cs473: Algorithms
 Lecture 4: Dynamic Programming

Michael A. Forbes

University of Illinois at Urbana-Champaign

September 4, 2019

Overview
logistics:

Overview

logistics:

■ pset1 out,

Overview

logistics:

- pset1 out, due R5

Overview

logistics:

■ pset1 out, due R5 - can submit in groups of ≤ 3

Overview

logistics:

■ pset1 out, due R5 - can submit in groups of ≤ 3 last lecture:

Overview

logistics:

■ pset1 out, due R5 - can submit in groups of ≤ 3

last lecture:

■ recursion

Overview

logistics:

■ pset1 out, due R5 - can submit in groups of ≤ 3

last lecture:

- recursion

■ memoization

Overview

logistics:

■ pset1 out, due R5 - can submit in groups of ≤ 3

last lecture:

- recursion
- memoization
- dynamic programming

Overview

logistics:

■ pset1 out, due R5 - can submit in groups of ≤ 3

last lecture:

- recursion
- memoization
- dynamic programming
- fibonacci numbers

Overview

logistics:

■ pset1 out, due R5 - can submit in groups of ≤ 3

last lecture:

- recursion
- memoization
- dynamic programming
- fibonacci numbers
- edit distance

Overview

logistics:

■ pset1 out, due R5 - can submit in groups of ≤ 3

last lecture:

- recursion
- memoization
- dynamic programming
- fibonacci numbers
- edit distance

■ knapsack

Overview

logistics:

■ pset1 out, due R5 - can submit in groups of ≤ 3

last lecture:

- recursion
- memoization
- dynamic programming
- fibonacci numbers
- edit distance

■ knapsack

today:

Overview

logistics:

■ pset1 out, due R5 - can submit in groups of ≤ 3

last lecture:

- recursion
- memoization
- dynamic programming
- fibonacci numbers
- edit distance

■ knapsack

today:

■ dynamic programming

Overview

logistics:

■ pset1 out, due R5 - can submit in groups of ≤ 3

last lecture:

- recursion
- memoization
- dynamic programming
- fibonacci numbers
- edit distance

■ knapsack

today:

- dynamic programming on trees

Overview

logistics:

■ pset1 out, due R5 - can submit in groups of ≤ 3

last lecture:

- recursion
- memoization
- dynamic programming
- fibonacci numbers
- edit distance

■ knapsack

today:

- dynamic programming on trees

■ maximum independent set

Overview

logistics:

■ pset1 out, due R5 - can submit in groups of ≤ 3

last lecture:

■ recursion

- memoization
- dynamic programming
- fibonacci numbers
- edit distance

■ knapsack

today:

- dynamic programming on trees

■ maximum independent set

- dominating set

Dynamic Programming

Dynamic Programming

dynamic programming:

Dynamic Programming

dynamic programming:

■ develop recursive algorithm

Dynamic Programming

dynamic programming:

■ develop recursive algorithm
■ understand structure of subproblems

Dynamic Programming

dynamic programming:

■ develop recursive algorithm
■ understand structure of subproblems
■ names of subproblems

Dynamic Programming

dynamic programming:

■ develop recursive algorithm
■ understand structure of subproblems
■ names of subproblems

- number of subproblems

Dynamic Programming

dynamic programming:

■ develop recursive algorithm
■ understand structure of subproblems
■ names of subproblems
■ number of subproblems
■ dependency graph amongst subproblems

Dynamic Programming

dynamic programming:

- develop recursive algorithm

■ understand structure of subproblems
■ names of subproblems
■ number of subproblems

- dependency graph amongst subproblems
- memoize

Dynamic Programming

dynamic programming:

- develop recursive algorithm

■ understand structure of subproblems
■ names of subproblems
■ number of subproblems
■ dependency graph amongst subproblems
■ memoize (implicitly,

Dynamic Programming

dynamic programming:

- develop recursive algorithm

■ understand structure of subproblems
■ names of subproblems
■ number of subproblems
■ dependency graph amongst subproblems
■ memoize (implicitly, or explicitly)

Dynamic Programming

dynamic programming:

- develop recursive algorithm

■ understand structure of subproblems
■ names of subproblems
■ number of subproblems
■ dependency graph amongst subproblems
■ memoize (implicitly, or explicitly)

- analysis

Dynamic Programming

dynamic programming:

- develop recursive algorithm

■ understand structure of subproblems
■ names of subproblems
■ number of subproblems
■ dependency graph amongst subproblems
■ memoize (implicitly, or explicitly)

- analysis (time,

Dynamic Programming

dynamic programming:

■ develop recursive algorithm
■ understand structure of subproblems
■ names of subproblems

- number of subproblems

■ dependency graph amongst subproblems
■ memoize (implicitly, or explicitly)

- analysis (time, space)

Dynamic Programming

dynamic programming:

- develop recursive algorithm

■ understand structure of subproblems
■ names of subproblems
■ number of subproblems
■ dependency graph amongst subproblems
■ memoize (implicitly, or explicitly)
■ analysis (time, space)

- further optimization

Dynamic Programming

dynamic programming:

- develop recursive algorithm

■ understand structure of subproblems
■ names of subproblems
■ number of subproblems
■ dependency graph amongst subproblems
■ memoize (implicitly, or explicitly)

- analysis (time, space)

■ further optimization
remarks:

Dynamic Programming

dynamic programming:

- develop recursive algorithm

■ understand structure of subproblems
■ names of subproblems

- number of subproblems

■ dependency graph amongst subproblems
■ memoize (implicitly, or explicitly)
■ analysis (time, space)

- further optimization

remarks:

■ memoizing a recursive algorithm does not necessarily lead to an efficient algorithm

Dynamic Programming

dynamic programming:

- develop recursive algorithm

■ understand structure of subproblems
■ names of subproblems

- number of subproblems

■ dependency graph amongst subproblems
■ memoize (implicitly, or explicitly)
■ analysis (time, space)

- further optimization

remarks:

■ memoizing a recursive algorithm does not necessarily lead to an efficient algorithm (e.g., knapsack problem)

Dynamic Programming

dynamic programming:

- develop recursive algorithm

■ understand structure of subproblems
■ names of subproblems

- number of subproblems

■ dependency graph amongst subproblems
■ memoize (implicitly, or explicitly)
■ analysis (time, space)
■ further optimization

remarks:

■ memoizing a recursive algorithm does not necessarily lead to an efficient algorithm (e.g., knapsack problem) - you need the right recursion

Dynamic Programming

dynamic programming:

- develop recursive algorithm

■ understand structure of subproblems

- names of subproblems
- number of subproblems

■ dependency graph amongst subproblems
■ memoize (implicitly, or explicitly)
■ analysis (time, space)
■ further optimization

remarks:

■ memoizing a recursive algorithm does not necessarily lead to an efficient algorithm (e.g., knapsack problem) - you need the right recursion
■ recognizing that dynamic programming applies to a problem can be non-obvious

Trees

fact:

Trees

fact:

■ many computational problems ask to optimize an objective over a graph

Trees

fact:

■ many computational problems ask to optimize an objective over a graph
■ many graph optimization problems are NP-hard

Trees

fact:

■ many computational problems ask to optimize an objective over a graph

- many graph optimization problems are NP-hard
- yet:

Trees

fact:

■ many computational problems ask to optimize an objective over a graph

- many graph optimization problems are NP-hard

■ yet: many NP-hard graph optimization problems can be efficiently solved

Trees

fact:

■ many computational problems ask to optimize an objective over a graph
■ many graph optimization problems are NP-hard
■ yet: many NP-hard graph optimization problems can be efficiently solved when the graph is a tree

Trees

fact:

■ many computational problems ask to optimize an objective over a graph

- many graph optimization problems are NP-hard

■ yet: many NP-hard graph optimization problems can be efficiently solved when the graph is a tree

remarks:

Trees

fact:

■ many computational problems ask to optimize an objective over a graph

- many graph optimization problems are NP-hard

■ yet: many NP-hard graph optimization problems can be efficiently solved when the graph is a tree

remarks:

- dynamic programming over graphs

Trees

fact:

■ many computational problems ask to optimize an objective over a graph

- many graph optimization problems are NP-hard

■ yet: many NP-hard graph optimization problems can be efficiently solved when the graph is a tree

remarks:

- dynamic programming over graphs often relies on decomposing the graph into subgraphs,

Trees

fact:

■ many computational problems ask to optimize an objective over a graph

- many graph optimization problems are NP-hard

■ yet: many NP-hard graph optimization problems can be efficiently solved when the graph is a tree

remarks:

■ dynamic programming over graphs often relies on decomposing the graph into subgraphs, but there are many subgraphs

Trees

fact:

■ many computational problems ask to optimize an objective over a graph

- many graph optimization problems are NP-hard

■ yet: many NP-hard graph optimization problems can be efficiently solved when the graph is a tree

remarks:

■ dynamic programming over graphs often relies on decomposing the graph into subgraphs, but there are many subgraphs and they relate to each other in complicated ways

Trees

fact:

■ many computational problems ask to optimize an objective over a graph

- many graph optimization problems are NP-hard

■ yet: many NP-hard graph optimization problems can be efficiently solved when the graph is a tree

remarks:

■ dynamic programming over graphs often relies on decomposing the graph into subgraphs, but there are many subgraphs and they relate to each other in complicated ways

- trees can be easily decomposed into sub-trees,

Trees

fact:

■ many computational problems ask to optimize an objective over a graph

- many graph optimization problems are NP-hard

■ yet: many NP-hard graph optimization problems can be efficiently solved when the graph is a tree

remarks:

- dynamic programming over graphs often relies on decomposing the graph into subgraphs, but there are many subgraphs and they relate to each other in complicated ways
- trees can be easily decomposed into sub-trees, which are easily related to each other

Trees

fact:

■ many computational problems ask to optimize an objective over a graph

- many graph optimization problems are NP-hard

■ yet: many NP-hard graph optimization problems can be efficiently solved when the graph is a tree

remarks:

■ dynamic programming over graphs often relies on decomposing the graph into subgraphs, but there are many subgraphs and they relate to each other in complicated ways

- trees can be easily decomposed into sub-trees, which are easily related to each other \Longrightarrow trees are amenable to divide and conquer,

Trees

fact:

■ many computational problems ask to optimize an objective over a graph

- many graph optimization problems are NP-hard

■ yet: many NP-hard graph optimization problems can be efficiently solved when the graph is a tree

remarks:

■ dynamic programming over graphs often relies on decomposing the graph into subgraphs, but there are many subgraphs and they relate to each other in complicated ways

- trees can be easily decomposed into sub-trees, which are easily related to each other \Longrightarrow trees are amenable to divide and conquer, and dynamic programming more generally

Trees

fact:

■ many computational problems ask to optimize an objective over a graph

- many graph optimization problems are NP-hard

■ yet: many NP-hard graph optimization problems can be efficiently solved when the graph is a tree

remarks:

■ dynamic programming over graphs often relies on decomposing the graph into subgraphs, but there are many subgraphs and they relate to each other in complicated ways
■ trees can be easily decomposed into sub-trees, which are easily related to each other \Longrightarrow trees are amenable to divide and conquer, and dynamic programming more generally

- dynamic programming on trees often generalizes to graphs that have low treewidth

Maximum Independent Set

Maximum Independent Set

Definition

Maximum Independent Set

Definition
 Let $G=(V, E)$ be an undirected (simple) graph.

Maximum Independent Set

Definition

Let $G=(V, E)$ be an undirected (simple) graph. An independent set of G

Maximum Independent Set

Definition
Let $G=(V, E)$ be an undirected (simple) graph. An independent set of G is a subset $S \subseteq V$

Maximum Independent Set

Definition
Let $G=(V, E)$ be an undirected (simple) graph. An independent set of G is a subset $S \subseteq V$ such that there are no edges in G between vertices in S.

Maximum Independent Set

Definition

Let $G=(V, E)$ be an undirected (simple) graph. An independent set of G is a subset $S \subseteq V$ such that there are no edges in G between vertices in S. That is, for all $u, v \in S$

Maximum Independent Set

Definition

Let $G=(V, E)$ be an undirected (simple) graph. An independent set of G is a subset $S \subseteq V$ such that there are no edges in G between vertices in S. That is, for all $u, v \in S$ that $(u, v) \notin E$.

Maximum Independent Set

Definition

Let $G=(V, E)$ be an undirected (simple) graph. An independent set of G is a subset $S \subseteq V$ such that there are no edges in G between vertices in S. That is, for all $u, v \in S$ that $(u, v) \notin E$.

ex:

Maximum Independent Set

Definition

Let $G=(V, E)$ be an undirected (simple) graph. An independent set of G is a subset $S \subseteq V$ such that there are no edges in G between vertices in S. That is, for all $u, v \in S$ that $(u, v) \notin E$.

ex:

Maximum Independent Set

Definition

Let $G=(V, E)$ be an undirected (simple) graph. An independent set of G is a subset $S \subseteq V$ such that there are no edges in G between vertices in S. That is, for all $u, v \in S$ that $(u, v) \notin E$.

ex:

Independent sets include \emptyset,

Maximum Independent Set

Definition

Let $G=(V, E)$ be an undirected (simple) graph. An independent set of G is a subset $S \subseteq V$ such that there are no edges in G between vertices in S. That is, for all $u, v \in S$ that $(u, v) \notin E$.

ex:

Independent sets include $\emptyset,\{a, c\}$,

Maximum Independent Set

Definition

Let $G=(V, E)$ be an undirected (simple) graph. An independent set of G is a subset $S \subseteq V$ such that there are no edges in G between vertices in S. That is, for all $u, v \in S$ that $(u, v) \notin E$.

ex:

Independent sets include $\emptyset,\{a, c\}$, and $\{b, e, f\}$.

Maximum Independent Set (II)

Maximum Independent Set (II)

Definition

Maximum Independent Set (II)

Definition

The maximum independent set (MIS) problem is to,

Maximum Independent Set (II)

Definition

The maximum independent set (MIS) problem is to, given a undirected (simple) graph $G=(V, E)$

Maximum Independent Set (II)

Definition

The maximum independent set (MIS) problem is to, given a undirected (simple) graph $G=(V, E)$ output the size of the largest independent set in G.

Maximum Independent Set (II)

Definition

The maximum independent set (MIS) problem is to, given a undirected (simple) graph $G=(V, E)$ output the size of the largest independent set in G. That is, output

$$
\alpha(G):={ }_{S \subseteq V,} \quad \max \quad|S| .
$$

Maximum Independent Set (II)

Definition

The maximum independent set (MIS) problem is to, given a undirected (simple) graph $G=(V, E)$ output the size of the largest independent set in G. That is, output

$$
\alpha(G):=\max _{S \subseteq V, S \text { independent set of } G}|S|
$$

Maximum Independent Set (II)

Definition

The maximum independent set (MIS) problem is to, given a undirected (simple) graph $G=(V, E)$ output the size of the largest independent set in G. That is, output

$$
\alpha(G):=\max _{S \subseteq V, S \text { independent set of } G}|S| .
$$

ex:

Maximum Independent Set (II)

Definition

The maximum independent set (MIS) problem is to, given a undirected (simple) graph $G=(V, E)$ output the size of the largest independent set in G. That is, output

$$
\alpha(G):=\max _{S \subseteq V, S \text { independent set of } G}|S| .
$$

ex:

Maximum Independent Set (II)

Definition

The maximum independent set (MIS) problem is to, given a undirected (simple) graph $G=(V, E)$ output the size of the largest independent set in G. That is, output

$$
\alpha(G):=\max _{S \subseteq V, S \text { independent set of } G}|S| .
$$

ex:

$\alpha(G)$

Maximum Independent Set (II)

Definition

The maximum independent set (MIS) problem is to, given a undirected (simple) graph $G=(V, E)$ output the size of the largest independent set in G. That is, output

$$
\alpha(G):=\max _{S \subseteq V, S \text { independent set of } G}|S| .
$$

ex:

$\alpha(G)=3$

Maximum Independent Set (III)

Maximum Independent Set (III)

Maximum Independent Set (III)

Definition

The maximum weight independent set problem is to,

Maximum Independent Set (III)

Definition

The maximum weight independent set problem is to, given a undirected (simple) graph $G=(V, E)$

Maximum Independent Set (III)

Definition

The maximum weight independent set problem is to, given a undirected (simple) graph $G=(V, E)$ and a weight function $w: V \rightarrow \mathbb{N}$,

Maximum Independent Set (III)

Definition

The maximum weight independent set problem is to, given a undirected (simple) graph $G=(V, E)$ and a weight function $w: V \rightarrow \mathbb{N}$, output the weight of the maximum weight independent set in G.

Maximum Independent Set (III)

Definition

The maximum weight independent set problem is to, given a undirected (simple) graph $G=(V, E)$ and a weight function $w: V \rightarrow \mathbb{N}$, output the weight of the maximum weight independent set in G. That is, output

Maximum Independent Set (III)

Definition

The maximum weight independent set problem is to, given a undirected (simple) graph $G=(V, E)$ and a weight function $w: V \rightarrow \mathbb{N}$, output the weight of the maximum weight independent set in G. That is, output

Maximum Independent Set (III)

Definition

The maximum weight independent set problem is to, given a undirected (simple) graph $G=(V, E)$ and a weight function $w: V \rightarrow \mathbb{N}$, output the weight of the maximum weight independent set in G. That is, output

Maximum Independent Set (IV)

Maximum Independent Set (IV)

remarks:

Maximum Independent Set (IV)

remarks:

- maximum (weight) independent set (MIS) is solvable via brute force:

Maximum Independent Set (IV)

remarks:

■ maximum (weight) independent set (MIS) is solvable via brute force: try all possible subsets

Maximum Independent Set (IV)

remarks:

■ maximum (weight) independent set (MIS) is solvable via brute force: try all possible subsets \Longrightarrow solvable in time $O\left(n^{O(1)} 2^{n}\right)$

Maximum Independent Set (IV)

remarks:

■ maximum (weight) independent set (MIS) is solvable via brute force: try all possible subsets \Longrightarrow solvable in time $O\left(n^{O(1)} 2^{n}\right)$
■ no efficient algorithm currently known

Maximum Independent Set (IV)

remarks:

■ maximum (weight) independent set (MIS) is solvable via brute force: try all possible subsets \Longrightarrow solvable in time $O\left(n^{O(1)} 2^{n}\right)$
■ no efficient algorithm currently known
■ MIS is NP-hard

Maximum Independent Set (IV)

remarks:

■ maximum (weight) independent set (MIS) is solvable via brute force: try all possible subsets \Longrightarrow solvable in time $O\left(n^{O(1)} 2^{n}\right)$
■ no efficient algorithm currently known
$■$ MIS is NP-hard \Longrightarrow an efficient algorithm not expected to exist

Maximum Independent Set (IV)

remarks:

■ maximum (weight) independent set (MIS) is solvable via brute force: try all possible subsets \Longrightarrow solvable in time $O\left(n^{O(1)} 2^{n}\right)$
■ no efficient algorithm currently known
$■$ MIS is NP-hard \Longrightarrow an efficient algorithm not expected to exist
■ MIS is efficiently solvable if the underlying graph is a tree

Maximum Independent Set (V)

Maximum Independent Set (V)
For vertex v,

Maximum Independent Set (V)

For vertex v, let $N(v)$ denote the subset $S \subseteq V$ of neighbors of v.

Maximum Independent Set (V)

For vertex v, let $N(v)$ denote the subset $S \subseteq V$ of neighbors of v.

Maximum Independent Set (V)

For vertex v, let $N(v)$ denote the subset $S \subseteq V$ of neighbors of v.

$$
\begin{aligned}
& \text { Lemma } \\
& G=(V, E),
\end{aligned}
$$

Maximum Independent Set (V)

For vertex v, let $N(v)$ denote the subset $S \subseteq V$ of neighbors of v.

Lemma
 $$
G=(V, E), w: V \rightarrow \mathbb{N}
$$

Maximum Independent Set (V)

For vertex v, let $N(v)$ denote the subset $S \subseteq V$ of neighbors of v.

```
Lemma
G=(V,E),w:V->\mathbb{N}\mathrm{ , with }|V|\geq1.
```


Maximum Independent Set (V)

For vertex v, let $N(v)$ denote the subset $S \subseteq V$ of neighbors of v.

Lemma
 $$
G=(V, E), w: V \rightarrow \mathbb{N} \text {, with }|V| \geq 1 \text {. Then for any } v \in V \text {, }
$$

$$
\operatorname{MIS}(G)=
$$

Maximum Independent Set (V)

For vertex v, let $N(v)$ denote the subset $S \subseteq V$ of neighbors of v.

$$
\begin{aligned}
& \text { Lemma } \\
& \qquad \begin{array}{l}
G=(V, E), w: V \rightarrow \mathbb{N} \text {, with }|V| \geq 1 \text {. Then for any } v \in V, \\
\operatorname{MIS}(G)=\max \{
\end{array}
\end{aligned}
$$

Maximum Independent Set (V)

For vertex v, let $N(v)$ denote the subset $S \subseteq V$ of neighbors of v.

$$
\begin{aligned}
& \text { Lemma } \\
& \qquad \begin{array}{l}
G=(V, E), w: V \rightarrow \mathbb{N} \text {, with }|V| \geq 1 \text {. Then for any } v \in V, \\
\operatorname{MIS}(G)=\max \{\operatorname{MIS}(G-v)
\end{array}
\end{aligned}
$$

Maximum Independent Set (V)

For vertex v, let $N(v)$ denote the subset $S \subseteq V$ of neighbors of v.
Lemma

$$
G=(V, E), w: V \rightarrow \mathbb{N} \text {, with }|V| \geq 1 \text {. Then for any } v \in V \text {, }
$$

$$
\operatorname{MIS}(G)=\max \{\operatorname{MIS}(G-v), \operatorname{MIS}(G-v-N(v))+w(v)\}
$$

Maximum Independent Set (V)

For vertex v, let $N(v)$ denote the subset $S \subseteq V$ of neighbors of v.

$$
\begin{aligned}
& \text { Lemma } \\
& \qquad \begin{aligned}
G=(V, E), w: V & \rightarrow \mathbb{N} \text {, with }|V| \geq 1 \text {. Then for any } v \in V
\end{aligned} \\
& \qquad \operatorname{MIS}(G)=\max \{\operatorname{MIS}(G-v), \operatorname{MIS}(G-v-N(v))+w(v)\}
\end{aligned}
$$

Proof.

Maximum Independent Set (V)

For vertex v, let $N(v)$ denote the subset $S \subseteq V$ of neighbors of v.
Lemma

$$
\begin{aligned}
G=(V, E), w: V & \rightarrow \mathbb{N} \text {, with }|V| \geq 1 . \text { Then for any } v \in V \\
\operatorname{MIS}(G) & =\max \{\operatorname{MIS}(G-v), \operatorname{MIS}(G-v-N(v))+w(v)\} .
\end{aligned}
$$

Proof.

For any set S independent in G,

Maximum Independent Set (V)

For vertex v, let $N(v)$ denote the subset $S \subseteq V$ of neighbors of v.
Lemma

$$
\begin{aligned}
G=(V, E), w: V & \rightarrow \mathbb{N} \text {, with }|V| \geq 1 . \text { Then for any } v \in V \\
\operatorname{MIS}(G) & =\max \{\operatorname{MIS}(G-v), \operatorname{MIS}(G-v-N(v))+w(v)\} .
\end{aligned}
$$

Proof.

For any set S independent in G, either $v \notin S$

Maximum Independent Set (V)

For vertex v, let $N(v)$ denote the subset $S \subseteq V$ of neighbors of v.
Lemma

$$
\begin{aligned}
G=(V, E), w: V & \rightarrow \mathbb{N} \text {, with }|V| \geq 1 . \text { Then for any } v \in V \\
\operatorname{MIS}(G) & =\max \{\operatorname{MIS}(G-v), \operatorname{MIS}(G-v-N(v))+w(v)\} .
\end{aligned}
$$

Proof.

For any set S independent in G, either $v \notin S$ or $v \in S$.

Maximum Independent Set (V)

For vertex v, let $N(v)$ denote the subset $S \subseteq V$ of neighbors of v.
Lemma

$$
\begin{aligned}
G=(V, E), w: V & \rightarrow \mathbb{N} \text {, with }|V| \geq 1 . \text { Then for any } v \in V \\
\operatorname{MIS}(G) & =\max \{\operatorname{MIS}(G-v), \operatorname{MIS}(G-v-N(v))+w(v)\} .
\end{aligned}
$$

Proof.

For any set S independent in G, either $v \notin S$ or $v \in S$.

- $G-v$:

Maximum Independent Set (V)

For vertex v, let $N(v)$ denote the subset $S \subseteq V$ of neighbors of v.
Lemma

$$
\begin{aligned}
G=(V, E), w: V & \rightarrow \mathbb{N} \text {, with }|V| \geq 1 . \text { Then for any } v \in V \\
\operatorname{MIS}(G) & =\max \{\operatorname{MIS}(G-v), \operatorname{MIS}(G-v-N(v))+w(v)\} .
\end{aligned}
$$

Proof.

For any set S independent in G, either $v \notin S$ or $v \in S$.
■ $G-v$: any set $T \subseteq V \backslash\{v\}$ independent in $G-v$

Maximum Independent Set (V)

For vertex v, let $N(v)$ denote the subset $S \subseteq V$ of neighbors of v.
Lemma

$$
\begin{aligned}
& G=(V, E), w: V \rightarrow \mathbb{N} \text {, with }|V| \geq 1 \text {. Then for any } v \in V \\
& \operatorname{MIS}(G)=\max \{\operatorname{MIS}(G-v), \operatorname{MIS}(G-v-N(v))+w(v)\} .
\end{aligned}
$$

Proof.

For any set S independent in G, either $v \notin S$ or $v \in S$.
■ $G-v$: any set $T \subseteq V \backslash\{v\}$ independent in $G-v$ has $T \subseteq V$ independent in G

Maximum Independent Set (V)

For vertex v, let $N(v)$ denote the subset $S \subseteq V$ of neighbors of v.
Lemma

$$
\begin{aligned}
& G=(V, E), w: V \rightarrow \mathbb{N} \text {, with }|V| \geq 1 . \text { Then for any } v \in V \\
& \operatorname{MIS}(G)=\max \{\operatorname{MIS}(G-v), \operatorname{MIS}(G-v-N(v))+w(v)\} .
\end{aligned}
$$

Proof.

For any set S independent in G, either $v \notin S$ or $v \in S$.
■ $G-v$: any set $T \subseteq V \backslash\{v\}$ independent in $G-v$ has $T \subseteq V$ independent in G - $G-v-N(v)$:

Maximum Independent Set (V)

For vertex v, let $N(v)$ denote the subset $S \subseteq V$ of neighbors of v.

Lemma

$$
\begin{aligned}
& G=(V, E), w: V \rightarrow \mathbb{N} \text {, with }|V| \geq 1 . \text { Then for any } v \in V \\
& \operatorname{MIS}(G)=\max \{\operatorname{MIS}(G-v), \operatorname{MIS}(G-v-N(v))+w(v)\} .
\end{aligned}
$$

Proof.

For any set S independent in G, either $v \notin S$ or $v \in S$.
■ $G-v$: any set $T \subseteq V \backslash\{v\}$ independent in $G-v$ has $T \subseteq V$ independent in G
■ $G-v-N(v)$: any set $T \subseteq V \backslash(\{v\} \cup N(v))$ independent in $G-v-N(v)$

Maximum Independent Set (V)

For vertex v, let $N(v)$ denote the subset $S \subseteq V$ of neighbors of v.

Lemma

$$
\begin{aligned}
& G=(V, E), w: V \rightarrow \mathbb{N} \text {, with }|V| \geq 1 \text {. Then for any } v \in V \\
& \operatorname{MIS}(G)=\max \{\operatorname{MIS}(G-v), \operatorname{MIS}(G-v-N(v))+w(v)\} .
\end{aligned}
$$

Proof.

For any set S independent in G, either $v \notin S$ or $v \in S$.
■ $G-v$: any set $T \subseteq V \backslash\{v\}$ independent in $G-v$ has $T \subseteq V$ independent in G
$\square G-v-N(v)$: any set $T \subseteq V \backslash(\{v\} \cup N(v))$ independent in $G-v-N(v)$ has $T \cup\{v\} \subseteq V$ independent in G

Maximum Independent Set (V)

For vertex v, let $N(v)$ denote the subset $S \subseteq V$ of neighbors of v.

Lemma

$$
\begin{aligned}
G=(V, E), w: V & \rightarrow \mathbb{N} \text {, with }|V| \geq 1 . \text { Then for any } v \in V \\
\operatorname{MIS}(G) & =\max \{\operatorname{MIS}(G-v), \operatorname{MIS}(G-v-N(v))+w(v)\} .
\end{aligned}
$$

Proof.

For any set S independent in G, either $v \notin S$ or $v \in S$.
■ $G-v$: any set $T \subseteq V \backslash\{v\}$ independent in $G-v$ has $T \subseteq V$ independent in G
$\square G-v-N(v)$: any set $T \subseteq V \backslash(\{v\} \cup N(v))$ independent in $G-v-N(v)$ has $T \cup\{v\} \subseteq V$ independent in G
Any set S independent in G must be of the above two cases.

Maximum Independent Set (V)

For vertex v, let $N(v)$ denote the subset $S \subseteq V$ of neighbors of v.
Lemma

$$
\begin{aligned}
& G=(V, E), w: V \rightarrow \mathbb{N} \text {, with }|V| \geq 1 . \text { Then for any } v \in V \\
& \operatorname{MIS}(G)=\max \{\operatorname{MIS}(G-v), \operatorname{MIS}(G-v-N(v))+w(v)\} .
\end{aligned}
$$

Proof.

For any set S independent in G, either $v \notin S$ or $v \in S$.
■ $G-v$: any set $T \subseteq V \backslash\{v\}$ independent in $G-v$ has $T \subseteq V$ independent in G
$\square G-v-N(v)$: any set $T \subseteq V \backslash(\{v\} \cup N(v))$ independent in $G-v-N(v)$ has $T \cup\{v\} \subseteq V$ independent in G
Any set S independent in G must be of the above two cases. Now maximize.

Maximum Independent Set (VI)

Maximum Independent Set (VI)

$$
\operatorname{MIS}(G)=\max \left\{\begin{array}{l}
\operatorname{MIS}(G-v) \\
\operatorname{MIS}(G-v-N(v))+w(v)
\end{array}\right.
$$

Maximum Independent Set (VI)

$$
\operatorname{MIS}(G)=\max \left\{\begin{array}{l}
\operatorname{MIS}(G-v) \\
\operatorname{MIS}(G-v-N(v))+w(v)
\end{array}\right.
$$

Maximum Independent Set (VI)

$$
\operatorname{MIS}(G)=\max \left\{\begin{array}{l}
\operatorname{MIS}(G-v) \\
\operatorname{MIS}(G-v-N(v))+w(v)
\end{array}\right.
$$

Maximum Independent Set (VI)

$$
\operatorname{MIS}(G)=\max \left\{\begin{array}{l}
\operatorname{MIS}(G-v) \\
\operatorname{MIS}(G-v-N(v))+w(v)
\end{array}\right.
$$

Maximum Independent Set (VI)

Maximum Independent Set (VII)

Maximum Independent Set (VII)
recursive-MIS $(G=(V, E), w: V \rightarrow \mathbb{N})$:

Maximum Independent Set (VII)

$$
\begin{aligned}
& \text { recursive-MIS }(G=(V, E), w: V \rightarrow \mathbb{N}) \text { : } \\
& \quad \text { if } V=\emptyset
\end{aligned}
$$

Maximum Independent Set (VII)

```
recursive-MIS \((G=(V, E), w: V \rightarrow \mathbb{N})\) :
    if \(V=\emptyset\)
        return 0
```


Maximum Independent Set (VII)

```
recursive-MIS \((G=(V, E), w: V \rightarrow \mathbb{N})\) :
    if \(V=\emptyset\)
        return 0
    choose \(v \in V\)
```


Maximum Independent Set (VII)

```
recursive-MIS \((G=(V, E), w: V \rightarrow \mathbb{N})\) :
    if \(V=\emptyset\)
        return 0
    choose \(v \in V\)
    return max (
```


Maximum Independent Set (VII)

```
recursive-MIS \((G=(V, E), w: V \rightarrow \mathbb{N}):\)
    if \(V=\emptyset\)
        return 0
    choose \(v \in V\)
    return max (recursive-MIS( \(G-v\) ),
```


Maximum Independent Set (VII)

```
recursive-MIS \((G=(V, E), w: V \rightarrow \mathbb{N})\) :
    if \(V=\emptyset\)
        return 0
    choose \(v \in V\)
    return max (recursive-MIS \((G-v)\), recursive-MIS \((G-v-N(v))+w(v))\)
```


Maximum Independent Set (VII)

```
recursive-MIS \((G=(V, E), w: V \rightarrow \mathbb{N})\) :
    if \(V=\emptyset\)
        return 0
    choose \(v \in V\)
    return max (recursive-MIS \((G-v)\), recursive-MIS \((G-v-N(v))+w(v))\)
```


Maximum Independent Set (VII)

```
recursive-MIS \((G=(V, E), w: V \rightarrow \mathbb{N})\) :
    if \(V=\emptyset\)
        return 0
    choose \(v \in V\)
    return \(\max (\) recursive-MIS \((G-v)\), recursive-MIS \((G-v-N(v))+w(v))\)
```


Maximum Independent Set (VII)

```
recursive-MIS \((G=(V, E), w: V \rightarrow \mathbb{N})\) :
    if \(V=\emptyset\)
        return 0
    choose \(v \in V\)
    return max (recursive-MIS \((G-v)\), recursive-MIS \((G-v-N(v))+w(v))\)
```

correctness: clear

Maximum Independent Set (VII)

```
recursive-MIS \((G=(V, E), w: V \rightarrow \mathbb{N})\) :
    if \(V=\emptyset\)
        return 0
    choose \(v \in V\)
    return \(\max (\) recursive-MIS \((G-v)\), recursive-MIS \((G-v-N(v))+w(v))\)
```


correctness: clear

complexity:

Maximum Independent Set (VII)

```
recursive-MIS \((G=(V, E), w: V \rightarrow \mathbb{N})\) :
    if \(V=\emptyset\)
        return 0
    choose \(v \in V\)
    return max (recursive-MIS \((G-v)\), recursive-MIS \((G-v-N(v))+w(v))\)
```

correctness: clear complexity: $n:=|V|$

Maximum Independent Set (VII)

```
recursive-MIS \((G=(V, E), w: V \rightarrow \mathbb{N})\) :
    if \(V=\emptyset\)
        return 0
    choose \(v \in V\)
    return max (recursive-MIS \((G-v)\), recursive-MIS \((G-v-N(v))+w(v))\)
```


correctness: clear

 complexity: $n:=|V|$■ $T(0), T(1) \geq \Omega(1)$.

Maximum Independent Set (VII)

```
recursive-MIS \((G=(V, E), w: V \rightarrow \mathbb{N})\) :
    if \(V=\emptyset\)
        return 0
    choose \(v \in V\)
    return max (recursive-MIS \((G-v)\), recursive-MIS \((G-v-N(v))+w(v))\)
```


correctness: clear

 complexity: $n:=|V|$■ $T(0), T(1) \geq \Omega(1) . T(n) \geq T(n-1)+T(n-1-\operatorname{deg}(v))$

Maximum Independent Set (VII)

```
recursive-MIS \((G=(V, E), w: V \rightarrow \mathbb{N})\) :
    if \(V=\emptyset\)
        return 0
    choose \(v \in V\)
    return max (recursive-MIS \((G-v)\), recursive-MIS \((G-v-N(v))+w(v))\)
```


correctness: clear

complexity: $n:=|V|$
■ $T(0), T(1) \geq \Omega(1) . T(n) \geq T(n-1)+T(n-1-\operatorname{deg}(v))$

- silly case:

Maximum Independent Set (VII)

```
recursive-MIS \((G=(V, E), w: V \rightarrow \mathbb{N})\) :
    if \(V=\emptyset\)
        return 0
    choose \(v \in V\)
    return max (recursive-MIS \((G-v)\), recursive-MIS \((G-v-N(v))+w(v))\)
```


correctness: clear

 complexity: $n:=|V|$■ $T(0), T(1) \geq \Omega(1) . T(n) \geq T(n-1)+T(n-1-\operatorname{deg}(v))$

- silly case: G has no edges

Maximum Independent Set (VII)

```
recursive-MIS \((G=(V, E), w: V \rightarrow \mathbb{N})\) :
    if \(V=\emptyset\)
        return 0
    choose \(v \in V\)
    return max (recursive-MIS \((G-v)\), recursive-MIS \((G-v-N(v))+w(v))\)
```


correctness: clear

 complexity: $n:=|V|$■ $T(0), T(1) \geq \Omega(1) . T(n) \geq T(n-1)+T(n-1-\operatorname{deg}(v))$
■ silly case: G has no edges \Longrightarrow for all $v, \operatorname{deg}(v)=0$

Maximum Independent Set (VII)

```
recursive-MIS \((G=(V, E), w: V \rightarrow \mathbb{N})\) :
    if \(V=\emptyset\)
        return 0
    choose \(v \in V\)
    return max (recursive-MIS \((G-v)\), recursive-MIS \((G-v-N(v))+w(v))\)
```


correctness: clear

complexity: $n:=|V|$
■ $T(0), T(1) \geq \Omega(1) . T(n) \geq T(n-1)+T(n-1-\operatorname{deg}(v))$
■ silly case: G has no edges \Longrightarrow for all $v, \operatorname{deg}(v)=0$
$\Longrightarrow T(n) \geq 2 T(n-1)$

Maximum Independent Set (VII)

```
recursive-MIS \((G=(V, E), w: V \rightarrow \mathbb{N})\) :
    if \(V=\emptyset\)
        return 0
    choose \(v \in V\)
    return max (recursive-MIS \((G-v)\), recursive-MIS \((G-v-N(v))+w(v))\)
```


correctness: clear

complexity: $n:=|V|$
■ $T(0), T(1) \geq \Omega(1) . T(n) \geq T(n-1)+T(n-1-\operatorname{deg}(v))$
■ silly case: G has no edges \Longrightarrow for all $v, \operatorname{deg}(v)=0$
$\Longrightarrow T(n) \geq 2 T(n-1) \geq 4 T(n-2)$

Maximum Independent Set (VII)

```
recursive-MIS \((G=(V, E), w: V \rightarrow \mathbb{N})\) :
    if \(V=\emptyset\)
        return 0
    choose \(v \in V\)
    return max (recursive-MIS \((G-v)\), recursive-MIS \((G-v-N(v))+w(v))\)
```


correctness: clear

complexity: $n:=|V|$
■ $T(0), T(1) \geq \Omega(1) . T(n) \geq T(n-1)+T(n-1-\operatorname{deg}(v))$
■ silly case: G has no edges \Longrightarrow for all $v, \operatorname{deg}(v)=0$
$\Longrightarrow T(n) \geq 2 T(n-1) \geq 4 T(n-2) \geq \cdots \geq$

Maximum Independent Set (VII)

```
recursive-MIS \((G=(V, E), w: V \rightarrow \mathbb{N})\) :
    if \(V=\emptyset\)
        return 0
    choose \(v \in V\)
    return max (recursive-MIS \((G-v)\), recursive-MIS \((G-v-N(v))+w(v))\)
```


correctness: clear

complexity: $n:=|V|$
■ $T(0), T(1) \geq \Omega(1) . T(n) \geq T(n-1)+T(n-1-\operatorname{deg}(v))$
■ silly case: G has no edges \Longrightarrow for all $v, \operatorname{deg}(v)=0$
$\Longrightarrow T(n) \geq 2 T(n-1) \geq 4 T(n-2) \geq \cdots \geq 2^{n} \cdot T(1)$

Maximum Independent Set (VII)

```
recursive-MIS \((G=(V, E), w: V \rightarrow \mathbb{N})\) :
    if \(V=\emptyset\)
        return 0
    choose \(v \in V\)
    return max (recursive-MIS \((G-v)\), recursive-MIS \((G-v-N(v))+w(v))\)
```


correctness: clear

complexity: $n:=|V|$
■ $T(0), T(1) \geq \Omega(1) . T(n) \geq T(n-1)+T(n-1-\operatorname{deg}(v))$
■ silly case: G has no edges \Longrightarrow for all $v, \operatorname{deg}(v)=0$
$\Longrightarrow T(n) \geq 2 T(n-1) \geq 4 T(n-2) \geq \cdots \geq 2^{n} \cdot T(1) \geq \Omega\left(2^{n}\right)$.

Maximum Independent Set (VII)

```
recursive-MIS \((G=(V, E), w: V \rightarrow \mathbb{N})\) :
    if \(V=\emptyset\)
        return 0
    choose \(v \in V\)
    return max (recursive-MIS \((G-v)\), recursive-MIS \((G-v-N(v))+w(v))\)
```

correctness: clear complexity: $n:=|V|$

■ $T(0), T(1) \geq \Omega(1) . T(n) \geq T(n-1)+T(n-1-\operatorname{deg}(v))$
■ silly case: G has no edges \Longrightarrow for all $v, \operatorname{deg}(v)=0$
$\Longrightarrow T(n) \geq 2 T(n-1) \geq 4 T(n-2) \geq \cdots \geq 2^{n} \cdot T(1) \geq \Omega\left(2^{n}\right)$.
■ when G has no edges then clearly $\operatorname{MIS}(G)=|V|$,

Maximum Independent Set (VII)

```
recursive-MIS \((G=(V, E), w: V \rightarrow \mathbb{N})\) :
    if \(V=\emptyset\)
        return 0
    choose \(v \in V\)
    return max (recursive-MIS \((G-v)\), recursive-MIS \((G-v-N(v))+w(v))\)
```

correctness: clear
complexity: $n:=|V|$
$\square T(0), T(1) \geq \Omega(1) . T(n) \geq T(n-1)+T(n-1-\operatorname{deg}(v))$
■ silly case: G has no edges \Longrightarrow for all $v, \operatorname{deg}(v)=0$
$\Longrightarrow T(n) \geq 2 T(n-1) \geq 4 T(n-2) \geq \cdots \geq 2^{n} \cdot T(1) \geq \Omega\left(2^{n}\right)$.

- when G has no edges then clearly $\operatorname{MIS}(G)=|V|$, but this worst-case runtime is hard to avoid

Maximum Independent Set (VII)

```
recursive-MIS \((G=(V, E), w: V \rightarrow \mathbb{N})\) :
    if \(V=\emptyset\)
        return 0
    choose \(v \in V\)
    return max (recursive-MIS \((G-v)\), recursive-MIS \((G-v-N(v))+w(v))\)
```

correctness: clear complexity: $n:=|V|$
$\square T(0), T(1) \geq \Omega(1) . T(n) \geq T(n-1)+T(n-1-\operatorname{deg}(v))$
■ silly case: G has no edges \Longrightarrow for all $v, \operatorname{deg}(v)=0$
$\Longrightarrow T(n) \geq 2 T(n-1) \geq 4 T(n-2) \geq \cdots \geq 2^{n} \cdot T(1) \geq \Omega\left(2^{n}\right)$.
■ when G has no edges then clearly $\operatorname{MIS}(G)=|V|$, but this worst-case runtime is hard to avoid

- memoization does not obviously help

Maximum Independent Set (VII)

```
recursive-MIS \((G=(V, E), w: V \rightarrow \mathbb{N})\) :
    if \(V=\emptyset\)
        return 0
    choose \(v \in V\)
    return max (recursive-MIS \((G-v)\), recursive-MIS \((G-v-N(v))+w(v))\)
```

correctness: clear complexity: $n:=|V|$
$\square T(0), T(1) \geq \Omega(1) . T(n) \geq T(n-1)+T(n-1-\operatorname{deg}(v))$
■ silly case: G has no edges \Longrightarrow for all $v, \operatorname{deg}(v)=0$
$\Longrightarrow T(n) \geq 2 T(n-1) \geq 4 T(n-2) \geq \cdots \geq 2^{n} \cdot T(1) \geq \Omega\left(2^{n}\right)$.
■ when G has no edges then clearly $\operatorname{MIS}(G)=|V|$, but this worst-case runtime is hard to avoid
■ memoization does not obviously help - subproblems correspond to subgraphs,

Maximum Independent Set (VII)

```
recursive-MIS (G = (V,E),w:V->\mathbb{N}):
    if }V=
        return 0
    choose v\inV
    return max (recursive-MIS(G-v), recursive-MIS(G-v-N(v))+w(v))
```

correctness: clear
complexity: $n:=|V|$
■ $T(0), T(1) \geq \Omega(1) . T(n) \geq T(n-1)+T(n-1-\operatorname{deg}(v))$
■ silly case: G has no edges \Longrightarrow for all $v, \operatorname{deg}(v)=0$
$\Longrightarrow T(n) \geq 2 T(n-1) \geq 4 T(n-2) \geq \cdots \geq 2^{n} \cdot T(1) \geq \Omega\left(2^{n}\right)$.
■ when G has no edges then clearly $\operatorname{MIS}(G)=|V|$, but this worst-case runtime is hard to avoid

■ memoization does not obviously help - subproblems correspond to subgraphs, of which there are possibly exponentially many

Maximum Independent Set, in Trees

Maximum Independent Set, in Trees

question:

Maximum Independent Set, in Trees

question: maximum weight independent set,

Maximum Independent Set, in Trees

question: maximum weight independent set, in trees?

Maximum Independent Set, in Trees

question: maximum weight independent set, in trees?

Maximum Independent Set, in Trees

question: maximum weight independent set, in trees?

question:

Maximum Independent Set, in Trees

question: maximum weight independent set, in trees?

question:

■ how to bound the number of subproblems in recursive algorithm?

Maximum Independent Set, in Trees

question: maximum weight independent set, in trees?

question:

■ how to bound the number of subproblems in recursive algorithm?
■ how to pick which vertex $v \in V$ to eliminate?

Maximum Independent Set, in Trees (II)

Maximum Independent Set, in Trees (II)

$\operatorname{MIS}(G)=\max \left\{\begin{array}{l}\operatorname{MIS}(G-v) \\ \operatorname{MIS}(G-v-N(v))+w(v)\end{array}\right.$

Maximum Independent Set, in Trees (II)

$$
\operatorname{MIS}(G)=\max \left\{\begin{array}{l}
\operatorname{MIS}(G-v) \\
\operatorname{MIS}(G-v-N(v))+w(v)
\end{array}\right.
$$

Maximum Independent Set, in Trees (II)

$\operatorname{MIS}(G)=\max \left\{\begin{array}{l}\operatorname{MIS}(G-v) \\ \operatorname{MIS}(G-v-N(v))+w(v)\end{array}\right.$

Maximum Independent Set, in Trees (II)

Maximum Independent Set, in Trees (II)

Maximum Independent Set, in Trees (III)

Maximum Independent Set, in Trees (III)
Lemma

Maximum Independent Set, in Trees (III)
Lemma
Let $T=(V, E)$ be a tree,

Maximum Independent Set, in Trees (III)
Lemma
Let $T=(V, E)$ be a tree, with root $v \in V$.

Maximum Independent Set, in Trees (III)
Lemma
Let $T=(V, E)$ be a tree, with root $v \in V$. Then

Maximum Independent Set, in Trees (III)
Lemma
Let $T=(V, E)$ be a tree, with root $v \in V$. Then

- $T-v$ is a forest,

Maximum Independent Set, in Trees (III)

```
Lemma
Let \(T=(V, E)\) be a tree, with root \(v \in V\). Then
- \(T-v\) is a forest, with each tree associated to a child \(u\) of \(v\).
```


Maximum Independent Set, in Trees (III)

```
Lemma
Let \(T=(V, E)\) be a tree, with root \(v \in V\). Then
\(\square T-v\) is a forest, with each tree associated to a child \(u\) of \(v\).
- \(T-v-N(v)\) is a forest,
```


Maximum Independent Set, in Trees (III)

Lemma

Let $T=(V, E)$ be a tree, with root $v \in V$. Then
$\square T-v$ is a forest, with each tree associated to a child u of v.
■ $T-v-N(v)$ is a forest, with each tree associated to a grandchild w of v.

Maximum Independent Set, in Trees (III)

Lemma

Let $T=(V, E)$ be a tree, with root $v \in V$. Then
$\square T-v$ is a forest, with each tree associated to a child u of v.
■ $T-v-N(v)$ is a forest, with each tree associated to a grandchild w of v.

Proof.

Maximum Independent Set, in Trees (III)

Lemma

Let $T=(V, E)$ be a tree, with root $v \in V$. Then
$\square T-v$ is a forest, with each tree associated to a child u of v.
■ $T-v-N(v)$ is a forest, with each tree associated to a grandchild w of v.

Proof.

Maximum Independent Set, in Trees (III)

Maximum Independent Set, in Trees (III)

Lemma

Let $T=(V, E)$ be a tree, with root $v \in V$. Then

- $T-v$ is a forest, with each tree associated to a child u of v.

■ $T-v-N(v)$ is a forest, with each tree associated to a grandchild w of v.

Maximum Independent Set, in Trees (III)

Lemma

Let $T=(V, E)$ be a tree, with root $v \in V$. Then
■ $T-v$ is a forest, with each tree associated to a child u of v.

- $T-v-N(v)$ is a forest, with each tree associated to a grandchild w of v.

Corollary
Let $T=(V, E)$ be a tree.

Maximum Independent Set, in Trees (III)

Lemma

Let $T=(V, E)$ be a tree, with root $v \in V$. Then
■ $T-v$ is a forest, with each tree associated to a child u of v.
■ $T-v-N(v)$ is a forest, with each tree associated to a grandchild w of v.

Corollary

Let $T=(V, E)$ be a tree. Pick a root $r \in V$ for T to create the rooted tree (T, r).

Maximum Independent Set, in Trees (III)

Lemma

Let $T=(V, E)$ be a tree, with root $v \in V$. Then
$\square T-v$ is a forest, with each tree associated to a child u of v.
■ $T-v-N(v)$ is a forest, with each tree associated to a grandchild w of v.

Corollary

Let $T=(V, E)$ be a tree. Pick a root $r \in V$ for T to create the rooted tree (T, r). Running recursive-MIS on T

Maximum Independent Set, in Trees (III)

Lemma

Let $T=(V, E)$ be a tree, with root $v \in V$. Then
$\square T-v$ is a forest, with each tree associated to a child u of v.
■ $T-v-N(v)$ is a forest, with each tree associated to a grandchild w of v.

Corollary

Let $T=(V, E)$ be a tree. Pick a root $r \in V$ for T to create the rooted tree (T, r). Running recursive-MIS on T and eliminating nodes closest to r in T,

Maximum Independent Set, in Trees (III)

Lemma

Let $T=(V, E)$ be a tree, with root $v \in V$. Then
■ $T-v$ is a forest, with each tree associated to a child u of v.
■ $T-v-N(v)$ is a forest, with each tree associated to a grandchild w of v.

Corollary

Let $T=(V, E)$ be a tree. Pick a root $r \in V$ for T to create the rooted tree (T, r). Running recursive-MIS on T and eliminating nodes closest to r in T, then the result subproblems exactly correspond to forests of rooted subtrees of (T, r),

Maximum Independent Set, in Trees (III)

Lemma

Let $T=(V, E)$ be a tree, with root $v \in V$. Then
■ $T-v$ is a forest, with each tree associated to a child u of v.
■ $T-v-N(v)$ is a forest, with each tree associated to a grandchild w of v.

Corollary

Let $T=(V, E)$ be a tree. Pick a root $r \in V$ for T to create the rooted tree (T, r). Running recursive-MIS on T and eliminating nodes closest to r in T, then the result subproblems exactly correspond to forests of rooted subtrees of (T, r), and disjoint rooted subtrees can be solved independently

Maximum Independent Set, in Trees (III)

Lemma

Let $T=(V, E)$ be a tree, with root $v \in V$. Then
■ $T-v$ is a forest, with each tree associated to a child u of v.
■ $T-v-N(v)$ is a forest, with each tree associated to a grandchild w of v.

Corollary

Let $T=(V, E)$ be a tree. Pick a root $r \in V$ for T to create the rooted tree (T, r). Running recursive-MIS on T and eliminating nodes closest to r in T, then the result subproblems exactly correspond to forests of rooted subtrees of (T, r), and disjoint rooted subtrees can be solved independently
$\Longrightarrow \leq|V|$ subproblems

Maximum Independent Set, in Trees (III)

Lemma

Let $T=(V, E)$ be a tree, with root $v \in V$. Then
■ $T-v$ is a forest, with each tree associated to a child u of v.
■ $T-v-N(v)$ is a forest, with each tree associated to a grandchild w of v.

Corollary

Let $T=(V, E)$ be a tree. Pick a root $r \in V$ for T to create the rooted tree (T, r). Running recursive-MIS on T and eliminating nodes closest to r in T, then the result subproblems exactly correspond to forests of rooted subtrees of (T, r), and disjoint rooted subtrees can be solved independently
$\Longrightarrow \leq|V|$ subproblems
\Longrightarrow memoized recursive algorithm is efficient

Maximum Independent Set, in Trees (IV)

Maximum Independent Set, in Trees (IV)
For a rooted tree T with root r,

Maximum Independent Set, in Trees (IV)

For a rooted tree T with root r, for $v \in V$ define $T(v)$ to be the subtree of T descending from v.

Maximum Independent Set, in Trees (IV)

For a rooted tree T with root r, for $v \in V$ define $T(v)$ to be the subtree of T descending from v. The recursive formula is then:

$$
\operatorname{MIS}(T)=\max
$$

Maximum Independent Set, in Trees (IV)

For a rooted tree T with root r, for $v \in V$ define $T(v)$ to be the subtree of T descending from v. The recursive formula is then:

$$
\operatorname{MIS}(T)=\max \left\{\sum_{v \in N(v)} \operatorname{MIS}(T(v))\right.
$$

Maximum Independent Set, in Trees (IV)

For a rooted tree T with root r, for $v \in V$ define $T(v)$ to be the subtree of T descending from v. The recursive formula is then:

$$
\operatorname{MIS}(T)=\max \left\{\begin{array}{l}
\sum_{v \in N(v)} \operatorname{MIS}(T(v)) \\
\left(\sum_{v \in N(N(v))} \operatorname{MIS}(T(v))\right)+w(v)
\end{array}\right.
$$

Maximum Independent Set, in Trees (IV)

For a rooted tree T with root r, for $v \in V$ define $T(v)$ to be the subtree of T descending from v. The recursive formula is then:

$$
\operatorname{MIS}(T)=\max \left\{\begin{array}{l}
\sum_{v \in N(v)} \operatorname{MIS}(T(v)) \\
\left(\sum_{v \in N(N(v))} \operatorname{MIS}(T(v))\right)+w(v)
\end{array}\right.
$$

dependency graph:

Maximum Independent Set, in Trees (IV)

For a rooted tree T with root r, for $v \in V$ define $T(v)$ to be the subtree of T descending from v. The recursive formula is then:

$$
\operatorname{MIS}(T)=\max \left\{\begin{array}{l}
\sum_{v \in N(v)} \operatorname{MIS}(T(v)) \\
\left(\sum_{v \in N(N(v))} \operatorname{MIS}(T(v))\right)+w(v)
\end{array}\right.
$$

dependency graph:

■ subproblems are rooted subtrees of (T, r)

Maximum Independent Set, in Trees (IV)

For a rooted tree T with root r, for $v \in V$ define $T(v)$ to be the subtree of T descending from v. The recursive formula is then:

$$
\operatorname{MIS}(T)=\max \left\{\begin{array}{l}
\sum_{v \in N(v)} \operatorname{MIS}(T(v)) \\
\left(\sum_{v \in N(N(v))} \operatorname{MIS}(T(v))\right)+w(v)
\end{array}\right.
$$

dependency graph:

- subproblems are rooted subtrees of (T, r)

■ a subtree $T(v)$ depends on all of subtrees $T(u)$ where u is a descendent of v

Maximum Independent Set, in Trees (IV)

For a rooted tree T with root r, for $v \in V$ define $T(v)$ to be the subtree of T descending from v. The recursive formula is then:

$$
\operatorname{MIS}(T)=\max \left\{\begin{array}{l}
\sum_{v \in N(v)} \operatorname{MIS}(T(v)) \\
\left(\sum_{v \in N(N(v))} \operatorname{MIS}(T(v))\right)+w(v)
\end{array}\right.
$$

dependency graph:

- subproblems are rooted subtrees of (T, r)

■ a subtree $T(v)$ depends on all of subtrees $T(u)$ where u is a descendent of v \Longrightarrow iterating over V in post-order traversal of T will satisfy the dependency graph

Maximum Independent Set, in Trees (V)

Maximum Independent Set, in Trees (V)

iterative algorithm:

Maximum Independent Set, in Trees (V)

iterative algorithm:

$$
\text { iter-MIS-tree }(T=(V, E), w: V \rightarrow \mathbb{N}):
$$

Maximum Independent Set, in Trees (V)

iterative algorithm:

iter-MIS-tree $(T=(V, E), w: V \rightarrow \mathbb{N})$:
let $v_{1}, v_{2}, \ldots, v_{n}$ be a post-order traversal of nodes of T

Maximum Independent Set, in Trees (V)

iterative algorithm:

iter-MIS-tree $(T=(V, E), w: V \rightarrow \mathbb{N}):$
let $v_{1}, v_{2}, \ldots, v_{n}$ be a post-order traversal of nodes of T
$\Longrightarrow v_{n}$ is the root

Maximum Independent Set, in Trees (V)

iterative algorithm:

iter-MIS-tree $(T=(V, E), w: V \rightarrow \mathbb{N})$:
let $v_{1}, v_{2}, \ldots, v_{n}$ be a post-order traversal of nodes of T
$\Longrightarrow v_{n}$ is the root
for $1 \leq i \leq n$

Maximum Independent Set, in Trees (V)

iterative algorithm:

```
    iter-MIS-tree \((T=(V, E), w: V \rightarrow \mathbb{N})\) :
    let \(v_{1}, v_{2}, \ldots, v_{n}\) be a post-order traversal of nodes of \(T\)
            \(\Longrightarrow v_{n}\) is the root
    for \(1 \leq i \leq n\)
        \(M[i]=\max \{\)
```


Maximum Independent Set, in Trees (V)

iterative algorithm:

iter-MIS-tree $(T=(V, E), w: V \rightarrow \mathbb{N}):$
let $v_{1}, v_{2}, \ldots, v_{n}$ be a post-order traversal of nodes of T
$\Longrightarrow v_{n}$ is the root
for $1 \leq i \leq n$
$M[i]=\max \left\{\sum_{j: v_{j} \in N\left(v_{i}\right)} M[j]\right.$

Maximum Independent Set, in Trees (V)

iterative algorithm:

iter-MIS-tree $(T=(V, E), w: V \rightarrow \mathbb{N}):$
let $v_{1}, v_{2}, \ldots, v_{n}$ be a post-order traversal of nodes of T
$\Longrightarrow v_{n}$ is the root
for $1 \leq i \leq n$

$$
M[i]=\max \left\{\begin{array}{l}
\sum_{j: v_{j} \in N\left(v_{i}\right)} M[j] \\
\left(\sum_{j: v_{j} \in N\left(N\left(v_{i}\right)\right)} M[j]\right)+w\left(v_{i}\right)
\end{array}\right.
$$

Maximum Independent Set, in Trees (V)

iterative algorithm:

iter-MIS-tree $(T=(V, E), w: V \rightarrow \mathbb{N})$:
let $v_{1}, v_{2}, \ldots, v_{n}$ be a post-order traversal of nodes of T
$\Longrightarrow v_{n}$ is the root
for $1 \leq i \leq n$

$$
M[i]=\max \left\{\begin{array}{l}
\sum_{j: v_{j} \in N\left(v_{i}\right)} M[j] \\
\left(\sum_{j: v_{j} \in N\left(N\left(v_{i}\right)\right)} M[j]\right)+w\left(v_{i}\right)
\end{array}\right.
$$

return $M[n]$

Maximum Independent Set, in Trees (V)

iterative algorithm:

```
iter-MIS-tree \((T=(V, E), w: V \rightarrow \mathbb{N}):\)
    let \(v_{1}, v_{2}, \ldots, v_{n}\) be a post-order traversal of nodes of \(T\)
            \(\Longrightarrow v_{n}\) is the root
    for \(1 \leq i \leq n\)
        \(M[i]=\max \left\{\begin{array}{l}\sum_{j: v_{j} \in N\left(v_{i}\right)} M[j] \\ \left(\sum_{j: v_{j} \in N\left(N\left(v_{i}\right)\right)} M[j]\right)+w\left(v_{i}\right)\end{array}\right.\)
    return \(M[n]\)
```


Maximum Independent Set, in Trees (V)

iterative algorithm:

```
iter-MIS-tree \((T=(V, E), w: V \rightarrow \mathbb{N}):\)
    let \(v_{1}, v_{2}, \ldots, v_{n}\) be a post-order traversal of nodes of \(T\)
            \(\Longrightarrow v_{n}\) is the root
    for \(1 \leq i \leq n\)
        \(M[i]=\max \left\{\begin{array}{l}\sum_{j: v_{j} \in N\left(v_{i}\right)} M[j] \\ \left(\sum_{j: v_{j} \in N\left(N\left(v_{i}\right)\right)} M[j]\right)+w\left(v_{i}\right)\end{array}\right.\)
    return \(M[n]\)
```


correctness:

Maximum Independent Set, in Trees (V)

iterative algorithm:

$$
\begin{aligned}
& \text { iter-MIS-tree }(T=(V, E), w: V \rightarrow \mathbb{N}): \\
& \text { let } v_{1}, v_{2}, \ldots, v_{n} \text { be a post-order traversal of nodes of } T \\
& \quad \Longrightarrow v_{n} \text { is the root } \\
& \text { for } 1 \leq i \leq n \\
& M[i]=\max \left\{\begin{array}{l}
\sum_{j: v_{j} \in N\left(v_{i}\right)} M[j] \\
\left(\sum_{j: v_{j} \in N\left(N\left(v_{i}\right)\right)} M[j]\right)+w\left(v_{i}\right)
\end{array}\right. \\
& \text { return } M[n]
\end{aligned}
$$

correctness: clear

Maximum Independent Set, in Trees (V)

iterative algorithm:

$$
\begin{aligned}
& \text { iter-MIS-tree }(T=(V, E), w: V \rightarrow \mathbb{N}): \\
& \text { let } v_{1}, v_{2}, \ldots, v_{n} \text { be a post-order traversal of nodes of } T \\
& \quad \Longrightarrow v_{n} \text { is the root } \\
& \text { for } 1 \leq i \leq n \\
& M[i]=\max \left\{\begin{array}{l}
\sum_{j: v_{j} \in N\left(v_{i}\right)} M[j] \\
\left(\sum_{j: v_{j} \in N\left(N\left(v_{i}\right)\right)} M[j]\right)+w\left(v_{i}\right)
\end{array}\right. \\
& \text { return } M[n]
\end{aligned}
$$

correctness: clear

complexity:

Maximum Independent Set, in Trees (V)

iterative algorithm:

$$
\begin{aligned}
& \text { iter-MIS-tree }(T=(V, E), w: V \rightarrow \mathbb{N}): \\
& \text { let } v_{1}, v_{2}, \ldots, v_{n} \text { be a post-order traversal of nodes of } T \\
& \quad \Longrightarrow v_{n} \text { is the root } \\
& \text { for } 1 \leq i \leq n \\
& M[i]=\max \left\{\begin{array}{l}
\sum_{j: v_{j} \in N\left(v_{i}\right)} M[j] \\
\left(\sum_{j: v_{j} \in N\left(N\left(v_{i}\right)\right)} M[j]\right)+w\left(v_{i}\right)
\end{array}\right. \\
& \text { return } M[n]
\end{aligned}
$$

correctness: clear

complexity:

- $O(n)$ space to store $M[\cdot]$

Maximum Independent Set, in Trees (V)

iterative algorithm:

$$
\begin{aligned}
& \text { iter-MIS-tree }(T=(V, E), w: V \rightarrow \mathbb{N}): \\
& \text { let } v_{1}, v_{2}, \ldots, v_{n} \text { be a post-order traversal of nodes of } T \\
& \quad \Longrightarrow v_{n} \text { is the root } \\
& \text { for } 1 \leq i \leq n \\
& M[i]=\max \left\{\begin{array}{l}
\sum_{j: v_{j} \in N\left(v_{i}\right)} M[j] \\
\left(\sum_{j: v_{j} \in N\left(N\left(v_{i}\right)\right)} M[j]\right)+w\left(v_{i}\right)
\end{array}\right. \\
& \text { return } M[n]
\end{aligned}
$$

correctness: clear

complexity:

- $O(n)$ space to store $M[\cdot]$
- time

Maximum Independent Set, in Trees (V)

iterative algorithm:

$$
\begin{aligned}
& \text { iter-MIS-tree }(T=(V, E), w: V \rightarrow \mathbb{N}): \\
& \text { let } v_{1}, v_{2}, \ldots, v_{n} \text { be a post-order traversal of nodes of } T \\
& \quad \Longrightarrow v_{n} \text { is the root } \\
& \text { for } 1 \leq i \leq n \\
& M[i]=\max \left\{\begin{array}{l}
\sum_{j: v_{j} \in N\left(v_{i}\right)} M[j] \\
\left(\sum_{j: v_{j} \in N\left(N\left(v_{i}\right)\right)} M[j]\right)+w\left(v_{i}\right)
\end{array}\right. \\
& \text { return } M[n]
\end{aligned}
$$

correctness: clear

complexity:

- $O(n)$ space to store $M[\cdot]$
- time
- naive:

Maximum Independent Set, in Trees (V)

iterative algorithm:

$$
\begin{aligned}
& \text { iter-MIS-tree }(T=(V, E), w: V \rightarrow \mathbb{N}): \\
& \text { let } v_{1}, v_{2}, \ldots, v_{n} \text { be a post-order traversal of nodes of } T \\
& \Longrightarrow v_{n} \text { is the root } \\
& \text { for } 1 \leq i \leq n \\
& M[i]=\max \left\{\begin{array}{l}
\sum_{j: v_{j} \in N\left(v_{i}\right)} M[j] \\
\left(\sum_{j: v_{j} \in N\left(N\left(v_{i}\right)\right)} M[j]\right)+w\left(v_{i}\right)
\end{array}\right. \\
& \text { return } M[n]
\end{aligned}
$$

correctness: clear

complexity:

- $O(n)$ space to store $M[\cdot]$
- time
- naive: $O(n)$ time per node,

Maximum Independent Set, in Trees (V)

iterative algorithm:

$$
\begin{aligned}
& \text { iter-MIS-tree }(T=(V, E), w: V \rightarrow \mathbb{N}): \\
& \text { let } v_{1}, v_{2}, \ldots, v_{n} \text { be a post-order traversal of nodes of } T \\
& \Longrightarrow v_{n} \text { is the root } \\
& \text { for } 1 \leq i \leq n \\
& M[i]=\max \left\{\begin{array}{l}
\sum_{j: v_{j} \in N\left(v_{i}\right)} M[j] \\
\left(\sum_{j: v_{j} \in N\left(N\left(v_{i}\right)\right)} M[j]\right)+w\left(v_{i}\right)
\end{array}\right. \\
& \text { return } M[n]
\end{aligned}
$$

correctness: clear

complexity:

- $O(n)$ space to store $M[\cdot]$
- time

■ naive: $O(n)$ time per node, n nodes

Maximum Independent Set, in Trees (V)

iterative algorithm:

$$
\begin{aligned}
& \text { iter-MIS-tree }(T=(V, E), w: V \rightarrow \mathbb{N}): \\
& \text { let } v_{1}, v_{2}, \ldots, v_{n} \text { be a post-order traversal of nodes of } T \\
& \quad \Longrightarrow v_{n} \text { is the root } \\
& \text { for } 1 \leq i \leq n \\
& M[i]=\max \left\{\begin{array}{l}
\sum_{j: v_{j} \in N\left(v_{i}\right)} M[j] \\
\left(\sum_{j: v_{j} \in N\left(N\left(v_{i}\right)\right)} M[j]\right)+w\left(v_{i}\right)
\end{array}\right. \\
& \text { return } M[n]
\end{aligned}
$$

correctness: clear

complexity:

- $O(n)$ space to store $M[\cdot]$
- time
\square naive: $O(n)$ time per node, n nodes $\Longrightarrow O\left(n^{2}\right)$

Maximum Independent Set, in Trees (V)

iterative algorithm:

$$
\begin{aligned}
& \text { iter-MIS-tree }(T=(V, E), w: V \rightarrow \mathbb{N}): \\
& \text { let } v_{1}, v_{2}, \ldots, v_{n} \text { be a post-order traversal of nodes of } T \\
& \quad \Longrightarrow v_{n} \text { is the root } \\
& \text { for } 1 \leq i \leq n \\
& M[i]=\max \left\{\begin{array}{l}
\sum_{j: v_{j} \in N\left(v_{i}\right)} M[j] \\
\left(\sum_{j: v_{j} \in N\left(N\left(v_{i}\right)\right)} M[j]\right)+w\left(v_{i}\right)
\end{array}\right. \\
& \text { return } M[n]
\end{aligned}
$$

correctness: clear

complexity:

- $O(n)$ space to store $M[\cdot]$
- time
\square naive: $O(n)$ time per node, n nodes $\Longrightarrow O\left(n^{2}\right)$
- better:

Maximum Independent Set, in Trees (V)

iterative algorithm:

$$
\begin{aligned}
& \text { iter-MIS-tree }(T=(V, E), w: V \rightarrow \mathbb{N}): \\
& \text { let } v_{1}, v_{2}, \ldots, v_{n} \text { be a post-order traversal of nodes of } T \\
& \quad \Longrightarrow v_{n} \text { is the root } \\
& \text { for } 1 \leq i \leq n \\
& M[i]=\max \left\{\begin{array}{l}
\sum_{j: v_{j} \in N\left(v_{i}\right)} M[j] \\
\left(\sum_{j: v_{j} \in N\left(N\left(v_{i}\right)\right)} M[j]\right)+w\left(v_{i}\right)
\end{array}\right. \\
& \text { return } M[n]
\end{aligned}
$$

correctness: clear

complexity:

- $O(n)$ space to store $M[\cdot]$
- time
\square naive: $O(n)$ time per node, n nodes $\Longrightarrow O\left(n^{2}\right)$
■ better: each node v_{j} has its $M[j]$ value read by

Maximum Independent Set, in Trees (V)

iterative algorithm:

$$
\begin{aligned}
& \text { iter-MIS-tree }(T=(V, E), w: V \rightarrow \mathbb{N}): \\
& \text { let } v_{1}, v_{2}, \ldots, v_{n} \text { be a post-order traversal of nodes of } T \\
& \Longrightarrow v_{n} \text { is the root } \\
& \text { for } 1 \leq i \leq n \\
& M[i]=\max \left\{\begin{array}{l}
\sum_{j: v_{j} \in N\left(v_{i}\right)} M[j] \\
\left(\sum_{j: v_{j} \in N\left(N\left(v_{i}\right)\right)} M[j]\right)+w\left(v_{i}\right)
\end{array}\right. \\
& \text { return } M[n]
\end{aligned}
$$

correctness: clear

complexity:

- $O(n)$ space to store $M[\cdot]$
- time
\square naive: $O(n)$ time per node, n nodes $\Longrightarrow O\left(n^{2}\right)$
- better: each node v_{j} has its $M[j]$ value read by parent,

Maximum Independent Set, in Trees (V)

iterative algorithm:

$$
\begin{aligned}
& \text { iter-MIS-tree }(T=(V, E), w: V \rightarrow \mathbb{N}): \\
& \text { let } v_{1}, v_{2}, \ldots, v_{n} \text { be a post-order traversal of nodes of } T \\
& \Longrightarrow v_{n} \text { is the root } \\
& \text { for } 1 \leq i \leq n \\
& M[i]=\max \left\{\begin{array}{l}
\sum_{j: v_{j} \in N\left(v_{i}\right)} M[j] \\
\left(\sum_{j: v_{j} \in N\left(N\left(v_{i}\right)\right)} M[j]\right)+w\left(v_{i}\right)
\end{array}\right. \\
& \text { return } M[n]
\end{aligned}
$$

correctness: clear

complexity:

- $O(n)$ space to store $M[\cdot]$
- time
\square naive: $O(n)$ time per node, n nodes $\Longrightarrow O\left(n^{2}\right)$
- better: each node v_{j} has its $M[j]$ value read by parent, and by grandparent

Maximum Independent Set, in Trees (V)

iterative algorithm:

$$
\begin{aligned}
& \text { iter-MIS-tree }(T=(V, E), w: V \rightarrow \mathbb{N}): \\
& \text { let } v_{1}, v_{2}, \ldots, v_{n} \text { be a post-order traversal of nodes of } T \\
& \Longrightarrow v_{n} \text { is the root } \\
& \text { for } 1 \leq i \leq n \\
& M[i]=\max \left\{\begin{array}{l}
\sum_{j: v_{j} \in N\left(v_{i}\right)} M[j] \\
\left(\sum_{j: v_{j} \in N\left(N\left(v_{i}\right)\right)} M[j]\right)+w\left(v_{i}\right)
\end{array}\right. \\
& \text { return } M[n]
\end{aligned}
$$

correctness: clear

complexity:

- $O(n)$ space to store $M[\cdot]$
- time
\square naive: $O(n)$ time per node, n nodes $\Longrightarrow O\left(n^{2}\right)$
■ better: each node v_{j} has its $M[j]$ value read by parent, and by grandparent \Longrightarrow $O(1)$ work per n nodes

Maximum Independent Set, in Trees (V)

iterative algorithm:

$$
\begin{aligned}
& \text { iter-MIS-tree }(T=(V, E), w: V \rightarrow \mathbb{N}): \\
& \text { let } v_{1}, v_{2}, \ldots, v_{n} \text { be a post-order traversal of nodes of } T \\
& \Longrightarrow v_{n} \text { is the root } \\
& \text { for } 1 \leq i \leq n \\
& M[i]=\max \left\{\begin{array}{l}
\sum_{j: v_{j} \in N\left(v_{i}\right)} M[j] \\
\left(\sum_{j: v_{j} \in N\left(N\left(v_{i}\right)\right)} M[j]\right)+w\left(v_{i}\right)
\end{array}\right. \\
& \text { return } M[n]
\end{aligned}
$$

correctness: clear

complexity:

- $O(n)$ space to store $M[\cdot]$
- time
\square naive: $O(n)$ time per node, n nodes $\Longrightarrow O\left(n^{2}\right)$
■ better: each node v_{j} has its $M[j]$ value read by parent, and by grandparent \Longrightarrow $O(1)$ work per n nodes $\Longrightarrow O(n)$ time

Dynamic Programming, in Trees

Dynamic Programming, in Trees

question:

Dynamic Programming, in Trees

question: why does dynamic programming work on trees?

Dynamic Programming, in Trees

question: why does dynamic programming work on trees?
Definition

Dynamic Programming, in Trees

question: why does dynamic programming work on trees?
Definition

$$
G=(V, E)
$$

Dynamic Programming, in Trees

question: why does dynamic programming work on trees?
Definition
$G=(V, E)$. A set of nodes $S \subseteq V$ is a separator for G

Dynamic Programming, in Trees

question: why does dynamic programming work on trees?
Definition
$G=(V, E)$. A set of nodes $S \subseteq V$ is a separator for G if $G-S$ has at ≥ 2 connected components,

Dynamic Programming, in Trees

question: why does dynamic programming work on trees?
Definition
$G=(V, E)$. A set of nodes $S \subseteq V$ is a separator for G if $G-S$ has at ≥ 2 connected components, that is,

Dynamic Programming, in Trees

question: why does dynamic programming work on trees?
Definition
$G=(V, E)$. A set of nodes $S \subseteq V$ is a separator for G if $G-S$ has at ≥ 2 connected components, that is, $G-S$ is disconnected.

Dynamic Programming, in Trees

question: why does dynamic programming work on trees?
Definition
$G=(V, E)$. A set of nodes $S \subseteq V$ is a separator for G if $G-S$ has at ≥ 2 connected components, that is, $G-S$ is disconnected.
e.g., in trees,

Dynamic Programming, in Trees

question: why does dynamic programming work on trees?
Definition
$G=(V, E)$. A set of nodes $S \subseteq V$ is a separator for G if $G-S$ has at ≥ 2 connected components, that is, $G-S$ is disconnected.
e.g., in trees, every vertex is a separator,

Dynamic Programming, in Trees

question: why does dynamic programming work on trees?
Definition
$G=(V, E)$. A set of nodes $S \subseteq V$ is a separator for G if $G-S$ has at ≥ 2 connected components, that is, $G-S$ is disconnected.
S is a balanced if each connected component of $G-S$ has $\leq \frac{2}{3} \cdot|V|$ vertices.
e.g., in trees, every vertex is a separator,

Dynamic Programming, in Trees

question: why does dynamic programming work on trees?
Definition
$G=(V, E)$. A set of nodes $S \subseteq V$ is a separator for G if $G-S$ has at ≥ 2 connected components, that is, $G-S$ is disconnected.
S is a balanced if each connected component of $G-S$ has $\leq \frac{2}{3} \cdot|V|$ vertices.
e.g., in trees, every vertex is a separator, but not all are balanced.

Dynamic Programming, in Trees

question: why does dynamic programming work on trees?
Definition
$G=(V, E)$. A set of nodes $S \subseteq V$ is a separator for G if $G-S$ has at ≥ 2 connected components, that is, $G-S$ is disconnected.
S is a balanced if each connected component of $G-S$ has $\leq \frac{2}{3} \cdot|V|$ vertices.
e.g., in trees, every vertex is a separator, but not all are balanced. remarks:

Dynamic Programming, in Trees

question: why does dynamic programming work on trees?
Definition
$G=(V, E)$. A set of nodes $S \subseteq V$ is a separator for G if $G-S$ has at ≥ 2 connected components, that is, $G-S$ is disconnected.
S is a balanced if each connected component of $G-S$ has $\leq \frac{2}{3} \cdot|V|$ vertices.
e.g., in trees, every vertex is a separator, but not all are balanced. remarks:

■ every tree T has a balanced separator consisting of a single node

Dynamic Programming, in Trees

question: why does dynamic programming work on trees?
Definition
$G=(V, E)$. A set of nodes $S \subseteq V$ is a separator for G if $G-S$ has at ≥ 2 connected components, that is, $G-S$ is disconnected.
S is a balanced if each connected component of $G-S$ has $\leq \frac{2}{3} \cdot|V|$ vertices.
e.g., in trees, every vertex is a separator, but not all are balanced.

remarks:

■ every tree T has a balanced separator consisting of a single node

- dynamic-programming

Dynamic Programming, in Trees

question: why does dynamic programming work on trees?

Definition

$G=(V, E)$. A set of nodes $S \subseteq V$ is a separator for G if $G-S$ has at ≥ 2 connected components, that is, $G-S$ is disconnected.
S is a balanced if each connected component of $G-S$ has $\leq \frac{2}{3} \cdot|V|$ vertices.
e.g., in trees, every vertex is a separator, but not all are balanced.

remarks:

■ every tree T has a balanced separator consisting of a single node
■ dynamic-programming + small balanced separators

Dynamic Programming, in Trees

question: why does dynamic programming work on trees?

Definition

$G=(V, E)$. A set of nodes $S \subseteq V$ is a separator for G if $G-S$ has at ≥ 2 connected components, that is, $G-S$ is disconnected.
S is a balanced if each connected component of $G-S$ has $\leq \frac{2}{3} \cdot|V|$ vertices.
e.g., in trees, every vertex is a separator, but not all are balanced.

remarks:

■ every tree T has a balanced separator consisting of a single node
■ dynamic-programming + small balanced separators $\Longrightarrow 2^{O(\sqrt{n})}$-time MIS algorithm for planar graphs

Minimum Dominating Set

Minimum Dominating Set

Definition

Minimum Dominating Set

Definition
 Let $G=(V, E)$ be an undirected (simple) graph.

Minimum Dominating Set

Definition

Let $G=(V, E)$ be an undirected (simple) graph. A dominating set of G

Minimum Dominating Set

Definition
Let $G=(V, E)$ be an undirected (simple) graph. A dominating set of G is a subset $S \subseteq V$

Minimum Dominating Set

Definition
Let $G=(V, E)$ be an undirected (simple) graph. A dominating set of G is a subset $S \subseteq V$ such that for all $v \in V$,

Minimum Dominating Set

Definition
Let $G=(V, E)$ be an undirected (simple) graph. A dominating set of G is a subset $S \subseteq V$ such that for all $v \in V$, either $v \in S$,

Minimum Dominating Set

Definition
Let $G=(V, E)$ be an undirected (simple) graph. A dominating set of G is a subset $S \subseteq V$ such that for all $v \in V$, either $v \in S$, or v has neighbor $u \in N(v)$ with $u \in S$.

Minimum Dominating Set

Definition

Let $G=(V, E)$ be an undirected (simple) graph. A dominating set of G is a subset $S \subseteq V$ such that for all $v \in V$, either $v \in S$, or v has neighbor $u \in N(v)$ with $u \in S$. ex:

Minimum Dominating Set

Definition

Let $G=(V, E)$ be an undirected (simple) graph. A dominating set of G is a subset $S \subseteq V$ such that for all $v \in V$, either $v \in S$, or v has neighbor $u \in N(v)$ with $u \in S$.

ex:

Minimum Dominating Set

Definition

Let $G=(V, E)$ be an undirected (simple) graph. A dominating set of G is a subset $S \subseteq V$ such that for all $v \in V$, either $v \in S$, or v has neighbor $u \in N(v)$ with $u \in S$.

ex:

Dominating sets include $\{a, b, c, d, e, f\}$,

Minimum Dominating Set

Definition

Let $G=(V, E)$ be an undirected (simple) graph. A dominating set of G is a subset $S \subseteq V$ such that for all $v \in V$, either $v \in S$, or v has neighbor $u \in N(v)$ with $u \in S$.

ex:

Dominating sets include $\{a, b, c, d, e, f\},\{e, c, f\}$,

Minimum Dominating Set

Definition

Let $G=(V, E)$ be an undirected (simple) graph. A dominating set of G is a subset $S \subseteq V$ such that for all $v \in V$, either $v \in S$, or v has neighbor $u \in N(v)$ with $u \in S$.

ex:

Dominating sets include $\{a, b, c, d, e, f\},\{e, c, f\}$, and $\{a, b, f\}$.

Minimum Dominating Set (II)

Minimum Dominating Set (II)

Minimum Dominating Set (II)

Definition

The minimum weight dominating set problem is to,

Minimum Dominating Set (II)

Definition

The minimum weight dominating set problem is to, given a undirected (simple) graph $G=(V, E)$

Minimum Dominating Set (II)

Definition

The minimum weight dominating set problem is to, given a undirected (simple) graph $G=(V, E)$ and a weight function $w: V \rightarrow \mathbb{N}$,

Minimum Dominating Set (II)

Definition

The minimum weight dominating set problem is to, given a undirected (simple) graph $G=(V, E)$ and a weight function $w: V \rightarrow \mathbb{N}$, output the weight of the minimum weight dominating set in G.

Minimum Dominating Set (II)

Definition

The minimum weight dominating set problem is to, given a undirected (simple) graph $G=(V, E)$ and a weight function $w: V \rightarrow \mathbb{N}$, output the weight of the minimum weight dominating set in G. That is, output

$$
\max _{\substack{S \subseteq V \\ S \text { dominating set of } G}} \sum_{v \in S} w(v) .
$$

Minimum Dominating Set (II)

Definition

The minimum weight dominating set problem is to, given a undirected (simple) graph $G=(V, E)$ and a weight function $w: V \rightarrow \mathbb{N}$, output the weight of the minimum weight dominating set in G. That is, output

Minimum Dominating Set (II)

Definition

The minimum weight dominating set problem is to, given a undirected (simple) graph $G=(V, E)$ and a weight function $w: V \rightarrow \mathbb{N}$, output the weight of the minimum weight dominating set in G. That is, output

$$
\max _{\substack{S \subseteq V \\ S \text { dominating set of } G}} \sum_{v \in S} w(v)
$$

Minimum Dominating Set (III)

Minimum Dominating Set (III)

remarks:

■ minimum (weight) dominating set is solvable via brute force: try all possible subsets \Longrightarrow solvable in time $O\left(n^{O(1)} 2^{n}\right)$

- no efficient algorithm currently known

■ minimum weight dominating set is NP-hard \Longrightarrow an efficient algorithm not expected to exist

- minimum weight dominating set is efficiently solvable if the underlying graph is a tree

Minimum Dominating Set, in Trees

Minimum Dominating Set, in Trees

question:

Minimum Dominating Set, in Trees

question: copy\&paste from MIS on trees?

Minimum Dominating Set, in Trees

question: copy\&paste from MIS on trees?

Minimum Dominating Set, in Trees

question: copy\&paste from MIS on trees?

Let $T(v)$ denote the subtree rooted at $v \in V$,

Minimum Dominating Set, in Trees

question: copy\&paste from MIS on trees?

Let $T(v)$ denote the subtree rooted at $v \in V$, and let $S(v)$ be any minimum weight dominating set for $T(v)$.

Minimum Dominating Set, in Trees

question: copy\&paste from MIS on trees? building $S(r)$:

Let $T(v)$ denote the subtree rooted at $v \in V$, and let $S(v)$ be any minimum weight dominating set for $T(v)$.

Minimum Dominating Set, in Trees

question: copy\&paste from MIS on trees?

Let $T(v)$ denote the subtree rooted at $v \in V$, and let $S(v)$ be any minimum weight dominating set for $T(v)$.
building $S(r)$:

- $r \in S$:

Minimum Dominating Set, in Trees

question: copy\&paste from MIS on trees?

Let $T(v)$ denote the subtree rooted at $v \in V$, and let $S(v)$ be any minimum weight dominating set for $T(v)$.
building $S(r)$:

- $r \in S$:

■ could take any $S(a) \cup S(b) \cup\{r\}$

Minimum Dominating Set, in Trees

question: copy\&paste from MIS on trees?

Let $T(v)$ denote the subtree rooted at $v \in V$, and let $S(v)$ be any minimum weight dominating set for $T(v)$.
building $S(r)$:

- $r \in S$:
- could take any $S(a) \cup S(b) \cup\{r\}$
- better: if we cover r then a, b do not need to be covered

Minimum Dominating Set, in Trees

question: copy\&paste from MIS on trees?

Let $T(v)$ denote the subtree rooted at $v \in V$, and let $S(v)$ be any minimum weight dominating set for $T(v)$.
building $S(r)$:

- $r \in S$:
- could take any $S(a) \cup S(b) \cup\{r\}$
- better: if we cover r then a, b do not need to be covered - only need a "mostly" dominating set on $T(a)$ and $T(b)$

Minimum Dominating Set, in Trees

question: copy\&paste from MIS on trees?

Let $T(v)$ denote the subtree rooted at $v \in V$, and let $S(v)$ be any minimum weight dominating set for $T(v)$.
building $S(r)$:

- $r \in S$:
- could take any $S(a) \cup S(b) \cup\{r\}$
- better: if we cover r then a, b do not need to be covered - only need a "mostly" dominating set on $T(a)$ and $T(b)$
- $r \notin S:$

Minimum Dominating Set, in Trees

question: copy\&paste from MIS on trees?

Let $T(v)$ denote the subtree rooted at $v \in V$, and let $S(v)$ be any minimum weight dominating set for $T(v)$.
building $S(r)$:

- $r \in S$:
- could take any $S(a) \cup S(b) \cup\{r\}$
- better: if we cover r then a, b do not need to be covered - only need a "mostly" dominating set on $T(a)$ and $T(b)$
- $r \notin S:$
- could try to take any $S(a) \cup S(b)$,

Minimum Dominating Set, in Trees

question: copy\&paste from MIS on trees?

Let $T(v)$ denote the subtree rooted at $v \in V$, and let $S(v)$ be any minimum weight dominating set for $T(v)$.
building $S(r)$:

- $r \in S$:
- could take any $S(a) \cup S(b) \cup\{r\}$
- better: if we cover r then a, b do not need to be covered - only need a "mostly" dominating set on $T(a)$ and $T(b)$
- $r \notin S:$
- could try to take any $S(a) \cup S(b)$, but how to dominate r ?

Minimum Dominating Set, in Trees

question: copy\&paste from MIS on trees?

Let $T(v)$ denote the subtree rooted at $v \in V$, and let $S(v)$ be any minimum weight dominating set for $T(v)$.
building $S(r)$:

- $r \in S$:
- could take any $S(a) \cup S(b) \cup\{r\}$
- better: if we cover r then a, b do not need to be covered - only need a "mostly" dominating set on $T(a)$ and $T(b)$
- $r \notin S:$
- could try to take any $S(a) \cup S(b)$, but how to dominate r ?
- need a "extra" dominating set from one of $T(a)$ and $T(b)$

Minimum Dominating Set, in Trees

question: copy\&paste from MIS on trees?

Let $T(v)$ denote the subtree rooted at $v \in V$, and let $S(v)$ be any minimum weight dominating set for $T(v)$.
building $S(r)$:

- $r \in S$:
- could take any $S(a) \cup S(b) \cup\{r\}$
- better: if we cover r then a, b do not need to be covered - only need a "mostly" dominating set on $T(a)$ and $T(b)$
- $r \notin S:$
- could try to take any $S(a) \cup S(b)$, but how to dominate r ?
- need a "extra" dominating set from one of $T(a)$ and $T(b)$

question:

Minimum Dominating Set, in Trees

question: copy\&paste from MIS on trees?

Let $T(v)$ denote the subtree rooted at $v \in V$, and let $S(v)$ be any minimum weight dominating set for $T(v)$.
building $S(r)$:

- $r \in S$:
- could take any $S(a) \cup S(b) \cup\{r\}$
- better: if we cover r then a, b do not need to be covered - only need a "mostly" dominating set on $T(a)$ and $T(b)$
- $r \notin S:$
- could try to take any $S(a) \cup S(b)$, but how to dominate r ?
- need a "extra" dominating set from one of $T(a)$ and $T(b)$
question: how to parameterize these subproblems?

Minimum Dominating Set, in Trees (II)

Minimum Dominating Set, in Trees (II)

Definition

Minimum Dominating Set, in Trees (II)

Definition

Let $T=(V, E)$ be a rooted tree with root r.

Minimum Dominating Set, in Trees (II)

Definition

Let $T=(V, E)$ be a rooted tree with root r.

- A type-0 dominating set for T is an actual dominating set.

Minimum Dominating Set, in Trees (II)

Definition

Let $T=(V, E)$ be a rooted tree with root r.

- A type-0 dominating set for T is an actual dominating set.
- A type- $\mathbf{1}$ dominating set for T is an actual dominating set S where $r \in S$.

Minimum Dominating Set, in Trees (II)

Definition

Let $T=(V, E)$ be a rooted tree with root r.

- A type-0 dominating set for T is an actual dominating set.
- A type-1 dominating set for T is an actual dominating set S where $r \in S$.
- A type-2 dominating set for T

Minimum Dominating Set, in Trees (II)

Definition

Let $T=(V, E)$ be a rooted tree with root r.

- A type-0 dominating set for T is an actual dominating set.
- A type-1 dominating set for T is an actual dominating set S where $r \in S$.

■ A type-2 dominating set for T is a subset $S \subseteq V$

Minimum Dominating Set, in Trees (II)

Definition

Let $T=(V, E)$ be a rooted tree with root r.

- A type-0 dominating set for T is an actual dominating set.

■ A type-1 dominating set for T is an actual dominating set S where $r \in S$.

- A type-2 dominating set for T is a subset $S \subseteq V$ such that for all $v \in V$

Minimum Dominating Set, in Trees (II)

Definition

Let $T=(V, E)$ be a rooted tree with root r.

- A type-0 dominating set for T is an actual dominating set.
- A type-1 dominating set for T is an actual dominating set S where $r \in S$.

■ A type-2 dominating set for T is a subset $S \subseteq V$ such that for all $v \in V$ either $v \in S$ or v has a neighbor $u \in N(v)$ with $u \in S$.

Minimum Dominating Set, in Trees (II)

Definition

Let $T=(V, E)$ be a rooted tree with root r.

- A type-0 dominating set for T is an actual dominating set.
- A type-1 dominating set for T is an actual dominating set S where $r \in S$.
- A type-2 dominating set for T is a subset $S \subseteq V$ such that for all $v \in V \backslash\{r\}$, either $v \in S$ or v has a neighbor $u \in N(v)$ with $u \in S$.

Minimum Dominating Set, in Trees (II)

Definition

Let $T=(V, E)$ be a rooted tree with root r.

- A type-0 dominating set for T is an actual dominating set.
- A type-1 dominating set for T is an actual dominating set S where $r \in S$.

■ A type-2 dominating set for T is a subset $S \subseteq V$ such that for all $v \in V \backslash\{r\}$, either $v \in S$ or v has a neighbor $u \in N(v)$ with $u \in S$.
For $b \in\{0,1,2\}$,

Minimum Dominating Set, in Trees (II)

Definition

Let $T=(V, E)$ be a rooted tree with root r.

- A type-0 dominating set for T is an actual dominating set.
- A type-1 dominating set for T is an actual dominating set S where $r \in S$.

■ A type-2 dominating set for T is a subset $S \subseteq V$ such that for all $v \in V \backslash\{r\}$, either $v \in S$ or v has a neighbor $u \in N(v)$ with $u \in S$.
For $b \in\{0,1,2\}$, define OPT_{b} to be the minimum weight dominating set for T of b-type.

Minimum Dominating Set, in Trees (II)

Definition

Let $T=(V, E)$ be a rooted tree with root r.

- A type-0 dominating set for T is an actual dominating set.
- A type-1 dominating set for T is an actual dominating set S where $r \in S$.

■ A type-2 dominating set for T is a subset $S \subseteq V$ such that for all $v \in V \backslash\{r\}$, either $v \in S$ or v has a neighbor $u \in N(v)$ with $u \in S$.
For $b \in\{0,1,2\}$, define OPT_{b} to be the minimum weight dominating set for T of b-type. Define $\mathrm{OPT}_{b}(v)$ to be the OPT_{b} for the subtree of T rooted at v.

Minimum Dominating Set, in Trees (II)

Definition

Let $T=(V, E)$ be a rooted tree with root r.
■ A type-0 dominating set for T is an actual dominating set.

- A type-1 dominating set for T is an actual dominating set S where $r \in S$.

■ A type-2 dominating set for T is a subset $S \subseteq V$ such that for all $v \in V \backslash\{r\}$, either $v \in S$ or v has a neighbor $u \in N(v)$ with $u \in S$.
For $b \in\{0,1,2\}$, define OPT_{b} to be the minimum weight dominating set for T of b-type. Define $\mathrm{OPT}_{b}(v)$ to be the OPT_{b} for the subtree of T rooted at v.

base case:

Minimum Dominating Set, in Trees (II)

Definition

Let $T=(V, E)$ be a rooted tree with root r.
■ A type-0 dominating set for T is an actual dominating set.

- A type-1 dominating set for T is an actual dominating set S where $r \in S$.

■ A type-2 dominating set for T is a subset $S \subseteq V$ such that for all $v \in V \backslash\{r\}$, either $v \in S$ or v has a neighbor $u \in N(v)$ with $u \in S$.
For $b \in\{0,1,2\}$, define OPT_{b} to be the minimum weight dominating set for T of b-type. Define $\mathrm{OPT}_{b}(v)$ to be the OPT_{b} for the subtree of T rooted at v.

base case:

■ T has no vertices

Minimum Dominating Set, in Trees (II)

Definition

Let $T=(V, E)$ be a rooted tree with root r.

- A type-0 dominating set for T is an actual dominating set.
- A type-1 dominating set for T is an actual dominating set S where $r \in S$.

■ A type-2 dominating set for T is a subset $S \subseteq V$ such that for all $v \in V \backslash\{r\}$, either $v \in S$ or v has a neighbor $u \in N(v)$ with $u \in S$.
For $b \in\{0,1,2\}$, define OPT_{b} to be the minimum weight dominating set for T of b-type. Define $\mathrm{OPT}_{b}(v)$ to be the OPT_{b} for the subtree of T rooted at v.

base case:

- T has no vertices $\Longrightarrow \operatorname{OPT}_{b}(T)=0$

Minimum Dominating Set, in Trees (II)

Definition

Let $T=(V, E)$ be a rooted tree with root r.

- A type-0 dominating set for T is an actual dominating set.
- A type-1 dominating set for T is an actual dominating set S where $r \in S$.

■ A type-2 dominating set for T is a subset $S \subseteq V$ such that for all $v \in V \backslash\{r\}$, either $v \in S$ or v has a neighbor $u \in N(v)$ with $u \in S$.
For $b \in\{0,1,2\}$, define OPT_{b} to be the minimum weight dominating set for T of b-type. Define $\mathrm{OPT}_{b}(v)$ to be the OPT_{b} for the subtree of T rooted at v.

base case:

■ T has no vertices $\Longrightarrow \mathrm{OPT}_{b}(T)=0$

- extends gracefully by the following conventions:

Minimum Dominating Set, in Trees (II)

Definition

Let $T=(V, E)$ be a rooted tree with root r.

- A type-0 dominating set for T is an actual dominating set.
- A type-1 dominating set for T is an actual dominating set S where $r \in S$.

■ A type-2 dominating set for T is a subset $S \subseteq V$ such that for all $v \in V \backslash\{r\}$, either $v \in S$ or v has a neighbor $u \in N(v)$ with $u \in S$.
For $b \in\{0,1,2\}$, define OPT_{b} to be the minimum weight dominating set for T of b-type. Define $\mathrm{OPT}_{b}(v)$ to be the OPT_{b} for the subtree of T rooted at v.

base case:

■ T has no vertices $\Longrightarrow \mathrm{OPT}_{b}(T)=0$
■ extends gracefully by the following conventions:

- for $S=\emptyset$.

Minimum Dominating Set, in Trees (II)

Definition

Let $T=(V, E)$ be a rooted tree with root r.

- A type-0 dominating set for T is an actual dominating set.
- A type-1 dominating set for T is an actual dominating set S where $r \in S$.

■ A type-2 dominating set for T is a subset $S \subseteq V$ such that for all $v \in V \backslash\{r\}$, either $v \in S$ or v has a neighbor $u \in N(v)$ with $u \in S$.
For $b \in\{0,1,2\}$, define OPT_{b} to be the minimum weight dominating set for T of b-type. Define $\mathrm{OPT}_{b}(v)$ to be the OPT_{b} for the subtree of T rooted at v.

base case:

■ T has no vertices $\Longrightarrow \mathrm{OPT}_{b}(T)=0$
■ extends gracefully by the following conventions:

- for $S=\emptyset, \sum_{v \in S} f(v)=0$

Minimum Dominating Set, in Trees (II)

Definition

Let $T=(V, E)$ be a rooted tree with root r.

- A type-0 dominating set for T is an actual dominating set.
- A type-1 dominating set for T is an actual dominating set S where $r \in S$.

■ A type-2 dominating set for T is a subset $S \subseteq V$ such that for all $v \in V \backslash\{r\}$, either $v \in S$ or v has a neighbor $u \in N(v)$ with $u \in S$.
For $b \in\{0,1,2\}$, define OPT_{b} to be the minimum weight dominating set for T of b-type. Define $\mathrm{OPT}_{b}(v)$ to be the OPT_{b} for the subtree of T rooted at v.

base case:

■ T has no vertices $\Longrightarrow \mathrm{OPT}_{b}(T)=0$
■ extends gracefully by the following conventions:

- for $S=\emptyset, \sum_{v \in S} f(v)=0$
- for $S=\emptyset$,

Minimum Dominating Set, in Trees (II)

Definition

Let $T=(V, E)$ be a rooted tree with root r.

- A type-0 dominating set for T is an actual dominating set.
- A type-1 dominating set for T is an actual dominating set S where $r \in S$.

■ A type-2 dominating set for T is a subset $S \subseteq V$ such that for all $v \in V \backslash\{r\}$, either $v \in S$ or v has a neighbor $u \in N(v)$ with $u \in S$.
For $b \in\{0,1,2\}$, define OPT_{b} to be the minimum weight dominating set for T of b-type. Define $\mathrm{OPT}_{b}(v)$ to be the OPT_{b} for the subtree of T rooted at v.

base case:

■ T has no vertices $\Longrightarrow \mathrm{OPT}_{b}(T)=0$
■ extends gracefully by the following conventions:

- for $S=\emptyset, \sum_{v \in S} f(v)=0$
- for $S=\emptyset, \min _{v \in S} f(v)=\infty$

Minimum Dominating Set, in Trees (III)

Minimum Dominating Set, in Trees (III)

T rooted tree with root r.

Minimum Dominating Set, in Trees (III)

T rooted tree with root $r . T(v)$ is subtree rooted at v.

Minimum Dominating Set, in Trees (III)

T rooted tree with root $r . T(v)$ is subtree rooted at v. - type-0:

Minimum Dominating Set, in Trees (III)

T rooted tree with root $r . T(v)$ is subtree rooted at v.

- type-0: regular dominating set

Minimum Dominating Set, in Trees (III)

T rooted tree with root r. $T(v)$ is subtree rooted at v.

- type-0: regular dominating set
- type-1:

Minimum Dominating Set, in Trees (III)

T rooted tree with root r. $T(v)$ is subtree rooted at v.
■ type-0: regular dominating set

- type-1: dominating set which includes root r

Minimum Dominating Set, in Trees (III)

T rooted tree with root r. $T(v)$ is subtree rooted at v.
■ type-0: regular dominating set

- type-1: dominating set which includes root r
- type-2:

Minimum Dominating Set, in Trees (III)

T rooted tree with root $r . T(v)$ is subtree rooted at v.
■ type-0: regular dominating set

- type-1: dominating set which includes root r
- type-2: dominating set which is relaxed at root r

Minimum Dominating Set, in Trees (III)

T rooted tree with root $r . T(v)$ is subtree rooted at v.

- type-0: regular dominating set

■ type-1: dominating set which includes root r

- type-2: dominating set which is relaxed at root r

Lemma

Minimum Dominating Set, in Trees (III)

T rooted tree with root $r . T(v)$ is subtree rooted at v.

- type-0: regular dominating set

■ type-1: dominating set which includes root r
■ type-2: dominating set which is relaxed at root r

Lemma

$$
\mathrm{OPT}_{0}(r)=\min
$$

Minimum Dominating Set, in Trees (III)

T rooted tree with root $r . T(v)$ is subtree rooted at v.
■ type-0: regular dominating set
■ type-1: dominating set which includes root r

- type-2: dominating set which is relaxed at root r

Lemma

$$
\mathrm{OPT}_{0}(r)=\min \left\{\left(\sum_{v \in N(r)}\right.\right.
$$

Minimum Dominating Set, in Trees (III)

T rooted tree with root $r . T(v)$ is subtree rooted at v.
■ type-0: regular dominating set
■ type-1: dominating set which includes root r

- type-2: dominating set which is relaxed at root r

Lemma

$$
\mathrm{OPT}_{0}(r)=\min \left\{\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)\right.
$$

Minimum Dominating Set, in Trees (III)

T rooted tree with root $r . T(v)$ is subtree rooted at v.
■ type-0: regular dominating set
■ type-1: dominating set which includes root r
■ type-2: dominating set which is relaxed at root r

Lemma

$$
\mathrm{OPT}_{0}(r)=\min \left\{\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r)\right.
$$

Minimum Dominating Set, in Trees (III)

T rooted tree with root $r . T(v)$ is subtree rooted at v.

- type-0: regular dominating set

■ type-1: dominating set which includes root r
■ type-2: dominating set which is relaxed at root r

Lemma

$$
\mathrm{OPT}_{0}(r)=\min \left\{\begin{array}{l}
\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r) \\
\min _{v \in N(r)}
\end{array}\right.
$$

Minimum Dominating Set, in Trees (III)

T rooted tree with root $r . T(v)$ is subtree rooted at v.

- type-0: regular dominating set

■ type-1: dominating set which includes root r
■ type-2: dominating set which is relaxed at root r

Lemma

$$
\mathrm{OPT}_{0}(r)=\min \left\{\begin{array}{l}
\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r) \\
\min _{v \in N(r)}\left(\mathrm{OPT}_{1}(v)\right.
\end{array}\right.
$$

Minimum Dominating Set, in Trees (III)

T rooted tree with root $r . T(v)$ is subtree rooted at v.

- type-0: regular dominating set

■ type-1: dominating set which includes root r

- type-2: dominating set which is relaxed at root r

Lemma

$$
\mathrm{OPT}_{0}(r)=\min \left\{\begin{array}{l}
\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r) \\
\min _{v \in N(r)}\left(\mathrm{OPT}_{1}(v)+\sum_{u \in N(r) \backslash\{v\}}\right.
\end{array}\right.
$$

Minimum Dominating Set, in Trees (III)

T rooted tree with root $r . T(v)$ is subtree rooted at v.

- type-0: regular dominating set

■ type-1: dominating set which includes root r

- type-2: dominating set which is relaxed at root r

Lemma

$$
\mathrm{OPT}_{0}(r)=\min \left\{\begin{array}{l}
\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r) \\
\min _{v \in N(r)}\left(\mathrm{OPT}_{1}(v)+\sum_{u \in N(r) \backslash\{v\}} \mathrm{OPT}_{0}(u)\right)
\end{array}\right.
$$

Minimum Dominating Set, in Trees (III)

T rooted tree with root $r . T(v)$ is subtree rooted at v.

- type-0: regular dominating set
- type-1: dominating set which includes root r
- type-2: dominating set which is relaxed at root r

Lemma

$$
\mathrm{OPT}_{0}(r)=\min \left\{\begin{array}{l}
\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r) \\
\min _{v \in N(r)}\left(\mathrm{OPT}_{1}(v)+\sum_{u \in N(r) \backslash\{v\}} \mathrm{OPT}_{0}(u)\right)
\end{array}\right.
$$

Proof.

Minimum Dominating Set, in Trees (III)

T rooted tree with root $r . T(v)$ is subtree rooted at v.

- type-0: regular dominating set
- type-1: dominating set which includes root r
- type-2: dominating set which is relaxed at root r

Lemma

$$
\mathrm{OPT}_{0}(r)=\min \left\{\begin{array}{l}
\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r) \\
\min _{v \in N(r)}\left(\mathrm{OPT}_{1}(v)+\sum_{u \in N(r) \backslash\{v\}} \mathrm{OPT}_{0}(u)\right)
\end{array}\right.
$$

Proof.

- in optimum $S, r \in S$

Minimum Dominating Set, in Trees (III)

T rooted tree with root $r . T(v)$ is subtree rooted at v.

- type-0: regular dominating set
- type-1: dominating set which includes root r
- type-2: dominating set which is relaxed at root r

Lemma

$$
\mathrm{OPT}_{0}(r)=\min \left\{\begin{array}{l}
\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r) \\
\min _{v \in N(r)}\left(\mathrm{OPT}_{1}(v)+\sum_{u \in N(r) \backslash\{v\}} \mathrm{OPT}_{0}(u)\right)
\end{array}\right.
$$

Proof.

- in optimum $S, r \in S$
- in optimum $S, r \notin S$

Minimum Dominating Set, in Trees (III)

T rooted tree with root $r . T(v)$ is subtree rooted at v.

- type-0: regular dominating set
- type-1: dominating set which includes root r
- type-2: dominating set which is relaxed at root r

Lemma

$$
\mathrm{OPT}_{0}(r)=\min \left\{\begin{array}{l}
\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r) \\
\min _{v \in N(r)}\left(\mathrm{OPT}_{1}(v)+\sum_{u \in N(r) \backslash\{v\}} \mathrm{OPT}_{0}(u)\right)
\end{array}\right.
$$

Proof.

- in optimum $S, r \in S$

■ in optimum $S, r \notin S$ and r dominated by child $v \in S$

Minimum Dominating Set, in Trees (IV)

Minimum Dominating Set, in Trees (IV)

T rooted tree with root $r . T(v)$ is subtree rooted at v.
■ type-0: regular dominating set

- type-1: dominating set which includes root r
- type-2: dominating set which is relaxed at root r

Minimum Dominating Set, in Trees (IV)

T rooted tree with root $r . T(v)$ is subtree rooted at v.

- type-0: regular dominating set

■ type-1: dominating set which includes root r

- type-2: dominating set which is relaxed at root r

Lemma

Minimum Dominating Set, in Trees (IV)

T rooted tree with root $r . T(v)$ is subtree rooted at v.
■ type-0: regular dominating set

- type-1: dominating set which includes root r
- type-2: dominating set which is relaxed at root r

Lemma

$$
\mathrm{OPT}_{1}(r)=
$$

Minimum Dominating Set, in Trees (IV)

T rooted tree with root $r . T(v)$ is subtree rooted at v.

- type-0: regular dominating set

■ type-1: dominating set which includes root r

- type-2: dominating set which is relaxed at root r

Lemma

$$
\mathrm{OPT}_{1}(r)=\left(\sum_{v \in N(r)}\right.
$$

Minimum Dominating Set, in Trees (IV)

T rooted tree with root $r . T(v)$ is subtree rooted at v.

- type-0: regular dominating set

■ type-1: dominating set which includes root r

- type-2: dominating set which is relaxed at root r

Lemma

$$
\mathrm{OPT}_{1}(r)=\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)
$$

Minimum Dominating Set, in Trees (IV)

T rooted tree with root $r . T(v)$ is subtree rooted at v.
■ type-0: regular dominating set
■ type-1: dominating set which includes root r

- type-2: dominating set which is relaxed at root r

Lemma

$$
\mathrm{OPT}_{1}(r)=\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r)
$$

Minimum Dominating Set, in Trees (IV)

T rooted tree with root $r . T(v)$ is subtree rooted at v.

- type-0: regular dominating set
- type-1: dominating set which includes root r

■ type-2: dominating set which is relaxed at root r

Lemma

$$
\mathrm{OPT}_{1}(r)=\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r)
$$

Proof.

In optimum $S, r \in S$.

Minimum Dominating Set, in Trees (V)

Minimum Dominating Set, in Trees (V)

T rooted tree with root r. $T(v)$ is subtree rooted at v.
■ type-0: regular dominating set

- type-1: dominating set which includes root r
- type-2: dominating set which is relaxed at root r

Minimum Dominating Set, in Trees (V)

T rooted tree with root $r . T(v)$ is subtree rooted at v.

- type-0: regular dominating set

■ type-1: dominating set which includes root r

- type-2: dominating set which is relaxed at root r

Lemma

Minimum Dominating Set, in Trees (V)

T rooted tree with root $r . T(v)$ is subtree rooted at v.

- type-0: regular dominating set
- type-1: dominating set which includes root r
- type-2: dominating set which is relaxed at root r

Lemma

$$
\mathrm{OPT}_{2}(r)=\min
$$

Minimum Dominating Set, in Trees (V)

T rooted tree with root $r . T(v)$ is subtree rooted at v.

- type-0: regular dominating set
- type-1: dominating set which includes root r
- type-2: dominating set which is relaxed at root r

Lemma

$$
\mathrm{OPT}_{2}(r)=\min \left\{\left(\sum_{v \in N(r)}\right.\right.
$$

Minimum Dominating Set, in Trees (V)

T rooted tree with root $r . T(v)$ is subtree rooted at v.

- type-0: regular dominating set
- type-1: dominating set which includes root r
- type-2: dominating set which is relaxed at root r

Lemma

$$
\mathrm{OPT}_{2}(r)=\min \left\{\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)\right.
$$

Minimum Dominating Set, in Trees (V)

T rooted tree with root $r . T(v)$ is subtree rooted at v.

- type-0: regular dominating set
- type-1: dominating set which includes root r
- type-2: dominating set which is relaxed at root r

Lemma

$$
\mathrm{OPT}_{2}(r)=\min \left\{\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r)\right.
$$

Minimum Dominating Set, in Trees (V)

T rooted tree with root $r . T(v)$ is subtree rooted at v.

- type-0: regular dominating set
- type-1: dominating set which includes root r
- type-2: dominating set which is relaxed at root r

Lemma

$$
\mathrm{OPT}_{2}(r)=\min \left\{\begin{array}{l}
\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r) \\
\sum_{v \in N(r)}
\end{array}\right.
$$

Minimum Dominating Set, in Trees (V)

T rooted tree with root $r . T(v)$ is subtree rooted at v.

- type-0: regular dominating set
- type-1: dominating set which includes root r
- type-2: dominating set which is relaxed at root r

Lemma

$$
\mathrm{OPT}_{2}(r)=\min \left\{\begin{array}{l}
\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r) \\
\sum_{v \in N(r)} \mathrm{OPT}_{0}(v)
\end{array}\right.
$$

Minimum Dominating Set, in Trees (V)

T rooted tree with root $r . T(v)$ is subtree rooted at v.

- type-0: regular dominating set
- type-1: dominating set which includes root r

■ type-2: dominating set which is relaxed at root r

Lemma

$$
\mathrm{OPT}_{2}(r)=\min \left\{\begin{array}{l}
\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r) \\
\sum_{v \in N(r)} \mathrm{OPT}_{0}(v)
\end{array}\right.
$$

Proof.

Minimum Dominating Set, in Trees (V)

T rooted tree with root $r . T(v)$ is subtree rooted at v.

- type-0: regular dominating set
- type-1: dominating set which includes root r
- type-2: dominating set which is relaxed at root r

Lemma

$$
\mathrm{OPT}_{2}(r)=\min \left\{\begin{array}{l}
\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r) \\
\sum_{v \in N(r)} \mathrm{OPT}_{0}(v)
\end{array}\right.
$$

Proof.

■ in optimum $S, r \in S$

Minimum Dominating Set, in Trees (V)

T rooted tree with root $r . T(v)$ is subtree rooted at v.

- type-0: regular dominating set
- type-1: dominating set which includes root r
- type-2: dominating set which is relaxed at root r

Lemma

$$
\mathrm{OPT}_{2}(r)=\min \left\{\begin{array}{l}
\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r) \\
\sum_{v \in N(r)} \mathrm{OPT}_{0}(v)
\end{array}\right.
$$

Proof.

- in optimum $S, r \in S$
- in optimum $S, r \notin S$

Minimum Dominating Set, in Trees (V)

T rooted tree with root $r . T(v)$ is subtree rooted at v.

- type-0: regular dominating set
- type-1: dominating set which includes root r
- type-2: dominating set which is relaxed at root r

Lemma

$$
\mathrm{OPT}_{2}(r)=\min \left\{\begin{array}{l}
\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r) \\
\sum_{v \in N(r)} \mathrm{OPT}_{0}(v)
\end{array}\right.
$$

Proof.

■ in optimum $S, r \in S$
■ in optimum $S, r \notin S$ and r does not need to be dominated by children

Minimum Dominating Set, in Trees (VI)

Minimum Dominating Set, in Trees (VI)

T rooted tree with root r.

Minimum Dominating Set, in Trees (VI)

T rooted tree with root r. subproblems:

Minimum Dominating Set, in Trees (VI)

T rooted tree with root r. subproblems:

- type-0: regular dominating set
- type-1: dominating set which includes root r

■ type-2: dominating set which is relaxed at root r

Minimum Dominating Set, in Trees (VI)

T rooted tree with root r. subproblems:

■ type-0: regular dominating set

- type-1: dominating set which includes root r

■ type-2: dominating set which is relaxed at root r

recursion:

Minimum Dominating Set, in Trees (VI)

T rooted tree with root r. subproblems:

■ type-0: regular dominating set

- type-1: dominating set which includes root r

■ type-2: dominating set which is relaxed at root r recursion:

- $\mathrm{OPT}_{0}(r)=\mathrm{min}$

Minimum Dominating Set, in Trees (VI)

T rooted tree with root r. subproblems:

- type-0: regular dominating set
- type-1: dominating set which includes root r

■ type-2: dominating set which is relaxed at root r

recursion:

$\square \mathrm{OPT}_{0}(r)=\mathrm{min}\left\{\left(\sum_{v \in N(r)}\right.\right.$

Minimum Dominating Set, in Trees (VI)

T rooted tree with root r.

subproblems:

- type-0: regular dominating set
- type-1: dominating set which includes root r

■ type-2: dominating set which is relaxed at root r

recursion:

$\square \mathrm{OPT}_{0}(r)=\min \left\{\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)\right.$

Minimum Dominating Set, in Trees (VI)

T rooted tree with root r.

subproblems:

- type-0: regular dominating set
- type-1: dominating set which includes root r

■ type-2: dominating set which is relaxed at root r

recursion:

$\square \mathrm{OPT}_{0}(r)=$ min $\left\{\begin{array}{l}\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r) \\ \min _{v \in N(r)}\end{array}\right.$

Minimum Dominating Set, in Trees (VI)

T rooted tree with root r.

subproblems:

- type-0: regular dominating set
- type-1: dominating set which includes root r

■ type-2: dominating set which is relaxed at root r

recursion:

$\square \mathrm{OPT}_{0}(r)=$ min $\left\{\begin{array}{l}\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r) \\ \min _{v \in N(r)}\left(\mathrm{OPT}_{1}(v)\right.\end{array}\right.$

Minimum Dominating Set, in Trees (VI)

T rooted tree with root r.

subproblems:

- type-0: regular dominating set
- type-1: dominating set which includes root r

■ type-2: dominating set which is relaxed at root r

recursion:

$$
\square \mathrm{OPT}_{0}(r)=\min \left\{\begin{array}{l}
\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r) \\
\min _{v \in N(r)}\left(\mathrm{OPT}_{1}(v)+\sum_{u \in N(r) \backslash\{v\}} \mathrm{OPT}_{0}(u)\right)
\end{array}\right.
$$

Minimum Dominating Set, in Trees (VI)

T rooted tree with root r.

subproblems:

- type-0: regular dominating set
- type-1: dominating set which includes root r

■ type-2: dominating set which is relaxed at root r

recursion:

$\square \mathrm{OPT}_{0}(r)=\min \left\{\begin{array}{l}\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r) \\ \min _{v \in N(r)}\left(\mathrm{OPT}_{1}(v)+\sum_{u \in N(r) \backslash\{v\}} \mathrm{OPT}_{0}(u)\right)\end{array}\right.$
$\square \mathrm{OPT}_{1}(r)=\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r)$

Minimum Dominating Set, in Trees (VI)

T rooted tree with root r.

subproblems:

- type-0: regular dominating set
- type-1: dominating set which includes root r

■ type-2: dominating set which is relaxed at root r

recursion:

$\square \mathrm{OPT}_{0}(r)=\min \left\{\begin{array}{l}\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r) \\ \min _{v \in N(r)}\left(\mathrm{OPT}_{1}(v)+\sum_{u \in N(r) \backslash\{v\}} \mathrm{OPT}_{0}(u)\right)\end{array}\right.$

- $\mathrm{OPT}_{1}(r)=\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r)$

■ $\mathrm{OPT}_{2}(r)=\mathrm{min}$

Minimum Dominating Set, in Trees (VI)

T rooted tree with root r.

subproblems:

- type-0: regular dominating set
- type-1: dominating set which includes root r

■ type-2: dominating set which is relaxed at root r

recursion:

$\square \mathrm{OPT}_{0}(r)=\min \left\{\begin{array}{l}\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r) \\ \min _{v \in N(r)}\left(\mathrm{OPT}_{1}(v)+\sum_{u \in N(r) \backslash\{v\}} \mathrm{OPT}_{0}(u)\right)\end{array}\right.$
$\square \mathrm{OPT}_{1}(r)=\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r)$
$\square \mathrm{OPT}_{2}(r)=\min \left\{\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r)\right.$

Minimum Dominating Set, in Trees (VI)

T rooted tree with root r.

subproblems:

- type-0: regular dominating set
- type-1: dominating set which includes root r

■ type-2: dominating set which is relaxed at root r

recursion:

$\square \mathrm{OPT}_{0}(r)=\min \left\{\begin{array}{l}\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r) \\ \min _{v \in N(r)}\left(\mathrm{OPT}_{1}(v)+\sum_{u \in N(r) \backslash\{v\}} \mathrm{OPT}_{0}(u)\right)\end{array}\right.$

- $\mathrm{OPT}_{1}(r)=\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r)$
$\square \mathrm{OPT}_{2}(r)=\min \left\{\begin{array}{l}\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r) \\ \sum_{v \in N(r)} \mathrm{OPT}_{0}(v)\end{array}\right.$

Minimum Dominating Set, in Trees (VI)

T rooted tree with root r.

subproblems:

- type-0: regular dominating set
- type-1: dominating set which includes root r

■ type-2: dominating set which is relaxed at root r

recursion:

$\square \mathrm{OPT}_{0}(r)=\min \left\{\begin{array}{l}\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r) \\ \min _{v \in N(r)}\left(\mathrm{OPT}_{1}(v)+\sum_{u \in N(r) \backslash\{v\}} \mathrm{OPT}_{0}(u)\right)\end{array}\right.$

- $\mathrm{OPT}_{1}(r)=\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r)$
$\square \mathrm{OPT}_{2}(r)=\min \left\{\begin{array}{l}\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r) \\ \sum_{v \in N(r)} \mathrm{OPT}_{0}(v)\end{array}\right.$
$\mathrm{OPT}_{0}(r)$ is desired answer

Minimum Dominating Set, in Trees (VI)

T rooted tree with root r.

recursive algorithm:

subproblems:

■ type-0: regular dominating set

- type-1: dominating set which includes root r

■ type-2: dominating set which is relaxed at root r

recursion:

$\square \mathrm{OPT}_{0}(r)=\min \left\{\begin{array}{l}\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r) \\ \min _{v \in N(r)}\left(\mathrm{OPT}_{1}(v)+\sum_{u \in N(r) \backslash\{v\}} \mathrm{OPT}_{0}(u)\right)\end{array}\right.$

- $\mathrm{OPT}_{1}(r)=\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r)$
$\square \mathrm{OPT}_{2}(r)=\min \left\{\begin{array}{l}\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r) \\ \sum_{v \in N(r)} \mathrm{OPT}_{0}(v)\end{array}\right.$
$\mathrm{OPT}_{0}(r)$ is desired answer

Minimum Dominating Set, in Trees (VI)

T rooted tree with root r.

subproblems:

- type-0: regular dominating set
- type-1: dominating set which includes root r

■ type-2: dominating set which is relaxed at root r

recursion:

$\square \mathrm{OPT}_{0}(r)=\min \left\{\begin{array}{l}\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r) \\ \min _{v \in N(r)}\left(\mathrm{OPT}_{1}(v)+\sum_{u \in N(r) \backslash\{v\}} \mathrm{OPT}_{0}(u)\right)\end{array}\right.$
$\square \mathrm{OPT}_{1}(r)=\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r)$
$\square \mathrm{OPT}_{2}(r)=\min \left\{\begin{array}{l}\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r) \\ \sum_{v \in N(r)} \mathrm{OPT}_{0}(v)\end{array}\right.$
$\mathrm{OPT}_{0}(r)$ is desired answer

recursive algorithm:

■ $3 \cdot n$ subproblems

Minimum Dominating Set, in Trees (VI)

T rooted tree with root r.

subproblems:

■ type-0: regular dominating set

- type-1: dominating set which includes root r

■ type-2: dominating set which is relaxed at root r

recursion:

$\square \mathrm{OPT}_{0}(r)=\min \left\{\begin{array}{l}\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r) \\ \min _{v \in N(r)}\left(\mathrm{OPT}_{1}(v)+\sum_{u \in N(r) \backslash\{v\}} \mathrm{OPT}_{0}(u)\right)\end{array}\right.$
$\square \mathrm{OPT}_{1}(r)=\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r)$
$\square \mathrm{OPT}_{2}(r)=\min \left\{\begin{array}{l}\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r) \\ \sum_{v \in N(r)} \mathrm{OPT}_{0}(v)\end{array}\right.$
$\mathrm{OPT}_{0}(r)$ is desired answer

recursive algorithm:

■ $3 \cdot n$ subproblems
■ can implicitly memoize

Minimum Dominating Set, in Trees (VI)

T rooted tree with root r.

subproblems:

■ type-0: regular dominating set

- type-1: dominating set which includes root r

■ type-2: dominating set which is relaxed at root r

recursion:

$\square \mathrm{OPT}_{0}(r)=$ min $\left\{\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r)\right.$
$\mathrm{OPT}_{0}(r)=\min \left\{\begin{array}{l}\min _{v \in N(r)}\left(\mathrm{OPT}_{1}(v)+\sum_{u \in N(r) \backslash\{v\}} \mathrm{OPT}_{0}(u)\right)\end{array}\right.$
$\square \mathrm{OPT}_{1}(r)=\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r)$
$\square \mathrm{OPT}_{2}(r)=\min \left\{\begin{array}{l}\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r) \\ \sum_{v \in N(r)} \mathrm{OPT}_{0}(v)\end{array}\right.$
$\mathrm{OPT}_{0}(r)$ is desired answer

recursive algorithm:

■ $3 \cdot n$ subproblems
■ can implicitly memoize
■ naively $O(n)$ work per node,

Minimum Dominating Set, in Trees (VI)

T rooted tree with root r.

subproblems:

■ type-0: regular dominating set

- type-1: dominating set which includes root r

■ type-2: dominating set which is relaxed at root r

recursion:

$\square \mathrm{OPT}_{0}(r)=\min \left\{\begin{array}{l}\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r) \\ \min _{v \in N(r)}\left(\mathrm{OPT}_{1}(v)+\sum_{u \in N(r) \backslash\{v\}} \mathrm{OPT}_{0}(u)\right)\end{array}\right.$

- $\mathrm{OPT}_{1}(r)=\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r)$
$\square \mathrm{OPT}_{2}(r)=\min \left\{\begin{array}{l}\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r) \\ \sum_{v \in N(r)} \mathrm{OPT}_{0}(v)\end{array}\right.$
$\mathrm{OPT}_{0}(r)$ is desired answer

recursive algorithm:

■ $3 \cdot n$ subproblems

- can implicitly memoize
- naively $O(n)$ work per node, can optimize to $O(n)$ total work

Minimum Dominating Set, in Trees (VI)

T rooted tree with root r.

subproblems:

■ type-0: regular dominating set

- type-1: dominating set which includes root r

■ type-2: dominating set which is relaxed at root r

recursion:

$\square \mathrm{OPT}_{0}(r)=$ min $\left\{\begin{array}{l}\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r) \\ \min _{v \in N(r)}\left(\mathrm{OPT}_{1}(v)+\sum_{u \in N(r) \backslash\{v\}} \mathrm{OPT}_{0}(u)\right)\end{array}\right.$
$\square \mathrm{OPT}_{1}(r)=\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r)$
$\square \mathrm{OPT}_{2}(r)=\min \left\{\begin{array}{l}\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r) \\ \sum_{v \in N(r)} \mathrm{OPT}_{0}(v)\end{array}\right.$
$\mathrm{OPT}_{0}(r)$ is desired answer

recursive algorithm:

■ $3 \cdot n$ subproblems

- can implicitly memoize
- naively $O(n)$ work per node, can optimize to $O(n)$ total work as with MIS on trees

Minimum Dominating Set, in Trees (VI)

T rooted tree with root r.

subproblems:

■ type-0: regular dominating set

- type-1: dominating set which includes root r

■ type-2: dominating set which is relaxed at root r

recursion:

$\square \mathrm{OPT}_{0}(r)=\min \left\{\begin{array}{l}\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r) \\ \min _{v \in N(r)}\left(\mathrm{OPT}_{1}(v)+\sum_{u \in N(r) \backslash\{v\}} \mathrm{OPT}_{0}(u)\right)\end{array}\right.$
$\square \mathrm{OPT}_{1}(r)=\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r)$
$\square \mathrm{OPT}_{2}(r)=\min \left\{\begin{array}{l}\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r) \\ \sum_{v \in N(r)} \mathrm{OPT}_{0}(v)\end{array}\right.$
$\mathrm{OPT}_{0}(r)$ is desired answer

recursive algorithm:

■ $3 \cdot n$ subproblems

- can implicitly memoize
- naively $O(n)$ work per node, can optimize to $O(n)$ total work as with MIS on trees

iterative algorithm:

Minimum Dominating Set, in Trees (VI)

T rooted tree with root r.

subproblems:

■ type-0: regular dominating set

- type-1: dominating set which includes root r

■ type-2: dominating set which is relaxed at root r

recursion:

$\square \mathrm{OPT}_{0}(r)=\min \left\{\begin{array}{l}\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r) \\ \min _{v \in N(r)}\left(\mathrm{OPT}_{1}(v)+\sum_{u \in N(r) \backslash\{v\}} \mathrm{OPT}_{0}(u)\right)\end{array}\right.$

- $\mathrm{OPT}_{1}(r)=\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r)$
$\square \mathrm{OPT}_{2}(r)=$ min $\left\{\begin{array}{l}\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r) \\ \sum_{v \in N(r)} \mathrm{OPT}_{0}(v)\end{array}\right.$
$\mathrm{OPT}_{0}(r)$ is desired answer

recursive algorithm:

■ $3 \cdot n$ subproblems

- can implicitly memoize
- naively $O(n)$ work per node, can optimize to $O(n)$ total work as with MIS on trees

iterative algorithm:

■ follow post-order traversal of rooted tree to satisfy dependencies

Minimum Dominating Set, in Trees (VI)

T rooted tree with root r.

subproblems:

■ type-0: regular dominating set

- type-1: dominating set which includes root r

■ type-2: dominating set which is relaxed at root r

recursion:

$\square \mathrm{OPT}_{0}(r)=\min \left\{\begin{array}{l}\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r) \\ \min _{v \in N(r)}\left(\mathrm{OPT}_{1}(v)+\sum_{u \in N(r) \backslash\{v\}} \mathrm{OPT}_{0}(u)\right)\end{array}\right.$
$\square \mathrm{OPT}_{1}(r)=\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r)$
$\square \mathrm{OPT}_{2}(r)=\min \left\{\begin{array}{l}\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r) \\ \sum_{v \in N(r)} \mathrm{OPT}_{0}(v)\end{array}\right.$
$\mathrm{OPT}_{0}(r)$ is desired answer

recursive algorithm:

■ $3 \cdot n$ subproblems

- can implicitly memoize
- naively $O(n)$ work per node, can optimize to $O(n)$ total work as with MIS on trees

iterative algorithm:

■ follow post-order traversal of rooted tree to satisfy dependencies

■ optimize analysis to obtain $O(n)$ total work

Minimum Dominating Set, in Trees (VI)

T rooted tree with root r.

subproblems:

■ type-0: regular dominating set

- type-1: dominating set which includes root r

■ type-2: dominating set which is relaxed at root r

recursion:

$\square \mathrm{OPT}_{0}(r)=\min \left\{\begin{array}{l}\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r) \\ \min _{v \in N(r)}\left(\mathrm{OPT}_{1}(v)+\sum_{u \in N(r) \backslash\{v\}} \mathrm{OPT}_{0}(u)\right)\end{array}\right.$

- $\mathrm{OPT}_{1}(r)=\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r)$
$\square \mathrm{OPT}_{2}(r)=\min \left\{\begin{array}{l}\left(\sum_{v \in N(r)} \mathrm{OPT}_{2}(v)\right)+w(r) \\ \sum_{v \in N(r)} \mathrm{OPT}_{0}(v)\end{array}\right.$
$\mathrm{OPT}_{0}(r)$ is desired answer

recursive algorithm:

■ $3 \cdot n$ subproblems

- can implicitly memoize
- naively $O(n)$ work per node, can optimize to $O(n)$ total work as with MIS on trees

iterative algorithm:

■ follow post-order traversal of rooted tree to satisfy dependencies

- optimize analysis to obtain $O(n)$ total work details are an exercise

Dynamic Programming, in Trees (II)

Dynamic Programming, in Trees (II)

remarks:

Dynamic Programming, in Trees (II)

remarks:

- dynamic program is about finding the correct recursion,

Dynamic Programming, in Trees (II)

remarks:

- dynamic program is about finding the correct recursion, and the correct recursion is intimately tied to understand the structure and number of subproblems

Dynamic Programming, in Trees (II)

remarks:

- dynamic program is about finding the correct recursion, and the correct recursion is intimately tied to understand the structure and number of subproblems
- trees can be easily decomposed into a (small) number of subtrees,

Dynamic Programming, in Trees (II)

remarks:

■ dynamic program is about finding the correct recursion, and the correct recursion is intimately tied to understand the structure and number of subproblems
■ trees can be easily decomposed into a (small) number of subtrees, this allows a small number of resulting subproblems

Dynamic Programming, in Trees (II)

remarks:

- dynamic program is about finding the correct recursion, and the correct recursion is intimately tied to understand the structure and number of subproblems

■ trees can be easily decomposed into a (small) number of subtrees, this allows a small number of resulting subproblems

- dynamic programming on trees can often be generalized to graphs of small treewidth

Overview (II)

today:

- dynamic programming on trees
- maximum independent set
- dominating set

next lecture:

■ more dynamic programming

logistics:

■ pset1 out, due R5 - can submit in groups of ≤ 3

1 Title
2 Overview
3 Dynamic Programming
4 Trees
5 Maximum Independent Set
6 Maximum Independent Set (II)
7 Maximum Independent Set (III)
8 Maximum Independent Set (IV)
9 Maximum Independent Set (V)
10 Maximum Independent Set (VI)
11 Maximum Independent Set (VII)
12 Maximum Independent Set, in Trees
13 Maximum Independent Set, in Trees (II)
14 Maximum Independent Set, in Trees (III)

15 Maximum Independent Set, in Trees (III)
16 Maximum Independent Set, in Trees (IV)
17 Maximum Independent Set, in Trees (V)
18 Dynamic Programming, in Trees
19 Minimum Dominating Set
20 Minimum Dominating Set (II)
21 Minimum Dominating Set (III)
22 Minimum Dominating Set, in Trees
23 Minimum Dominating Set, in Trees (II)
24 Minimum Dominating Set, in Trees (III)
25 Minimum Dominating Set, in Trees (IV)
26 Minimum Dominating Set, in Trees (V)
27 Minimum Dominating Set, in Trees (VI)
28 Dynamic Programming, in Trees (II)
29 Overview (II)

