
 - could take any $S(a) \cup S(b) \cup \{r\}$

question: copy&paste from MIS on trees?

Let T(v) denote the subtree rooted at $v \in V$, and let S(v) be any minimum weight dominating set for T(v).

- **■** *r* ∈ *S*:
 - could take any $S(a) \cup S(b) \cup \{r\}$
 - better: if we cover r then a, b do not need to be covered

question: copy&paste from MIS on trees?

Let T(v) denote the subtree rooted at $v \in V$, and let S(v) be any minimum weight dominating set for T(v).

- $r \in S$:
 - could take any $S(a) \cup S(b) \cup \{r\}$
 - better: if we cover r then a, b do not need to be covered — only need a "mostly" dominating set on T(a) and T(b)

question: copy&paste from MIS on trees?

Let T(v) denote the subtree rooted at $v \in V$, and let S(v) be any minimum weight dominating set for T(v).

- **■** *r* ∈ *S*:
 - could take any $S(a) \cup S(b) \cup \{r\}$
 - better: if we cover r then a, b do not need to be covered — only need a "mostly" dominating set on T(a) and T(b)
- **r** ∉ *S*:

question: copy&paste from MIS on trees?

Let T(v) denote the subtree rooted at $v \in V$, and let S(v) be any minimum weight dominating set for T(v).

- **■** *r* ∈ *S*:
 - could take any $S(a) \cup S(b) \cup \{r\}$
 - better: if we cover r then a, b do not need to be covered — only need a "mostly" dominating set on T(a) and T(b)
- **■** *r* ∉ *S*:
 - could try to take any $S(a) \cup S(b)$,

question: copy&paste from MIS on trees?

Let T(v) denote the subtree rooted at $v \in V$, and let S(v) be any minimum weight dominating set for T(v).

building S(r):

- **■** *r* ∈ *S*:
 - could take any $S(a) \cup S(b) \cup \{r\}$
 - better: if we cover r then a, b do not need to be covered — only need a "mostly" dominating set on T(a) and T(b)
- **■** *r* ∉ *S*:
 - could try to take any $S(a) \cup S(b)$, but how to dominate r?

question: copy&paste from MIS on trees?

Let T(v) denote the subtree rooted at $v \in V$, and let S(v) be any minimum weight dominating set for T(v).

building S(r):

- **■** *r* ∈ *S*:
 - could take any $S(a) \cup S(b) \cup \{r\}$
 - better: if we cover r then a, b do not need to be covered — only need a "mostly" dominating set on T(a) and T(b)
- **r** ∉ *S*:
 - could try to take any $S(a) \cup S(b)$, but how to dominate r?
 - need a "extra" dominating set from one of T(a) and T(b)

question: copy&paste from MIS on trees?

Let T(v) denote the subtree rooted at $v \in V$, and let S(v) be any minimum weight dominating set for T(v).

building S(r):

- **■** *r* ∈ *S*:
 - could take any $S(a) \cup S(b) \cup \{r\}$
 - better: if we cover r then a, b do not need to be covered — only need a "mostly" dominating set on T(a) and T(b)
- **r** ∉ *S*:
 - could try to take any $S(a) \cup S(b)$, but how to dominate r?
 - need a "extra" dominating set from one of T(a) and T(b)

question:

question: copy&paste from MIS on trees?

Let T(v) denote the subtree rooted at $v \in V$, and let S(v) be any minimum weight dominating set for T(v).

building S(r):

- **■** *r* ∈ *S*:
 - could take any $S(a) \cup S(b) \cup \{r\}$
 - better: if we cover r then a, b do not need to be covered — only need a "mostly" dominating set on T(a) and T(b)
- r ∉ S:
 - could try to take any $S(a) \cup S(b)$, but how to dominate r?
 - need a "extra" dominating set from one of T(a) and T(b)

question: how to parameterize these subproblems?

Definition

Definition

Let T = (V, E) be a rooted tree with root r.

■ A **type-0** dominating set for T is an actual dominating set.

Definition

- A **type-0** dominating set for T is an actual dominating set.
- A **type-1** dominating set for T is an actual dominating set S where $r \in S$.

Definition

- A **type-0** dominating set for T is an actual dominating set.
- A **type-1** dominating set for T is an actual dominating set S where $r \in S$.
- A **type-2** dominating set for *T*

Definition

- A **type-0** dominating set for T is an actual dominating set.
- A **type-1** dominating set for T is an actual dominating set S where $r \in S$.
- A **type-2** dominating set for T is a subset $S \subseteq V$

Definition

- A **type-0** dominating set for T is an actual dominating set.
- A **type-1** dominating set for T is an actual dominating set S where $r \in S$.
- A **type-2** dominating set for T is a subset $S \subseteq V$ such that for all $v \in V$

Definition

- A **type-0** dominating set for T is an actual dominating set.
- A **type-1** dominating set for T is an actual dominating set S where $r \in S$.
- A **type-2** dominating set for T is a subset $S \subseteq V$ such that for all $v \in V$ either $v \in S$ or v has a neighbor $u \in N(v)$ with $u \in S$.

Definition

- A **type-0** dominating set for T is an actual dominating set.
- A **type-1** dominating set for T is an actual dominating set S where $r \in S$.
- A **type-2** dominating set for T is a subset $S \subseteq V$ such that for all $v \in V \setminus \{r\}$, either $v \in S$ or v has a neighbor $u \in N(v)$ with $u \in S$.

Definition

Let T = (V, E) be a rooted tree with root r.

- A **type-0** dominating set for T is an actual dominating set.
- A **type-1** dominating set for T is an actual dominating set S where $r \in S$.
- A **type-2** dominating set for T is a subset $S \subseteq V$ such that for all $v \in V \setminus \{r\}$, either $v \in S$ or v has a neighbor $u \in N(v)$ with $u \in S$.

For $b \in \{0, 1, 2\}$,

Definition

Let T = (V, E) be a rooted tree with root r.

- A **type-0** dominating set for T is an actual dominating set.
- A **type-1** dominating set for T is an actual dominating set S where $r \in S$.
- A **type-2** dominating set for T is a subset $S \subseteq V$ such that for all $v \in V \setminus \{r\}$, either $v \in S$ or v has a neighbor $u \in N(v)$ with $u \in S$.

For $b \in \{0, 1, 2\}$, define OPT_b to be the minimum weight dominating set for T of b-type.

Definition

Let T = (V, E) be a rooted tree with root r.

- A **type-0** dominating set for T is an actual dominating set.
- A **type-1** dominating set for T is an actual dominating set S where $r \in S$.
- A **type-2** dominating set for T is a subset $S \subseteq V$ such that for all $v \in V \setminus \{r\}$, either $v \in S$ or v has a neighbor $u \in N(v)$ with $u \in S$.

For $b \in \{0, 1, 2\}$, define OPT_b to be the minimum weight dominating set for T of b-type. Define $\mathsf{OPT}_b(v)$ to be the OPT_b for the subtree of T rooted at v.

Definition

Let T = (V, E) be a rooted tree with root r.

- A **type-0** dominating set for T is an actual dominating set.
- A **type-1** dominating set for T is an actual dominating set S where $r \in S$.
- A **type-2** dominating set for T is a subset $S \subseteq V$ such that for all $v \in V \setminus \{r\}$, either $v \in S$ or v has a neighbor $u \in N(v)$ with $u \in S$.

For $b \in \{0, 1, 2\}$, define OPT_b to be the minimum weight dominating set for \mathcal{T} of b-type. Define $\mathsf{OPT}_b(v)$ to be the OPT_b for the subtree of \mathcal{T} rooted at v.

Definition

Let T = (V, E) be a rooted tree with root r.

- A **type-0** dominating set for T is an actual dominating set.
- A **type-1** dominating set for T is an actual dominating set S where $r \in S$.
- A **type-2** dominating set for T is a subset $S \subseteq V$ such that for all $v \in V \setminus \{r\}$, either $v \in S$ or v has a neighbor $u \in N(v)$ with $u \in S$.

For $b \in \{0, 1, 2\}$, define OPT_b to be the minimum weight dominating set for T of b-type. Define $\mathsf{OPT}_b(v)$ to be the OPT_b for the subtree of T rooted at v.

base case:

T has no vertices

Definition

Let T = (V, E) be a rooted tree with root r.

- A **type-0** dominating set for T is an actual dominating set.
- A **type-1** dominating set for T is an actual dominating set S where $r \in S$.
- A **type-2** dominating set for T is a subset $S \subseteq V$ such that for all $v \in V \setminus \{r\}$, either $v \in S$ or v has a neighbor $u \in N(v)$ with $u \in S$.

For $b \in \{0, 1, 2\}$, define OPT_b to be the minimum weight dominating set for T of b-type. Define $\mathsf{OPT}_b(v)$ to be the OPT_b for the subtree of T rooted at v.

base case:

■ T has no vertices \Longrightarrow OPT $_b(T) = 0$

Definition

Let T = (V, E) be a rooted tree with root r.

- A **type-0** dominating set for T is an actual dominating set.
- A **type-1** dominating set for T is an actual dominating set S where $r \in S$.
- A **type-2** dominating set for T is a subset $S \subseteq V$ such that for all $v \in V \setminus \{r\}$, either $v \in S$ or v has a neighbor $u \in N(v)$ with $u \in S$.

For $b \in \{0, 1, 2\}$, define OPT_b to be the minimum weight dominating set for T of b-type. Define $\mathsf{OPT}_b(v)$ to be the OPT_b for the subtree of T rooted at v.

- T has no vertices \Longrightarrow OPT $_b(T) = 0$
- extends gracefully by the following conventions:

Definition

Let T = (V, E) be a rooted tree with root r.

- A **type-0** dominating set for T is an actual dominating set.
- A **type-1** dominating set for T is an actual dominating set S where $r \in S$.
- A **type-2** dominating set for T is a subset $S \subseteq V$ such that for all $v \in V \setminus \{r\}$, either $v \in S$ or v has a neighbor $u \in N(v)$ with $u \in S$.

For $b \in \{0, 1, 2\}$, define OPT_b to be the minimum weight dominating set for T of b-type. Define $\mathsf{OPT}_b(v)$ to be the OPT_b for the subtree of T rooted at v.

- T has no vertices \Longrightarrow OPT $_b(T) = 0$
- extends gracefully by the following conventions:
 - for $S = \emptyset$,

Definition

Let T = (V, E) be a rooted tree with root r.

- A **type-0** dominating set for T is an actual dominating set.
- A **type-1** dominating set for T is an actual dominating set S where $r \in S$.
- A **type-2** dominating set for T is a subset $S \subseteq V$ such that for all $v \in V \setminus \{r\}$, either $v \in S$ or v has a neighbor $u \in N(v)$ with $u \in S$.

For $b \in \{0, 1, 2\}$, define OPT_b to be the minimum weight dominating set for \mathcal{T} of b-type. Define $\mathsf{OPT}_b(v)$ to be the OPT_b for the subtree of \mathcal{T} rooted at v.

- T has no vertices \Longrightarrow OPT $_b(T) = 0$
- extends gracefully by the following conventions:

• for
$$S = \emptyset$$
, $\sum_{v \in S} f(v) = 0$

Definition

Let T = (V, E) be a rooted tree with root r.

- A **type-0** dominating set for T is an actual dominating set.
- A **type-1** dominating set for T is an actual dominating set S where $r \in S$.
- A **type-2** dominating set for T is a subset $S \subseteq V$ such that for all $v \in V \setminus \{r\}$, either $v \in S$ or v has a neighbor $u \in N(v)$ with $u \in S$.

For $b \in \{0, 1, 2\}$, define OPT_b to be the minimum weight dominating set for \mathcal{T} of b-type. Define $\mathsf{OPT}_b(v)$ to be the OPT_b for the subtree of \mathcal{T} rooted at v.

- T has no vertices \Longrightarrow OPT $_b(T) = 0$
- extends gracefully by the following conventions:
 - \blacksquare for $S = \emptyset$, $\sum_{v \in S} f(v) = 0$
 - for $S = \emptyset$,

Definition

Let T = (V, E) be a rooted tree with root r.

- A **type-0** dominating set for T is an actual dominating set.
- A **type-1** dominating set for T is an actual dominating set S where $r \in S$.
- A **type-2** dominating set for T is a subset $S \subseteq V$ such that for all $v \in V \setminus \{r\}$, either $v \in S$ or v has a neighbor $u \in N(v)$ with $u \in S$.

For $b \in \{0, 1, 2\}$, define OPT_b to be the minimum weight dominating set for T of b-type. Define $\mathsf{OPT}_b(v)$ to be the OPT_b for the subtree of T rooted at v.

- T has no vertices \Longrightarrow OPT $_b(T) = 0$
- extends gracefully by the following conventions:
 - for $S = \emptyset$, $\sum_{v \in S} f(v) = 0$
 - for $S = \emptyset$, $\min_{v \in S} f(v) = \infty$

T rooted tree with root *r*.

T rooted tree with root r. T(v) is subtree rooted at v.

■ type-0:

T rooted tree with root r. T(v) is subtree rooted at v.

■ **type-0**: regular dominating set

- **type-0**: regular dominating set
- **■** type-1:

- **type-0**: regular dominating set
- **type-1**: dominating set which includes root r

- **type-0**: regular dominating set
- **type-1**: dominating set which includes root r
- **■** type-2:

- **type-0**: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

T rooted tree with root r. T(v) is subtree rooted at v.

- type-0: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

Lemma

T rooted tree with root r. T(v) is subtree rooted at v.

- **type-0**: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

Lemma

$$OPT_0(r) = \min$$

T rooted tree with root r. T(v) is subtree rooted at v.

- **type-0**: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

$$OPT_0(r) = \min \left\{ \frac{\sum_{v \in N(r)} f(v)}{f(v)} \right\}$$

T rooted tree with root r. T(v) is subtree rooted at v.

- **type-0**: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

$$OPT_0(r) = \min \left\{ \left(\sum_{v \in N(r)} OPT_2(v) \right) \right\}$$

T rooted tree with root r. T(v) is subtree rooted at v.

- **type-0**: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

$$\mathsf{OPT}_0(r) = \min \left\{ \left(\sum_{v \in N(r)} \mathsf{OPT}_2(v) \right) + w(r) \right\}$$

T rooted tree with root r. T(v) is subtree rooted at v.

- **type-0**: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

$$\mathsf{OPT}_0(r) = \min \left\{ \frac{\left(\sum_{v \in N(r)} \mathsf{OPT}_2(v)\right) + w(r)}{\min_{v \in N(r)}} \right.$$

T rooted tree with root r. T(v) is subtree rooted at v.

- **type-0**: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

$$\mathsf{OPT}_0(r) = \min \left\{ \frac{\left(\sum_{v \in N(r)} \mathsf{OPT}_2(v)\right) + w(r)}{\min_{v \in N(r)} \left(\mathsf{OPT}_1(v)\right)} \right.$$

T rooted tree with root r. T(v) is subtree rooted at v.

- **type-0**: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

$$\mathsf{OPT}_0(r) = \min \left\{ \begin{pmatrix} \sum_{v \in N(r)} \mathsf{OPT}_2(v) \end{pmatrix} + w(r) \\ \min_{v \in N(r)} \left(\mathsf{OPT}_1(v) + \sum_{u \in N(r) \setminus \{v\}} \right) \right\}$$

T rooted tree with root r. T(v) is subtree rooted at v.

- **type-0**: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

$$\mathsf{OPT}_0(r) = \min \left\{ \begin{pmatrix} \sum_{v \in N(r)} \mathsf{OPT}_2(v) \end{pmatrix} + w(r) \\ \min_{v \in N(r)} \left(\mathsf{OPT}_1(v) + \sum_{u \in N(r) \setminus \{v\}} \mathsf{OPT}_0(u) \right) \right.$$

T rooted tree with root r. T(v) is subtree rooted at v.

- **type-0**: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

Lemma

$$\mathsf{OPT}_0(r) = \min \left\{ \begin{pmatrix} \sum_{v \in N(r)} \mathsf{OPT}_2(v) \end{pmatrix} + w(r) \\ \min_{v \in N(r)} \left(\mathsf{OPT}_1(v) + \sum_{u \in N(r) \setminus \{v\}} \mathsf{OPT}_0(u) \right) \right.$$

Proof.

T rooted tree with root r. T(v) is subtree rooted at v.

- **type-0**: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

Lemma

$$\mathsf{OPT}_0(r) = \min \ \begin{cases} \left(\sum_{v \in N(r)} \mathsf{OPT}_2(v) \right) + w(r) \\ \min_{v \in N(r)} \left(\mathsf{OPT}_1(v) + \sum_{u \in N(r) \setminus \{v\}} \mathsf{OPT}_0(u) \right) \end{cases}$$

Proof.

■ in optimum S, $r \in S$

T rooted tree with root r. T(v) is subtree rooted at v.

- **type-0**: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

Lemma

$$\mathsf{OPT}_0(r) = \min \ \begin{cases} \left(\sum_{v \in N(r)} \mathsf{OPT}_2(v) \right) + w(r) \\ \min_{v \in N(r)} \left(\mathsf{OPT}_1(v) + \sum_{u \in N(r) \setminus \{v\}} \mathsf{OPT}_0(u) \right) \end{cases}$$

Proof.

- in optimum $S, r \in S$
- in optimum $S, r \notin S$

T rooted tree with root r. T(v) is subtree rooted at v.

- type-0: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

Lemma

$$\mathsf{OPT}_0(r) = \min \ \begin{cases} \left(\sum_{v \in N(r)} \mathsf{OPT}_2(v) \right) + w(r) \\ \min_{v \in N(r)} \left(\mathsf{OPT}_1(v) + \sum_{u \in N(r) \setminus \{v\}} \mathsf{OPT}_0(u) \right) \end{cases}$$

Proof.

- in optimum S, $r \in S$
- in optimum S, $r \notin S$ and r dominated by child $v \in S$

T rooted tree with root r. T(v) is subtree rooted at v.

- **type-0**: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

T rooted tree with root r. T(v) is subtree rooted at v.

- **type-0**: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

T rooted tree with root r. T(v) is subtree rooted at v.

- **type-0**: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

$$\mathsf{OPT}_1(r) =$$

T rooted tree with root r. T(v) is subtree rooted at v.

- **type-0**: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

$$\mathsf{OPT}_1(r) = \left(\sum_{v \in N(r)}\right)$$

T rooted tree with root r. T(v) is subtree rooted at v.

- **type-0**: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

$$\mathsf{OPT}_1(r) = \left(\sum_{v \in N(r)} \mathsf{OPT}_2(v)\right)$$

T rooted tree with root r. T(v) is subtree rooted at v.

- **type-0**: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

$$\mathsf{OPT}_1(r) = \left(\sum_{v \in N(r)} \mathsf{OPT}_2(v)\right) + w(r) \ .$$

T rooted tree with root r. T(v) is subtree rooted at v.

- **type-0**: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

Lemma

$$\mathsf{OPT}_1(r) = \left(\sum_{v \in N(r)} \mathsf{OPT}_2(v)\right) + w(r) \ .$$

Proof.

In optimum $S, r \in S$.

T rooted tree with root r. T(v) is subtree rooted at v.

- **type-0**: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

T rooted tree with root r. T(v) is subtree rooted at v.

- type-0: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

T rooted tree with root r. T(v) is subtree rooted at v.

- **type-0**: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

$$OPT_2(r) = min$$

T rooted tree with root r. T(v) is subtree rooted at v.

- **type-0**: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

$$OPT_2(r) = \min \left\{ \left(\sum_{v \in N(r)} \right) \right\}$$

T rooted tree with root r. T(v) is subtree rooted at v.

- **type-0**: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

$$OPT_2(r) = \min \left\{ \left(\sum_{v \in N(r)} OPT_2(v) \right) \right\}$$

T rooted tree with root r. T(v) is subtree rooted at v.

- **type-0**: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

$$\mathsf{OPT}_2(r) = \min \left\{ \left(\sum_{v \in N(r)} \mathsf{OPT}_2(v) \right) + w(r) \right\}$$

T rooted tree with root r. T(v) is subtree rooted at v.

- **type-0**: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

$$\mathsf{OPT}_2(r) = \min \left\{ \frac{\left(\sum_{v \in N(r)} \mathsf{OPT}_2(v)\right) + w(r)}{\sum_{v \in N(r)}} \right.$$

T rooted tree with root r. T(v) is subtree rooted at v.

- **type-0**: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

$$\mathsf{OPT}_2(r) = \min \, \begin{cases} \left(\sum_{v \in N(r)} \, \mathsf{OPT}_2(v) \right) \, + w(r) \\ \sum_{v \in N(r)} \, \mathsf{OPT}_0(v) \end{cases} \, .$$

T rooted tree with root r. T(v) is subtree rooted at v.

- **type-0**: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

Lemma

$$\mathsf{OPT}_2(r) = \min \left\{ \frac{\left(\sum_{v \in N(r)} \mathsf{OPT}_2(v)\right) + w(r)}{\sum_{v \in N(r)} \mathsf{OPT}_0(v)} \right.$$

Proof.

T rooted tree with root r. T(v) is subtree rooted at v.

- **type-0**: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

Lemma

$$\mathsf{OPT}_2(r) = \min \left\{ \frac{\left(\sum_{v \in N(r)} \mathsf{OPT}_2(v)\right) + w(r)}{\sum_{v \in N(r)} \mathsf{OPT}_0(v)} \right.$$

Proof.

■ in optimum S, $r \in S$

T rooted tree with root r. T(v) is subtree rooted at v.

- type-0: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

Lemma

$$\mathsf{OPT}_2(r) = \min \left\{ \frac{\left(\sum_{v \in N(r)} \mathsf{OPT}_2(v)\right) + w(r)}{\sum_{v \in N(r)} \mathsf{OPT}_0(v)} \right.$$

Proof.

- in optimum $S, r \in S$
- in optimum S, $r \notin S$

T rooted tree with root r. T(v) is subtree rooted at v.

- type-0: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

Lemma

$$\mathsf{OPT}_2(r) = \min \left\{ \frac{\left(\sum_{v \in \mathcal{N}(r)} \mathsf{OPT}_2(v)\right) + w(r)}{\sum_{v \in \mathcal{N}(r)} \mathsf{OPT}_0(v)} \right.$$

Proof.

- in optimum S, $r \in S$
- in optimum S, $r \notin S$ and r does not need to be dominated by children

T rooted tree with root *r*.

T rooted tree with root *r*. **subproblems:**

T rooted tree with root *r*. **subproblems:**

- **type-0**: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

T rooted tree with root r.

subproblems:

- **type-0**: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

T rooted tree with root r.

subproblems:

- type-0: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

recursion:

 \blacksquare OPT₀(r)=min

T rooted tree with root r.

subproblems:

- type-0: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

T rooted tree with root r.

subproblems:

- type-0: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

T rooted tree with root r.

subproblems:

- type-0: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

T rooted tree with root r.

subproblems:

- type-0: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

$$\blacksquare \text{ } \mathsf{OPT}_0(r) = \min \left\{ \left(\sum_{v \in \mathcal{N}(r)} \mathsf{OPT}_2(v) \right) + w(r) \atop \min_{v \in \mathcal{N}(r)} \left(\mathsf{OPT}_1(v) \right) \right.$$

T rooted tree with root r.

subproblems:

- type-0: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

$$\blacksquare \text{ } \mathsf{OPT}_0(r) = \min \left\{ \begin{pmatrix} \sum_{v \in N(r)} \mathsf{OPT}_2(v) \end{pmatrix} + w(r) \\ \min_{v \in N(r)} \begin{pmatrix} \mathsf{OPT}_1(v) + \sum_{u \in N(r) \setminus \{v\}} \mathsf{OPT}_0(u) \end{pmatrix} \right.$$

T rooted tree with root r.

subproblems:

- type-0: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

T rooted tree with root r.

subproblems:

- type-0: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

recursion:

$$\blacksquare \text{ } \mathsf{OPT}_0(r) = \min \left\{ \left(\sum_{v \in N(r)} \mathsf{OPT}_2(v) \right) + w(r) \\ \min_{v \in N(r)} \left(\mathsf{OPT}_1(v) + \sum_{u \in N(r) \setminus \{v\}} \mathsf{OPT}_0(u) \right) \right.$$

 \blacksquare OPT₂(r)=min

T rooted tree with root r.

subproblems:

- type-0: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

T rooted tree with root r.

subproblems:

- type-0: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

T rooted tree with root r.

subproblems:

- type-0: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

recursion:

$$\blacksquare \text{ } \mathsf{OPT}_0(r) = \min \left\{ \begin{pmatrix} \sum_{v \in \mathcal{N}(r)} \mathsf{OPT}_2(v) \end{pmatrix} + w(r) \\ \min_{v \in \mathcal{N}(r)} \begin{pmatrix} \mathsf{OPT}_1(v) + \sum_{u \in \mathcal{N}(r) \setminus \{v\}} \mathsf{OPT}_0(u) \end{pmatrix} \right.$$

 $\mathsf{OPT}_0(r)$ is desired answer

T rooted tree with root r.

subproblems:

- type-0: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

recursion:

$$\blacksquare \quad \mathsf{OPT}_0(r) = \min \left\{ \begin{pmatrix} \sum_{v \in \mathcal{N}(r)} \mathsf{OPT}_2(v) \end{pmatrix} + w(r) \\ \min_{v \in \mathcal{N}(r)} \begin{pmatrix} \mathsf{OPT}_1(v) + \sum_{u \in \mathcal{N}(r) \setminus \{v\}} \mathsf{OPT}_0(u) \end{pmatrix} \right.$$

 $\mathsf{OPT}_0(r)$ is desired answer

T rooted tree with root r.

subproblems:

- type-0: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

recursion:

$$\blacksquare \quad \mathsf{OPT}_0(r) = \min \left\{ \begin{pmatrix} \sum_{v \in \mathcal{N}(r)} \mathsf{OPT}_2(v) \end{pmatrix} + w(r) \\ \min_{v \in \mathcal{N}(r)} \begin{pmatrix} \mathsf{OPT}_1(v) + \sum_{u \in \mathcal{N}(r) \setminus \{v\}} \mathsf{OPT}_0(u) \end{pmatrix} \right.$$

 $\mathsf{OPT}_0(r)$ is desired answer

recursive algorithm:

■ $3 \cdot n$ subproblems

T rooted tree with root r.

subproblems:

- type-0: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

recursion:

$$\blacksquare \quad \mathsf{OPT}_0(r) = \min \left\{ \begin{pmatrix} \sum_{v \in \mathcal{N}(r)} \mathsf{OPT}_2(v) \end{pmatrix} + w(r) \\ \min_{v \in \mathcal{N}(r)} \begin{pmatrix} \mathsf{OPT}_1(v) + \sum_{u \in \mathcal{N}(r) \setminus \{v\}} \mathsf{OPT}_0(u) \end{pmatrix} \right.$$

 $\mathsf{OPT}_0(r)$ is desired answer

- \blacksquare 3 · *n* subproblems
- can implicitly memoize

T rooted tree with root *r*. **subproblems:**

■ type-0: regular dominating set

- type-1: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

recursion:

$$\blacksquare \quad \mathsf{OPT}_0(r) = \min \left\{ \begin{pmatrix} \sum_{v \in \mathcal{N}(r)} \mathsf{OPT}_2(v) \end{pmatrix} + w(r) \\ \min_{v \in \mathcal{N}(r)} \begin{pmatrix} \mathsf{OPT}_1(v) + \sum_{u \in \mathcal{N}(r) \setminus \{v\}} \mathsf{OPT}_0(u) \end{pmatrix} \right.$$

 $\mathsf{OPT}_0(r)$ is desired answer

- $3 \cdot n$ subproblems
- can implicitly memoize
- naively O(n) work per node,

T rooted tree with root *r*. **subproblems:**

- type-0: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

recursion:

$$\blacksquare \quad \mathsf{OPT}_0(r) = \min \left\{ \begin{pmatrix} \sum_{v \in \mathcal{N}(r)} \mathsf{OPT}_2(v) \end{pmatrix} + w(r) \\ \min_{v \in \mathcal{N}(r)} \begin{pmatrix} \mathsf{OPT}_1(v) + \sum_{u \in \mathcal{N}(r) \setminus \{v\}} \mathsf{OPT}_0(u) \end{pmatrix} \right.$$

 $\mathsf{OPT}_0(r)$ is desired answer

- \blacksquare 3 · *n* subproblems
- can implicitly memoize
- naively O(n) work per node, can optimize to O(n) total work

T rooted tree with root *r*. **subproblems:**

- type-0: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

recursion:

$$\blacksquare \quad \mathsf{OPT}_0(r) = \min \left\{ \begin{pmatrix} \sum_{v \in \mathcal{N}(r)} \mathsf{OPT}_2(v) \end{pmatrix} + w(r) \\ \min_{v \in \mathcal{N}(r)} \begin{pmatrix} \mathsf{OPT}_1(v) + \sum_{u \in \mathcal{N}(r) \setminus \{v\}} \mathsf{OPT}_0(u) \end{pmatrix} \right.$$

 $\mathsf{OPT}_0(r)$ is desired answer

- \blacksquare 3 · *n* subproblems
- can implicitly memoize
- naively O(n) work per node, can optimize to O(n) total work as with MIS on trees

T rooted tree with root *r*. **subproblems:**

- type-0: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

recursion:

$$\blacksquare \text{ } \mathsf{OPT}_0(r) = \min \left\{ \left(\sum_{v \in N(r)} \mathsf{OPT}_2(v) \right) + w(r) \\ \min_{v \in N(r)} \left(\mathsf{OPT}_1(v) + \sum_{u \in N(r) \setminus \{v\}} \mathsf{OPT}_0(u) \right) \right.$$

 $\mathsf{OPT}_0(r)$ is desired answer

recursive algorithm:

- \blacksquare 3 · *n* subproblems
- can implicitly memoize
- naively O(n) work per node, can optimize to O(n) total work as with MIS on trees

iterative algorithm:

T rooted tree with root r.

subproblems:

- type-0: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

recursion:

$$\blacksquare \text{ } \mathsf{OPT}_0(r) = \min \left\{ \left(\sum_{v \in N(r)} \mathsf{OPT}_2(v) \right) + w(r) \\ \min_{v \in N(r)} \left(\mathsf{OPT}_1(v) + \sum_{u \in N(r) \setminus \{v\}} \mathsf{OPT}_0(u) \right) \right.$$

 $\mathsf{OPT}_0(r)$ is desired answer

recursive algorithm:

- \blacksquare 3 · *n* subproblems
- can implicitly memoize
- naively O(n) work per node, can optimize to O(n) total work as with MIS on trees

iterative algorithm:

 follow post-order traversal of rooted tree to satisfy dependencies

T rooted tree with root *r*. **subproblems:**

- type-0: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

recursion:

$$\blacksquare \text{ } \mathsf{OPT}_0(r) = \min \left\{ \left(\sum_{v \in N(r)} \mathsf{OPT}_2(v) \right) + w(r) \\ \min_{v \in N(r)} \left(\mathsf{OPT}_1(v) + \sum_{u \in N(r) \setminus \{v\}} \mathsf{OPT}_0(u) \right) \right.$$

 $\mathsf{OPT}_0(r)$ is desired answer

recursive algorithm:

- $3 \cdot n$ subproblems
- can implicitly memoize
- naively O(n) work per node, can optimize to O(n) total work as with MIS on trees

iterative algorithm:

- follow post-order traversal of rooted tree to satisfy dependencies
- optimize analysis to obtain O(n) total work

T rooted tree with root *r*. **subproblems:**

- type-0: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

recursion:

$$\blacksquare \text{ } \mathsf{OPT}_0(r) = \min \left\{ \left(\sum_{v \in N(r)} \mathsf{OPT}_2(v) \right) + w(r) \\ \min_{v \in N(r)} \left(\mathsf{OPT}_1(v) + \sum_{u \in N(r) \setminus \{v\}} \mathsf{OPT}_0(u) \right) \right.$$

 $\mathsf{OPT}_0(r)$ is desired answer

recursive algorithm:

- $3 \cdot n$ subproblems
- can implicitly memoize
- naively O(n) work per node, can optimize to O(n) total work as with MIS on trees

iterative algorithm:

- follow post-order traversal of rooted tree to satisfy dependencies
- optimize analysis to obtain O(n) total work

details are an **exercise**

remarks:

dynamic program is about finding the correct recursion,

remarks:

dynamic program is about finding the *correct* recursion, and the correct recursion is intimately tied to understand the *structure* and *number* of subproblems

- dynamic program is about finding the *correct* recursion, and the correct recursion is intimately tied to understand the *structure* and *number* of subproblems
- trees can be easily decomposed into a (small) number of subtrees,

- dynamic program is about finding the *correct* recursion, and the correct recursion is intimately tied to understand the *structure* and *number* of subproblems
- trees can be easily decomposed into a (small) number of subtrees, this allows a small number of resulting subproblems

- dynamic program is about finding the correct recursion, and the correct recursion is intimately tied to understand the structure and number of subproblems
- trees can be easily decomposed into a (small) number of subtrees, this allows a small number of resulting subproblems
- dynamic programming on trees can often be generalized to graphs of small treewidth

Overview (II)

today:

- dynamic programming on trees
- maximum independent set
- dominating set

next lecture:

more dynamic programming

logistics:

lacksquare pset1 out, due R5 — can submit in *groups* of ≤ 3

TOC

- 1 Title
- 2 Overview
- 3 Dynamic Programming
- 4 Trees
- 5 Maximum Independent Set
- 6 Maximum Independent Set (II)
- 7 Maximum Independent Set (III)
- 8 Maximum Independent Set (IV)
- 9 Maximum Independent Set (V)
- 10 Maximum Independent Set (VI)
- 11 Maximum Independent Set (VII)
- 12 Maximum Independent Set, in Trees
- 13 Maximum Independent Set, in Trees (II)
- 14 Maximum Independent Set, in Trees (III)

- 15 Maximum Independent Set, in Trees (III)
- 16 Maximum Independent Set, in Trees (IV)
- 17 Maximum Independent Set, in Trees (V)
- 18 Dynamic Programming, in Trees
- 19 Minimum Dominating Set
- 20 Minimum Dominating Set (II)
- 21 Minimum Dominating Set (III)
- 22 Minimum Dominating Set, in Trees
- 23 Minimum Dominating Set, in Trees (II)
- 24 Minimum Dominating Set. in Trees (III)
- 25 Minimum Dominating Set, in Trees (IV)
- Minimum Dominating Set, in Trees (V)
- Minimum Dominating Set, in Trees (VI)
- 28 Dynamic Programming, in Trees (II)
- 29 Overview (II)