cs473: Algorithms
 Lecture 3: Dynamic Programming

Michael A. Forbes

University of Illinois at Urbana-Champaign

September 2, 2019

Today
logistics:
logistics:

- pset0 due R5,

logistics:

- pset0 due R5, (aka, tomorrow)

Today

logistics:

■ pset0 due R5, (aka, tomorrow) - submit individually!

Today

logistics:

- pset0 due R5, (aka, tomorrow) - submit individually!

■ pset1 out tomorrow,

Today

logistics:

- pset0 due R5, (aka, tomorrow) - submit individually!
- pset1 out tomorrow, due R5 (next week)

Today

logistics:

- pset0 due R5, (aka, tomorrow) - submit individually!
- pset1 out tomorrow, due R5 (next week)
- piazza signup

Today

logistics:

- pset0 due R5, (aka, tomorrow) - submit individually!
- pset1 out tomorrow, due R5 (next week)
- piazza signup

last lecture:

Today

logistics:

- pset0 due R5, (aka, tomorrow) — submit individually!
- pset1 out tomorrow, due R5 (next week)
- piazza signup

last lecture:

- divide and conqueror

Today

logistics:

- pset0 due R5, (aka, tomorrow) — submit individually!
- pset1 out tomorrow, due R5 (next week)
- piazza signup

last lecture:

- divide and conqueror
- triangle detection

Today

logistics:

- pset0 due R5, (aka, tomorrow) — submit individually!
- pset1 out tomorrow, due R5 (next week)
- piazza signup

last lecture:

- divide and conqueror
- triangle detection
- matrix multiplication

Today

logistics:

- pset0 due R5, (aka, tomorrow) - submit individually!
- pset1 out tomorrow, due R5 (next week)
- piazza signup

last lecture:

- divide and conqueror
- triangle detection
- matrix multiplication

today:

Today

logistics:

- pset0 due R5, (aka, tomorrow) - submit individually!
- pset1 out tomorrow, due R5 (next week)
- piazza signup

last lecture:

- divide and conqueror
- triangle detection
- matrix multiplication

today:

■ recursion

Today

logistics:

- pset0 due R5, (aka, tomorrow) - submit individually!
- pset1 out tomorrow, due R5 (next week)
- piazza signup

last lecture:

- divide and conqueror
- triangle detection
- matrix multiplication

today:

■ recursion

- dynamic programming

Recursion

Recursion

Definition

Recursion

Definition
A reduction transforms a given problem into a yet another problem,

Recursion

Definition

A reduction transforms a given problem into a yet another problem, possibly into several instances of another problem.

Recursion

Definition

A reduction transforms a given problem into a yet another problem, possibly into several instances of another problem.
Recursion is a reduction from one instance of a problem to instances of the same problem.

Recursion

Definition

A reduction transforms a given problem into a yet another problem, possibly into several instances of another problem.
Recursion is a reduction from one instance of a problem to instances of the same problem.

example

Recursion

Definition

A reduction transforms a given problem into a yet another problem, possibly into several instances of another problem.
Recursion is a reduction from one instance of a problem to instances of the same problem.

example (Karatsuba,

Recursion

Definition

A reduction transforms a given problem into a yet another problem, possibly into several instances of another problem.
Recursion is a reduction from one instance of a problem to instances of the same problem.

example (Karatsuba, Strassen, ...):

Recursion

Definition

A reduction transforms a given problem into a yet another problem, possibly into several instances of another problem.
Recursion is a reduction from one instance of a problem to instances of the same problem.

example (Karatsuba, Strassen, ...):

- reduce problem instances of size n to problem instances of size $n / 2$

Recursion

Definition

A reduction transforms a given problem into a yet another problem, possibly into several instances of another problem.
Recursion is a reduction from one instance of a problem to instances of the same problem.

example (Karatsuba, Strassen, ...):

- reduce problem instances of size n to problem instances of size $n / 2$

■ terminate recursion at $O(1)$-size problem instances,

Recursion

Definition

A reduction transforms a given problem into a yet another problem, possibly into several instances of another problem.
Recursion is a reduction from one instance of a problem to instances of the same problem.

example (Karatsuba, Strassen, ...):

- reduce problem instances of size n to problem instances of size $n / 2$

■ terminate recursion at O (1)-size problem instances, solve straightforwardly as a base case

Recursion (II)

Recursion (II)

recursive paradigms:

Recursion (II)

recursive paradigms:

- tail recursion:

Recursion (II)

recursive paradigms:

- tail recursion: expend effort

Recursion (II)

recursive paradigms:
■ tail recursion: expend effort to reduce given problem to single problem.

Recursion (II)

recursive paradigms:
■ tail recursion: expend effort to reduce given problem to single (smaller) problem.

Recursion (II)

recursive paradigms:
■ tail recursion: expend effort to reduce given problem to single (smaller) problem. Often can be reformulated as a non-recursive iterative algorithm.

Recursion (II)

recursive paradigms:
■ tail recursion: expend effort to reduce given problem to single (smaller) problem. Often can be reformulated as a non-recursive iterative algorithm.
\square divide and conquer:

Recursion (II)

recursive paradigms:
■ tail recursion: expend effort to reduce given problem to single (smaller) problem. Often can be reformulated as a non-recursive iterative algorithm.
■ divide and conquer: expend effort to reduce

Recursion (II)

recursive paradigms:
■ tail recursion: expend effort to reduce given problem to single (smaller) problem. Often can be reformulated as a non-recursive iterative algorithm.
■ divide and conquer: expend effort to reduce (divide)

Recursion (II)

recursive paradigms:
■ tail recursion: expend effort to reduce given problem to single (smaller) problem. Often can be reformulated as a non-recursive iterative algorithm.
■ divide and conquer: expend effort to reduce (divide) given problem to multiple, smaller problems,

Recursion (II)

recursive paradigms:
■ tail recursion: expend effort to reduce given problem to single (smaller) problem. Often can be reformulated as a non-recursive iterative algorithm.
■ divide and conquer: expend effort to reduce (divide) given problem to multiple, independent smaller problems,

Recursion (II)

recursive paradigms:
■ tail recursion: expend effort to reduce given problem to single (smaller) problem. Often can be reformulated as a non-recursive iterative algorithm.
■ divide and conquer: expend effort to reduce (divide) given problem to multiple, independent smaller problems, which are solved separately.

Recursion (II)

recursive paradigms:
■ tail recursion: expend effort to reduce given problem to single (smaller) problem. Often can be reformulated as a non-recursive iterative algorithm.
■ divide and conquer: expend effort to reduce (divide) given problem to multiple, independent smaller problems, which are solved separately. Solutions to smaller problems are combined to solve original problem

Recursion (II)

recursive paradigms:
■ tail recursion: expend effort to reduce given problem to single (smaller) problem. Often can be reformulated as a non-recursive iterative algorithm.
■ divide and conquer: expend effort to reduce (divide) given problem to multiple, independent smaller problems, which are solved separately. Solutions to smaller problems are combined to solve original problem (conquer).

Recursion (II)

recursive paradigms:
■ tail recursion: expend effort to reduce given problem to single (smaller) problem. Often can be reformulated as a non-recursive iterative algorithm.
■ divide and conquer: expend effort to reduce (divide) given problem to multiple, independent smaller problems, which are solved separately. Solutions to smaller problems are combined to solve original problem (conquer). For example:

Recursion (II)

recursive paradigms:
■ tail recursion: expend effort to reduce given problem to single (smaller) problem. Often can be reformulated as a non-recursive iterative algorithm.
■ divide and conquer: expend effort to reduce (divide) given problem to multiple, independent smaller problems, which are solved separately. Solutions to smaller problems are combined to solve original problem (conquer). For example: Karatsuba,

Recursion (II)

recursive paradigms:
■ tail recursion: expend effort to reduce given problem to single (smaller) problem. Often can be reformulated as a non-recursive iterative algorithm.
■ divide and conquer: expend effort to reduce (divide) given problem to multiple, independent smaller problems, which are solved separately. Solutions to smaller problems are combined to solve original problem (conquer). For example: Karatsuba, Strassen,

Recursion (II)

recursive paradigms:
■ tail recursion: expend effort to reduce given problem to single (smaller) problem. Often can be reformulated as a non-recursive iterative algorithm.
■ divide and conquer: expend effort to reduce (divide) given problem to multiple, independent smaller problems, which are solved separately. Solutions to smaller problems are combined to solve original problem (conquer). For example: Karatsuba, Strassen,

Recursion (II)

recursive paradigms:
■ tail recursion: expend effort to reduce given problem to single (smaller) problem. Often can be reformulated as a non-recursive iterative algorithm.
■ divide and conquer: expend effort to reduce (divide) given problem to multiple, independent smaller problems, which are solved separately. Solutions to smaller problems are combined to solve original problem (conquer). For example: Karatsuba, Strassen,

- dynamic programming:

Recursion (II)

recursive paradigms:
■ tail recursion: expend effort to reduce given problem to single (smaller) problem. Often can be reformulated as a non-recursive iterative algorithm.
■ divide and conquer: expend effort to reduce (divide) given problem to multiple, independent smaller problems, which are solved separately. Solutions to smaller problems are combined to solve original problem (conquer). For example: Karatsuba, Strassen,

■ dynamic programming: expend effort to reduce given problem to multiple smaller problems.

Recursion (II)

recursive paradigms:
■ tail recursion: expend effort to reduce given problem to single (smaller) problem. Often can be reformulated as a non-recursive iterative algorithm.
■ divide and conquer: expend effort to reduce (divide) given problem to multiple, independent smaller problems, which are solved separately. Solutions to smaller problems are combined to solve original problem (conquer). For example: Karatsuba, Strassen,

■ dynamic programming: expend effort to reduce given problem to multiple correlated smaller problems.

Recursion (II)

recursive paradigms:
■ tail recursion: expend effort to reduce given problem to single (smaller) problem. Often can be reformulated as a non-recursive iterative algorithm.
■ divide and conquer: expend effort to reduce (divide) given problem to multiple, independent smaller problems, which are solved separately. Solutions to smaller problems are combined to solve original problem (conquer). For example: Karatsuba, Strassen,

■ dynamic programming: expend effort to reduce given problem to multiple correlated smaller problems. Naive recursion often not efficient,

Recursion (II)

recursive paradigms:
■ tail recursion: expend effort to reduce given problem to single (smaller) problem. Often can be reformulated as a non-recursive iterative algorithm.
■ divide and conquer: expend effort to reduce (divide) given problem to multiple, independent smaller problems, which are solved separately. Solutions to smaller problems are combined to solve original problem (conquer). For example: Karatsuba, Strassen,

■ dynamic programming: expend effort to reduce given problem to multiple correlated smaller problems. Naive recursion often not efficient, use memoization to avoid wasteful recomputation.

Recursion (II)

Recursion (II)

foo (X)

Recursion (II)

$$
\begin{aligned}
& \text { foo }(X) \\
& \quad \text { if } X \text { is a base case }
\end{aligned}
$$

Recursion (II)

$$
\begin{aligned}
& \text { foo }(X) \\
& \text { if } X \text { is a base case } \\
& \text { solve it }
\end{aligned}
$$

Recursion (II)

```
foo(X)
    if X is a base case
        solve it
        return solution
```


Recursion (II)

```
foo(X)
    if X is a base case
        solve it
        return solution
    else
```


Recursion (II)

```
foo(X)
    if X is a base case
        solve it
        return solution
    else
    do stuff
```


Recursion (II)

```
foo(X)
    if X is a base case
        solve it
        return solution
    else
    do stuff
    foo( (X)
```


Recursion (II)

```
foo(X)
    if X is a base case
        solve it
        return solution
    else
    do stuff
    foo( (X )
    do stuff
```


Recursion (II)

```
foo(X)
    if }X\mathrm{ is a base case
        solve it
        return solution
    else
        do stuff
        foo( (X1)
        do stuff
        foo( (X2)
        foo( (X3)
```


Recursion (II)

```
foo(X)
    if X is a base case
        solve it
        return solution
    else
    do stuff
    foo(X ( )
    do stuff
    foo(X2)
    foo(X3)
    more stuff
```


Recursion (II)

```
foo(X)
    if X is a base case
        solve it
        return solution
    else
        do stuff
        foo(X ( )
        do stuff
        foo(X2)
        foo(X3)
        more stuff
        return solution for X
```


Recursion (II)

```
foo(X)
    if X is a base case
        solve it
        return solution
    else
        do stuff
        foo( (X)
        do stuff
        foo(X2)
        foo(X3)
        more stuff
        return solution for }
```


Recursion (II)

```
foo(X)
    if X is a base case
        solve it
        return solution
    else
        do stuff
        foo( (X)
        do stuff
        foo(X2)
        foo(X3)
        more stuff
        return solution for }
```

analysis:

Recursion (II)

```
foo(X)
    if }X\mathrm{ is a base case
        solve it
        return solution
    else
        do stuff
        foo( (X)
        do stuff
        foo( (X2)
        foo(X3)
        more stuff
        return solution for }
```

analysis:

- recursion tree:

Recursion (II)

```
foo(X)
    if }X\mathrm{ is a base case
            solve it
            return solution
    else
        do stuff
        foo( (X)
        do stuff
        foo(X2)
        foo(X3)
        more stuff
        return solution for }
```

analysis:

- recursion tree: each instance X spawns new children X_{1}, X_{2}, X_{3}

Recursion (II)

```
foo(X)
    if }X\mathrm{ is a base case
            solve it
            return solution
    else
        do stuff
        foo( (X)
        do stuff
        foo(X2)
        foo(X3)
        more stuff
        return solution for }
```

analysis:

- recursion tree: each instance X spawns new children X_{1}, X_{2}, X_{3}

■ dependency graph:

Recursion (II)

```
foo(X)
    if X is a base case
            solve it
            return solution
    else
        do stuff
        foo( (X)
        do stuff
        foo(X (X)
        foo(X3)
        more stuff
        return solution for }
```

analysis:

- recursion tree: each instance X spawns new children X_{1}, X_{2}, X_{3}

■ dependency graph: each instance X links to sub-problems X_{1}, X_{2}, X_{3}

Fibonacci Numbers

Fibonacci Numbers

Definition (Fibonacci 1200,

Fibonacci Numbers

Definition (Fibonacci 1200, Pingala -200)

Fibonacci Numbers

Definition (Fibonacci 1200, Pingala -200)
The Fibonacci sequence $F_{0}, F_{1}, F_{2}, F_{3}, \ldots \in \mathbb{N}$ is the sequence of numbers

Fibonacci Numbers

Definition (Fibonacci 1200, Pingala -200)
The Fibonacci sequence $F_{0}, F_{1}, F_{2}, F_{3}, \ldots \in \mathbb{N}$ is the sequence of numbers defined by

Fibonacci Numbers

Definition (Fibonacci 1200, Pingala -200)
The Fibonacci sequence $F_{0}, F_{1}, F_{2}, F_{3}, \ldots \in \mathbb{N}$ is the sequence of numbers defined by - $F_{0}=0$

Fibonacci Numbers

Definition (Fibonacci 1200, Pingala -200)
The Fibonacci sequence $F_{0}, F_{1}, F_{2}, F_{3}, \ldots \in \mathbb{N}$ is the sequence of numbers defined by

- $F_{0}=0$
- $F_{1}=1$

Fibonacci Numbers

Definition (Fibonacci 1200, Pingala -200)
The Fibonacci sequence $F_{0}, F_{1}, F_{2}, F_{3}, \ldots \in \mathbb{N}$ is the sequence of numbers defined by

- $F_{0}=0$
- $F_{1}=1$

■ $F_{n}=F_{n-1}+F_{n-2}$,

Fibonacci Numbers

Definition (Fibonacci 1200, Pingala -200)
The Fibonacci sequence $F_{0}, F_{1}, F_{2}, F_{3}, \ldots \in \mathbb{N}$ is the sequence of numbers defined by

- $F_{0}=0$
- $F_{1}=1$

■ $F_{n}=F_{n-1}+F_{n-2}$, for $n \geq 2$

Fibonacci Numbers

Definition (Fibonacci 1200, Pingala -200)

The Fibonacci sequence $F_{0}, F_{1}, F_{2}, F_{3}, \ldots \in \mathbb{N}$ is the sequence of numbers defined by

- $F_{0}=0$
- $F_{1}=1$

■ $F_{n}=F_{n-1}+F_{n-2}$, for $n \geq 2$

remarks:

Fibonacci Numbers

Definition (Fibonacci 1200, Pingala -200)

The Fibonacci sequence $F_{0}, F_{1}, F_{2}, F_{3}, \ldots \in \mathbb{N}$ is the sequence of numbers defined by

- $F_{0}=0$
- $F_{1}=1$

■ $F_{n}=F_{n-1}+F_{n-2}$, for $n \geq 2$

remarks:

■ arises in surprisingly many places

Fibonacci Numbers

Definition (Fibonacci 1200, Pingala -200)

The Fibonacci sequence $F_{0}, F_{1}, F_{2}, F_{3}, \ldots \in \mathbb{N}$ is the sequence of numbers defined by

- $F_{0}=0$
- $F_{1}=1$

■ $F_{n}=F_{n-1}+F_{n-2}$, for $n \geq 2$

remarks:

■ arises in surprisingly many places - the journal The Fibonacci Quarterly

Fibonacci Numbers

Definition (Fibonacci 1200, Pingala -200)

The Fibonacci sequence $F_{0}, F_{1}, F_{2}, F_{3}, \ldots \in \mathbb{N}$ is the sequence of numbers defined by

- $F_{0}=0$
- $F_{1}=1$

■ $F_{n}=F_{n-1}+F_{n-2}$, for $n \geq 2$

remarks:

■ arises in surprisingly many places - the journal The Fibonacci Quarterly

- $F_{n}=\frac{\varphi^{n}-(1-\varphi)^{n}}{\sqrt{5}}$,

Fibonacci Numbers

Definition (Fibonacci 1200, Pingala -200)

The Fibonacci sequence $F_{0}, F_{1}, F_{2}, F_{3}, \ldots \in \mathbb{N}$ is the sequence of numbers defined by

- $F_{0}=0$
- $F_{1}=1$

■ $F_{n}=F_{n-1}+F_{n-2}$, for $n \geq 2$

remarks:

■ arises in surprisingly many places - the journal The Fibonacci Quarterly

- $F_{n}=\frac{\varphi^{n}-(1-\varphi)^{n}}{\sqrt{5}}, \varphi$ is the golden ratio $\varphi:=\frac{1+\sqrt{5}}{2}$

Fibonacci Numbers

Definition (Fibonacci 1200, Pingala -200)

The Fibonacci sequence $F_{0}, F_{1}, F_{2}, F_{3}, \ldots \in \mathbb{N}$ is the sequence of numbers defined by

- $F_{0}=0$
- $F_{1}=1$

■ $F_{n}=F_{n-1}+F_{n-2}$, for $n \geq 2$

remarks:

■ arises in surprisingly many places - the journal The Fibonacci Quarterly
■ $F_{n}=\frac{\varphi^{n}-(1-\varphi)^{n}}{\sqrt{5}}, \varphi$ is the golden ratio $\varphi:=\frac{1+\sqrt{5}}{2} \approx 1.618 \cdots$

Fibonacci Numbers

Definition (Fibonacci 1200, Pingala -200)

The Fibonacci sequence $F_{0}, F_{1}, F_{2}, F_{3}, \ldots \in \mathbb{N}$ is the sequence of numbers defined by

- $F_{0}=0$
- $F_{1}=1$

■ $F_{n}=F_{n-1}+F_{n-2}$, for $n \geq 2$

remarks:

■ arises in surprisingly many places - the journal The Fibonacci Quarterly

- $F_{n}=\frac{\varphi^{n}-(1-\varphi)^{n}}{\sqrt{5}}, \varphi$ is the golden ratio $\varphi:=\frac{1+\sqrt{5}}{2} \approx 1.618 \cdots$
$■ \Longrightarrow 1-\varphi \approx-.618 \cdots$

Fibonacci Numbers

Definition (Fibonacci 1200, Pingala -200)

The Fibonacci sequence $F_{0}, F_{1}, F_{2}, F_{3}, \ldots \in \mathbb{N}$ is the sequence of numbers defined by

- $F_{0}=0$
- $F_{1}=1$

■ $F_{n}=F_{n-1}+F_{n-2}$, for $n \geq 2$

remarks:

■ arises in surprisingly many places - the journal The Fibonacci Quarterly

- $F_{n}=\frac{\varphi^{n}-(1-\varphi)^{n}}{\sqrt{5}}, \varphi$ is the golden ratio $\varphi:=\frac{1+\sqrt{5}}{2} \approx 1.618 \cdots$
$\square \Longrightarrow 1-\varphi \approx-.618 \cdots \Longrightarrow\left|(1-\varphi)^{n}\right| \leq 1$,

Fibonacci Numbers

Definition (Fibonacci 1200, Pingala -200)

The Fibonacci sequence $F_{0}, F_{1}, F_{2}, F_{3}, \ldots \in \mathbb{N}$ is the sequence of numbers defined by

- $F_{0}=0$
- $F_{1}=1$

■ $F_{n}=F_{n-1}+F_{n-2}$, for $n \geq 2$

remarks:

■ arises in surprisingly many places - the journal The Fibonacci Quarterly

- $F_{n}=\frac{\varphi^{n}-(1-\varphi)^{n}}{\sqrt{5}}, \varphi$ is the golden ratio $\varphi:=\frac{1+\sqrt{5}}{2} \approx 1.618 \ldots$
$■ \Longrightarrow 1-\varphi \approx-.618 \cdots \Longrightarrow\left|(1-\varphi)^{n}\right| \leq 1$, and further $(1-\varphi)^{n} \rightarrow_{n \rightarrow \infty} 0$

Fibonacci Numbers

Definition (Fibonacci 1200, Pingala -200)

The Fibonacci sequence $F_{0}, F_{1}, F_{2}, F_{3}, \ldots \in \mathbb{N}$ is the sequence of numbers defined by

- $F_{0}=0$
- $F_{1}=1$

■ $F_{n}=F_{n-1}+F_{n-2}$, for $n \geq 2$

remarks:

■ arises in surprisingly many places - the journal The Fibonacci Quarterly

- $F_{n}=\frac{\varphi^{n}-(1-\varphi)^{n}}{\sqrt{5}}, \varphi$ is the golden ratio $\varphi:=\frac{1+\sqrt{5}}{2} \approx 1.618 \cdots$
$■ \Longrightarrow 1-\varphi \approx-.618 \cdots \Longrightarrow\left|(1-\varphi)^{n}\right| \leq 1$, and further $(1-\varphi)^{n} \rightarrow_{n \rightarrow \infty} 0$ $\Longrightarrow F_{n}=\Theta\left(\varphi^{n}\right)$.

Fibonacci Numbers (II)

Fibonacci Numbers (II)

question:

Fibonacci Numbers (II)
question: given n, compute F_{n}.

Fibonacci Numbers (II)

question: given n, compute F_{n}. answer:

Fibonacci Numbers (II)

question: given n, compute F_{n}. answer:

```
fib(n):
```


Fibonacci Numbers (II)

question: given n, compute F_{n}. answer:

$$
\begin{aligned}
& \mathrm{fib}(n): \\
& \quad \text { if } n=0
\end{aligned}
$$

Fibonacci Numbers (II)

question: given n, compute F_{n}. answer:

```
fib(n):
    if }n=
                        return 0
```


Fibonacci Numbers (II)

question: given n, compute F_{n}. answer:

```
fib(n):
    if }n=
    return 0
    elif n=1
```


Fibonacci Numbers (II)

question: given n, compute F_{n}. answer:

```
fib(n):
    if }n=
        return 0
        elif n=1
            return 1
```


Fibonacci Numbers (II)

question: given n, compute F_{n}. answer:

```
fib(n):
    if }n=
        return 0
        elif n=1
        return 1
        else
```


Fibonacci Numbers (II)

question: given n, compute F_{n}. answer:

```
fib(n):
    if }n=
        return 0
        elif n=1
        return 1
        else
            return fib(n-1)
```


Fibonacci Numbers (II)

question: given n, compute F_{n}. answer:

```
fib(n):
    if }n=
        return 0
        elif n=1
        return 1
        else
            return fib(n-1) + fib(n-2)
```


Fibonacci Numbers (II)

question: given n, compute F_{n}. answer:

```
fib(n):
    if }n=
    return 0
    elif n=1
        return 1
    else
        return fib(n-1) + fib(n-2)
```


Fibonacci Numbers (II)

question: given n, compute F_{n}. answer:

```
fib(n):
    if }n=
        return 0
    elif n=1
        return 1
    else
        return fib(n-1) + fib(n-2)
```


correctness:

Fibonacci Numbers (II)

question: given n, compute F_{n}. answer:

```
fib(n):
    if }n=
        return 0
    elif n=1
        return 1
    else
        return fib(n-1) + fib(n-2)
```

correctness: clear

Fibonacci Numbers (II)

question: given n, compute F_{n}.
answer:

```
fib(n):
    if }n=
        return 0
    elif n=1
        return 1
    else
        return fib(n-1) + fib(n-2)
```

correctness: clear complexity:

Fibonacci Numbers (II)

question: given n, compute F_{n}.
answer:

```
fib(n):
    if }n=
        return 0
    elif n=1
        return 1
    else
        return fib(n-1) + fib(n-2)
```

correctness: clear
complexity: let $T(n)$ denote the number of additions.

Fibonacci Numbers (II)

question: given n, compute F_{n}.
answer:

```
fib(n):
    if }n=
        return 0
    elif n=1
        return 1
    else
        return fib(n-1) + fib(n-2)
```

correctness: clear
complexity: let $T(n)$ denote the number of additions. Then

Fibonacci Numbers (II)

question: given n, compute F_{n}.
answer:

```
fib(n):
    if }n=
        return 0
    elif n=1
        return 1
    else
        return fib(n-1) + fib(n-2)
```

correctness: clear
complexity: let $T(n)$ denote the number of additions. Then
■ $T(0)=0$,

Fibonacci Numbers (II)

question: given n, compute F_{n}.
answer:

```
fib(n):
    if }n=
        return 0
    elif n=1
        return 1
    else
        return fib(n-1) + fib(n-2)
```

correctness: clear
complexity: let $T(n)$ denote the number of additions. Then
$\square T(0)=0, T(1)=0$

Fibonacci Numbers (II)

question: given n, compute F_{n}.
answer:

```
fib(n):
    if }n=
        return 0
    elif n=1
        return 1
    else
        return fib(n-1) + fib(n-2)
```

correctness: clear
complexity: let $T(n)$ denote the number of additions. Then
$\square T(0)=0, T(1)=0$

- $T(2)=$

Fibonacci Numbers (II)

question: given n, compute F_{n}.
answer:

```
fib(n):
    if }n=
        return 0
    elif n=1
        return 1
    else
        return fib(n-1) + fib(n-2)
```

correctness: clear
complexity: let $T(n)$ denote the number of additions. Then
$\square T(0)=0, T(1)=0$
■ $T(2)=1$,

Fibonacci Numbers (II)

question: given n, compute F_{n}.
answer:

```
fib(n):
    if }n=
        return 0
    elif n=1
        return 1
    else
        return fib(n-1) + fib(n-2)
```

correctness: clear
complexity: let $T(n)$ denote the number of additions. Then
$\square T(0)=0, T(1)=0$
■ $T(2)=1$,
$\square T(n)=T(n-1)+T(n-2)$

Fibonacci Numbers (II)

question: given n, compute F_{n}.
answer:

```
fib(n):
    if }n=
        return 0
    elif n=1
        return 1
    else
        return fib(n-1) + fib(n-2)
```

correctness: clear
complexity: let $T(n)$ denote the number of additions. Then
■ $T(0)=0, T(1)=0$

- $T(2)=1$,
- $T(n)=T(n-1)+T(n-2)$
$\square \Longrightarrow T(n)=F_{n-1}$

Fibonacci Numbers (II)

question: given n, compute F_{n}.
answer:

```
fib(n):
    if }n=
        return 0
    elif n=1
        return 1
    else
        return fib(n-1) + fib(n-2)
```

correctness: clear
complexity: let $T(n)$ denote the number of additions. Then
■ $T(0)=0, T(1)=0$

- $T(2)=1$,

■ $T(n)=T(n-1)+T(n-2)$
■ $\Longrightarrow T(n)=F_{n-1}=\Theta\left(\varphi^{n}\right)$

Fibonacci Numbers (II)

question: given n, compute F_{n}.
answer:

```
fib(n):
    if }n=
        return 0
    elif n=1
        return 1
    else
        return fib(n-1) + fib(n-2)
```

correctness: clear
complexity: let $T(n)$ denote the number of additions. Then
■ $T(0)=0, T(1)=0$

- $T(2)=1$,

■ $T(n)=T(n-1)+T(n-2)$
■ $\Longrightarrow T(n)=F_{n-1}=\Theta\left(\varphi^{n}\right) \Longrightarrow$ exponential time!

Fibonacci Numbers (III)

Fibonacci Numbers (III)

recursion tree:

Fibonacci Numbers (III)

recursion tree: for F_{4}

Fibonacci Numbers (III)

recursion tree: for F_{4}

F_{4}

Fibonacci Numbers (III)

recursion tree: for F_{4}

Fibonacci Numbers (III)

recursion tree: for F_{4}

Fibonacci Numbers (III)

recursion tree: for F_{4}

Fibonacci Numbers (III)

recursion tree: for F_{4}

Fibonacci Numbers (III)

recursion tree: for F_{4}
dependency graph:

Fibonacci Numbers (III)

recursion tree: for F_{4}
dependency graph: for F_{4}

Fibonacci Numbers (III)

recursion tree: for F_{4}

dependency graph: for F_{4}

Fibonacci Numbers (III)

recursion tree: for F_{4}

dependency graph: for F_{4}
F_{3}

Fibonacci Numbers (III)

recursion tree: for F_{4}

dependency graph: for F_{4}
F_{2}

Fibonacci Numbers (III)

recursion tree: for F_{4}

dependency graph: for F_{4}

F_{4}

F_{3}
F_{2}
F_{1}

Fibonacci Numbers (III)

recursion tree: for F_{4}

dependency graph: for F_{4}

F_{4}

F_{3}
F_{2}
F_{1}

Fibonacci Numbers (III)

recursion tree: for F_{4}

dependency graph: for F_{4}

F_{0}

Fibonacci Numbers (III)

recursion tree: for F_{4}

dependency graph: for F_{4}

F_{0}

Fibonacci Numbers (III)

recursion tree: for F_{4}
dependency graph: for F_{4}

Fibonacci Numbers (IV)

Fibonacci Numbers (IV)

iterative algorithm:

Fibonacci Numbers (IV)

iterative algorithm:

$$
\text { fib-iter }(n) \text { : }
$$

Fibonacci Numbers (IV)

iterative algorithm:

$$
\begin{aligned}
& \text { fib-iter }(n): \\
& \text { if } n=0 \\
& \text { return } 0 \\
& \text { if } n=1 \\
& \\
& \text { return } 1
\end{aligned}
$$

Fibonacci Numbers (IV)

iterative algorithm:

$$
\begin{gathered}
\text { fib-iter }(n): \\
\text { if } n=0 \\
\text { return } 0 \\
\text { if } n=1 \\
\text { return } 1 \\
F[0]=0 \\
F[1]=1
\end{gathered}
$$

Fibonacci Numbers (IV)

iterative algorithm:

$$
\begin{gathered}
\text { fib-iter }(n): \\
\text { if } n=0 \\
\text { return } 0 \\
\text { if } n=1 \\
\text { return } 1 \\
F[0]=0 \\
F[1]=1 \\
\text { for } 2 \leq i \leq n
\end{gathered}
$$

Fibonacci Numbers (IV)

iterative algorithm:

$$
\begin{aligned}
& \text { fib-iter }(n): \\
& \text { if } n=0 \\
& \text { return } 0 \\
& \text { if } n=1 \\
& \text { return } 1 \\
& F[0]=0 \\
& F[1]=1 \\
& \text { for } 2 \leq i \leq n \\
& F[i]=F[i-1]+F[i-2]
\end{aligned}
$$

Fibonacci Numbers (IV)

iterative algorithm:

$$
\begin{aligned}
& \text { fib-iter }(n): \\
& \text { if } n=0 \\
& \text { return } 0 \\
& \text { if } n=1 \\
& \text { return } 1 \\
& F[0]=0 \\
& F[1]=1 \\
& \text { for } 2 \leq i \leq n \\
& F[i]=F[i-1]+F[i-2] \\
& \text { return } F[n]
\end{aligned}
$$

Fibonacci Numbers (IV)

iterative algorithm:

$$
\begin{aligned}
& \text { fib-iter }(n): \\
& \text { if } n=0 \\
& \text { return } 0 \\
& \text { if } n=1 \\
& \text { return } 1 \\
& F[0]=0 \\
& F[1]=1 \\
& \text { for } 2 \leq i \leq n \\
& F[i]=F[i-1]+F[i-2] \\
& \text { return } F[n]
\end{aligned}
$$

Fibonacci Numbers (IV)

iterative algorithm:

$$
\begin{aligned}
& \text { fib-iter }(n): \\
& \text { if } n=0 \\
& \text { return } 0 \\
& \text { if } n=1 \\
& \text { return } 1 \\
& F[0]=0 \\
& F[1]=1 \\
& \text { for } 2 \leq i \leq n \\
& F[i]=F[i-1]+F[i-2] \\
& \text { return } F[n]
\end{aligned}
$$

correctness:

Fibonacci Numbers (IV)

iterative algorithm:

$$
\begin{aligned}
& \text { fib-iter }(n): \\
& \text { if } n=0 \\
& \text { return } 0 \\
& \text { if } n=1 \\
& \text { return } 1 \\
& F[0]=0 \\
& F[1]=1 \\
& \text { for } 2 \leq i \leq n \\
& F[i]=F[i-1]+F[i-2] \\
& \text { return } F[n]
\end{aligned}
$$

correctness: clear

Fibonacci Numbers (IV)

iterative algorithm:

$$
\begin{aligned}
& \text { fib-iter }(n): \\
& \text { if } n=0 \\
& \text { return } 0 \\
& \text { if } n=1 \\
& \text { return } 1 \\
& F[0]=0 \\
& F[1]=1 \\
& \text { for } 2 \leq i \leq n \\
& F[i]=F[i-1]+F[i-2] \\
& \text { return } F[n]
\end{aligned}
$$

correctness: clear

complexity:

Fibonacci Numbers (IV)

iterative algorithm:

$$
\begin{aligned}
& \text { fib-iter }(n): \\
& \text { if } n=0 \\
& \text { return } 0 \\
& \text { if } n=1 \\
& \text { return } 1 \\
& F[0]=0 \\
& F[1]=1 \\
& \text { for } 2 \leq i \leq n \\
& F[i]=F[i-1]+F[i-2] \\
& \text { return } F[n]
\end{aligned}
$$

correctness: clear
complexity: $O(n)$ additions

Fibonacci Numbers (IV)

iterative algorithm:

$$
\begin{aligned}
& \text { fib-iter }(n): \\
& \text { if } n=0 \\
& \text { return } 0 \\
& \text { if } n=1 \\
& \text { return } 1 \\
& F[0]=0 \\
& F[1]=1 \\
& \text { for } 2 \leq i \leq n \\
& F[i]=F[i-1]+F[i-2] \\
& \text { return } F[n]
\end{aligned}
$$

correctness: clear
complexity: $O(n)$ additions
remarks:

Fibonacci Numbers (IV)

iterative algorithm:

$$
\begin{aligned}
& \text { fib-iter }(n): \\
& \text { if } n=0 \\
& \text { return } 0 \\
& \text { if } n=1 \\
& \text { return } 1 \\
& F[0]=0 \\
& F[1]=1 \\
& \text { for } 2 \leq i \leq n \\
& F[i]=F[i-1]+F[i-2] \\
& \text { return } F[n]
\end{aligned}
$$

correctness: clear
complexity: $O(n)$ additions
remarks:
■ $F_{n}=\Theta\left(\varphi^{n}\right)$

Fibonacci Numbers (IV)

iterative algorithm:

$$
\begin{aligned}
& \text { fib-iter }(n): \\
& \text { if } n=0 \\
& \text { return } 0 \\
& \text { if } n=1 \\
& \text { return } 1 \\
& F[0]=0 \\
& F[1]=1 \\
& \text { for } 2 \leq i \leq n \\
& F[i]=F[i-1]+F[i-2] \\
& \text { return } F[n]
\end{aligned}
$$

correctness: clear
complexity: $O(n)$ additions
remarks:
■ $F_{n}=\Theta\left(\varphi^{n}\right) \Longrightarrow F_{n}$ takes $\Theta(n)$ bits

Fibonacci Numbers (IV)

iterative algorithm:

$$
\begin{aligned}
& \text { fib-iter }(n): \\
& \text { if } n=0 \\
& \text { return } 0 \\
& \text { if } n=1 \\
& \text { return } 1 \\
& F[0]=0 \\
& F[1]=1 \\
& \text { for } 2 \leq i \leq n \\
& F[i]=F[i-1]+F[i-2] \\
& \text { return } F[n]
\end{aligned}
$$

correctness: clear
complexity: $O(n)$ additions
remarks:
■ $F_{n}=\Theta\left(\varphi^{n}\right) \Longrightarrow F_{n}$ takes $\Theta(n)$ bits \Longrightarrow each addition takes $\Theta(n)$ steps

Fibonacci Numbers (IV)

iterative algorithm:

$$
\begin{aligned}
& \text { fib-iter }(n): \\
& \text { if } n=0 \\
& \text { return } 0 \\
& \text { if } n=1 \\
& \text { return } 1 \\
& F[0]=0 \\
& F[1]=1 \\
& \text { for } 2 \leq i \leq n \\
& F[i]=F[i-1]+F[i-2] \\
& \text { return } F[n]
\end{aligned}
$$

correctness: clear
complexity: $O(n)$ additions
remarks:
■ $F_{n}=\Theta\left(\varphi^{n}\right) \Longrightarrow F_{n}$ takes $\Theta(n)$ bits \Longrightarrow each addition takes $\Theta(n)$ steps $\Longrightarrow O\left(n^{2}\right)$ is the actual runtime

Memoization

recursive paradigms for F_{n} :

Memoization

recursive paradigms for F_{n} :
■ naive recursion:

Memoization

recursive paradigms for F_{n} :
■ naive recursion: recurse on subproblems,

Memoization

recursive paradigms for F_{n} :
■ naive recursion: recurse on subproblems, solves the same subproblem multiple times

Memoization

recursive paradigms for F_{n} :
■ naive recursion: recurse on subproblems, solves the same subproblem multiple times
■ iterative algorithm:

Memoization

recursive paradigms for F_{n} :
■ naive recursion: recurse on subproblems, solves the same subproblem multiple times

■ iterative algorithm: stores solutions to subproblems to avoid recomputation

Memoization

recursive paradigms for F_{n} :
■ naive recursion: recurse on subproblems, solves the same subproblem multiple times

■ iterative algorithm: stores solutions to subproblems to avoid recomputation memoization

Memoization

recursive paradigms for F_{n} :
■ naive recursion: recurse on subproblems, solves the same subproblem multiple times

■ iterative algorithm: stores solutions to subproblems to avoid recomputation memoization

Definition

Memoization

recursive paradigms for F_{n} :
■ naive recursion: recurse on subproblems, solves the same subproblem multiple times

■ iterative algorithm: stores solutions to subproblems to avoid recomputation memoization

Definition

Dynamic programming is the method of speeding up naive recursion through memoization.

Memoization

recursive paradigms for F_{n} :
■ naive recursion: recurse on subproblems, solves the same subproblem multiple times

■ iterative algorithm: stores solutions to subproblems to avoid recomputation memoization

Definition

Dynamic programming is the method of speeding up naive recursion through memoization.

remarks:

Memoization

recursive paradigms for F_{n} :
■ naive recursion: recurse on subproblems, solves the same subproblem multiple times

■ iterative algorithm: stores solutions to subproblems to avoid recomputation memoization

Definition

Dynamic programming is the method of speeding up naive recursion through memoization.

remarks:

- If number of subproblems is polynomially bounded,

Memoization

recursive paradigms for F_{n} :
■ naive recursion: recurse on subproblems, solves the same subproblem multiple times
■ iterative algorithm: stores solutions to subproblems to avoid recomputation memoization

Definition

Dynamic programming is the method of speeding up naive recursion through memoization.

remarks:

■ If number of subproblems is polynomially bounded, often implies a polynomial-time algorithm

Memoization

recursive paradigms for F_{n} :
■ naive recursion: recurse on subproblems, solves the same subproblem multiple times
■ iterative algorithm: stores solutions to subproblems to avoid recomputation memoization

Definition

Dynamic programming is the method of speeding up naive recursion through memoization.

remarks:

■ If number of subproblems is polynomially bounded, often implies a polynomial-time algorithm

- Memoizing a recursive algorithm is done by tracing through the dependency graph

Memoization (II)

Memoization (II)
question:

Memoization (II)

question: how to memoize exactly?

Memoization (II)

question: how to memoize exactly?

```
fib(n):
```


Memoization (II)

question: how to memoize exactly?

```
fib(n):
    if }n=
        return 0
    if }n=
        return 1
```


Memoization (II)

question: how to memoize exactly?

```
fib(n):
    if }n=
        return 0
    if }n=
        return 1
```

 if fib(n) was previously computed

Memoization (II)

question: how to memoize exactly?

```
fib(n):
    if }n=
        return 0
    if }n=
        return 1
    if fib(n) was previously computed
        return stored value fib(n)
```


Memoization (II)

question: how to memoize exactly?

```
fib(n):
    if }n=
        return 0
    if }n=
        return 1
    if fib(n) was previously computed
        return stored value fib(n)
    else
```


Memoization (II)

question: how to memoize exactly?

```
fib(n):
    if }n=
        return 0
    if }n=
        return 1
    if fib(n) was previously computed
        return stored value fib(n)
    else
        return fib(n-1) + fib(n-2)
```


Memoization (II)

question: how to memoize exactly?

```
fib(n):
    if }n=
        return 0
    if }n=
        return 1
    if fib(n) was previously computed
        return stored value fib(n)
    else
        return fib(n-1) + fib(n-2)
```


Memoization (II)

question: how to memoize exactly?

```
fib(n):
    if }n=
        return 0
    if }n=
        return 1
    if fib(n) was previously computed
        return stored value fib(n)
    else
        return fib(n-1) + fib(n-2)
```


question:

Memoization (II)

question: how to memoize exactly?

```
fib(n):
    if }n=
        return 0
    if }n=
        return 1
    if fib(n) was previously computed
        return stored value fib(n)
    else
        return fib(n-1) + fib(n-2)
```

question: how to memoize exactly?

Memoization (II)

question: how to memoize exactly?

```
fib(n):
    if }n=
        return 0
    if }n=
        return 1
    if fib(n) was previously computed
        return stored value fib(n)
    else
        return fib(n-1) + fib(n-2)
```

question: how to memoize exactly?

- explicitly:

Memoization (II)

question: how to memoize exactly?

```
fib(n):
    if }n=
        return 0
    if }n=
        return 1
    if fib(n) was previously computed
        return stored value fib(n)
    else
        return fib(n-1) + fib(n-2)
```

question: how to memoize exactly?
■ explicitly: just do it!

Memoization (II)

question: how to memoize exactly?

```
fib(n):
    if }n=
        return 0
    if }n=
        return 1
    if fib(n) was previously computed
        return stored value fib(n)
    else
        return fib(n-1) + fib(n-2)
```

question: how to memoize exactly?
■ explicitly: just do it!

- implicitly:

Memoization (II)

question: how to memoize exactly?

```
fib(n):
    if }n=
        return 0
    if }n=
        return 1
    if fib(n) was previously computed
        return stored value fib(n)
    else
        return fib(n-1) + fib(n-2)
```

question: how to memoize exactly?
■ explicitly: just do it!
■ implicitly: allow clever data structures to do this automatically

Memoization (III)

Memoization (III)

global $\mathrm{F}[\cdot]$

Memoization (III)

global $\mathrm{F}[\cdot]$
 fib(n):

Memoization (III)

```
global F[.]
fib(n):
    if n=0
        return 0
    if }n=
        return 1
```


Memoization (III)

```
global F[.]
fib(n):
    if n=0
        return 0
    if }n=
        return 1
    if F[n] initialized
```


Memoization (III)

```
global F[.]
fib(n):
    if n=0
        return 0
    if }n=
        return 1
    if F[n] initialized
        return F[n]
```


Memoization (III)

```
global F[.]
fib(n):
    if n=0
        return 0
    if }n=
        return 1
    if F[n] initialized
        return F[n]
    else
```


Memoization (III)

```
global F[.]
fib(n):
    if n=0
        return 0
    if }n=
        return 1
    if F[n] initialized
        return F[n]
    else
        F[n]= fib(n-1)+fib(n-2)
```


Memoization (III)

```
global \(\mathrm{F}[\cdot]\)
fib(n):
    if \(n=0\)
        return 0
    if \(n=1\)
        return 1
    if \(F[n]\) initialized
        return \(F[n]\)
    else
        \(F[n]=\mathrm{fib}(n-1)+\mathrm{fib}(n-2)\)
        return \(F[n]\)
```


Memoization (III)

```
global F[.]
fib(n):
    if }n=
        return 0
    if }n=
        return 1
    if F[n] initialized
        return F[n]
    else
        F[n]=fib(n-1)+fib(n-2)
        return F[n]
```


Memoization (III)

```
global F[.]
fib(n):
    if }n=
        return 0
    if }n=
        return 1
    if F[n] initialized
        return F[n]
    else
        F[n]=fib(n-1)+fib(n-2)
        return F[n]
```


Memoization (III)

```
global F[.]
fib(n):
    if }n=
        return 0
    if }n=
        return 1
    if F[n] initialized
        return F[n]
    else
        F[n]=fib(n-1)+fib(n-2)
        return F[n]
```

■ explicit memoization: we decide ahead of time what types of objects F stores

Memoization (III)

```
global F[.]
fib(n):
    if }n=
        return 0
    if }n=
        return 1
    if F[n] initialized
        return F[n]
    else
        F[n]= fib (n-1) + fib (n-2)
        return F[n]
```

- explicit memoization: we decide ahead of time what types of objects F stores
- e.g., F is an array

Memoization (III)

```
global F[.]
fib(n):
    if }n=
        return 0
    if }n=
        return 1
    if F[n] initialized
        return F[n]
    else
        F[n]=fib (n-1) +fib(n-2)
        return F[n]
```

- explicit memoization: we decide ahead of time what types of objects F stores
- e.g., F is an array
- requires more deliberation on problem structure,

Memoization (III)

```
global F[.]
fib(n):
    if }n=
        return 0
    if }n=
        return 1
    if F[n] initialized
        return F[n]
    else
        F[n]=fib(n-1)+fib(n-2)
        return F[n]
```

- explicit memoization: we decide ahead of time what types of objects F stores
- e.g., F is an array
- requires more deliberation on problem structure, but can be more efficient

Memoization (III)

```
global F[.]
fib(n):
    if }n=
        return 0
    if }n=
        return 1
    if F[n] initialized
        return F[n]
    else
        F[n]=fib(n-1)+fib(n-2)
        return F[n]
```

■ explicit memoization: we decide ahead of time what types of objects F stores

- e.g., F is an array
- requires more deliberation on problem structure, but can be more efficient
- implicit memoization:

Memoization (III)

```
global F[.]
fib(n):
    if }n=
        return 0
    if }n=
        return 1
    if F[n] initialized
        return F[n]
    else
        F[n]=fib(n-1)+fib(n-2)
        return F[n]
```

- explicit memoization: we decide ahead of time what types of objects F stores
- e.g., F is an array
- requires more deliberation on problem structure, but can be more efficient
■ implicit memoization: we let the data structure for F handle whatever comes its way

Memoization (III)

```
global F[·]
fib(n):
    if n=0
        return 0
    if }n=
        return 1
    if F[n] initialized
        return F[n]
    else
        F[n]= fib (n-1) + fib (n-2)
        return F[n]
```

■ explicit memoization: we decide ahead of time what types of objects F stores

- e.g., F is an array
- requires more deliberation on problem structure, but can be more efficient
- implicit memoization: we let the data structure for F handle whatever comes its way
- e.g., F is an dictionary

Memoization (III)

```
global F[.]
fib(n):
    if n=0
        return 0
    if }n=
        return 1
    if F[n] initialized
        return F[n]
    else
        F[n]=fib(n-1)+fib(n-2)
        return F[n]
```

- explicit memoization: we decide ahead of time what types of objects F stores
- e.g., F is an array
- requires more deliberation on problem structure, but can be more efficient
- implicit memoization: we let the data structure for F handle whatever comes its way
- e.g., F is an dictionary
- requires less deliberation on problem structure,

Memoization (III)

```
global F[.]
fib(n):
    if n=0
        return 0
    if }n=
        return 1
    if F[n] initialized
        return F[n]
    else
        F[n]= fib (n-1) + fib(n-2)
        return F[n]
```

■ explicit memoization: we decide ahead of time what types of objects F stores

- e.g., F is an array
- requires more deliberation on problem structure, but can be more efficient
- implicit memoization: we let the data structure for F handle whatever comes its way
- e.g., F is an dictionary
- requires less deliberation on problem structure, and can be less efficient

Memoization (III)

```
global F[.]
fib(n):
    if n=0
        return 0
    if }n=
        return 1
    if F[n] initialized
        return F[n]
    else
        F[n]= fib (n-1) + fib(n-2)
        return F[n]
```

■ explicit memoization: we decide ahead of time what types of objects F stores

- e.g., F is an array
- requires more deliberation on problem structure, but can be more efficient
- implicit memoization: we let the data structure for F handle whatever comes its way
- e.g., F is an dictionary
- requires less deliberation on problem structure, and can be less efficient
- sometimes can be done automatically by functional programming languages (LISP, etc.)

Fibonacci Numbers (V)

Fibonacci Numbers (V)
question: how much space do we need to memoize?

Fibonacci Numbers (V)

question: how much space do we need to memoize?

```
fib-iter(n):
```


Fibonacci Numbers (V)

question: how much space do we need to memoize?

$$
\begin{aligned}
& \text { fib-iter }(n): \\
& \text { if } n=0 \\
& \quad \text { return } 0
\end{aligned}
$$

Fibonacci Numbers (V)

question: how much space do we need to memoize?

$$
\begin{aligned}
& \text { fib-iter }(n): \\
& \text { if } n=0 \\
& \text { return } 0 \\
& F_{\text {prevprev }}=0
\end{aligned}
$$

Fibonacci Numbers (V)

question: how much space do we need to memoize?

```
fib-iter(n):
    if }n=
        return 0
    F
    if }n=
        return 1
```


Fibonacci Numbers (V)

question: how much space do we need to memoize?

$$
\begin{gathered}
\text { fib-iter }(n): \\
\text { if } n=0 \\
\text { return } 0 \\
F_{\text {prevprev }}=0 \\
\text { if } n=1 \\
\text { return } 1 \\
F_{\text {prev }}=1
\end{gathered}
$$

Fibonacci Numbers (V)

question: how much space do we need to memoize?

$$
\begin{aligned}
& \text { fib-iter }(n): \\
& \text { if } n=0 \\
& \text { return } 0 \\
& F_{\text {prevprev }}=0 \\
& \text { if } n=1 \\
& \text { return } 1 \\
& F_{\text {prev }}=1 \\
& \text { for } 2 \leq i \leq n
\end{aligned}
$$

Fibonacci Numbers (V)

question: how much space do we need to memoize?

$$
\begin{aligned}
& \text { fib-iter }(n): \\
& \text { if } n=0 \\
& \text { return } 0 \\
& F_{\text {prevprev }}=0 \\
& \text { if } n=1 \\
& \text { return } 1 \\
& F_{\text {prev }}=1 \\
& \text { for } 2 \leq i \leq n \\
& F_{\text {cur }}=F_{\text {prev }}+F_{\text {prevprev }}
\end{aligned}
$$

Fibonacci Numbers (V)

question: how much space do we need to memoize?

$$
\begin{aligned}
& \text { fib-iter }(n): \\
& \text { if } n=0 \\
& \text { return } 0 \\
& F_{\text {prevprev }}=0 \\
& \text { if } n=1 \\
& \text { return } 1 \\
& F_{\text {prev }}=1 \\
& \text { for } 2 \leq i \leq n \\
& F_{\text {cur }}=F_{\text {prev }}+F_{\text {prevprev }} \\
& F_{\text {prevprev }}=F_{\text {prev }}
\end{aligned}
$$

Fibonacci Numbers (V)

question: how much space do we need to memoize?

$$
\begin{aligned}
& \text { fib-iter }(n): \\
& \text { if } n=0 \\
& \text { return } 0 \\
& F_{\text {prevprev }}=0 \\
& \text { if } n=1 \\
& \text { return } 1 \\
& F_{\text {prev }}=1 \\
& \text { for } 2 \leq i \leq n \\
& F_{\text {cur }}=F_{\text {prev }}+F_{\text {prevprev }} \\
& F_{\text {prevprev }}=F_{\text {prev }} \\
& F_{\text {prev }}=F_{\text {cur }}
\end{aligned}
$$

Fibonacci Numbers (V)

question: how much space do we need to memoize?

$$
\begin{aligned}
& \text { fib-iter }(n): \\
& \text { if } n=0 \\
& \text { return } 0 \\
& F_{\text {prevprev }}=0 \\
& \text { if } n=1 \\
& \text { return } 1 \\
& F_{\text {prev }}=1 \\
& \text { for } 2 \leq i \leq n \\
& F_{\text {cur }}=F_{\text {prev }}+F_{\text {prevprev }} \\
& F_{\text {prevprev }}=F_{\text {prev }} \\
& F_{\text {prev }}=F_{\text {cur }} \\
& \text { return } F_{\text {cur }}
\end{aligned}
$$

Fibonacci Numbers (V)

question: how much space do we need to memoize?

$$
\begin{aligned}
& \text { fib-iter }(n): \\
& \text { if } n=0 \\
& \text { return } 0 \\
& F_{\text {prevprev }}=0 \\
& \text { if } n=1 \\
& \text { return } 1 \\
& F_{\text {prev }}=1 \\
& \text { for } 2 \leq i \leq n \\
& F_{\text {cur }}=F_{\text {prev }}+F_{\text {prevprev }} \\
& F_{\text {prevprev }}=F_{\text {prev }} \\
& F_{\text {prev }}=F_{\text {cur }} \\
& \text { return } F_{\text {cur }}
\end{aligned}
$$

Fibonacci Numbers (V)

question: how much space do we need to memoize?

$$
\begin{aligned}
& \text { fib-iter }(n): \\
& \text { if } n=0 \\
& \text { return } 0 \\
& F_{\text {prevprev }}=0 \\
& \text { if } n=1 \\
& \text { return } 1 \\
& F_{\text {prev }}=1 \\
& \text { for } 2 \leq i \leq n \\
& F_{\text {cur }}=F_{\text {prev }}+F_{\text {prevprev }} \\
& F_{\text {prevprev }}=F_{\text {prev }} \\
& F_{\text {prev }}=F_{\text {cur }} \\
& \text { return } F_{\text {cur }}
\end{aligned}
$$

Fibonacci Numbers (V)

question: how much space do we need to memoize?

$$
\begin{aligned}
& \text { fib-iter }(n): \\
& \text { if } n=0 \\
& \text { return } 0 \\
& F_{\text {prevprev }}=0 \\
& \text { if } n=1 \\
& \text { return } 1 \\
& F_{\text {prev }}=1 \\
& \text { for } 2 \leq i \leq n \\
& F_{\text {cur }}=F_{\text {prev }}+F_{\text {prevprev }} \\
& F_{\text {prevprev }}=F_{\text {prev }} \\
& F_{\text {prev }}=F_{\text {cur }} \\
& \text { return } F_{\text {cur }}
\end{aligned}
$$

correctness: clear

Fibonacci Numbers (V)

question: how much space do we need to memoize?

$$
\begin{aligned}
& \text { fib-iter }(n): \\
& \text { if } n=0 \\
& \text { return } 0 \\
& F_{\text {prevprev }}=0 \\
& \text { if } n=1 \\
& \text { return } 1 \\
& F_{\text {prev }}=1 \\
& \text { for } 2 \leq i \leq n \\
& F_{\text {cur }}=F_{\text {prev }}+F_{\text {prevprev }} \\
& F_{\text {prevprev }}=F_{\text {prev }} \\
& F_{\text {prev }}=F_{\text {cur }} \\
& \text { return } F_{\text {cur }}
\end{aligned}
$$

correctness: clear complexity:

Fibonacci Numbers (V)

question: how much space do we need to memoize?

$$
\begin{aligned}
& \text { fib-iter }(n): \\
& \text { if } n=0 \\
& \text { return } 0 \\
& F_{\text {prevprev }}=0 \\
& \text { if } n=1 \\
& \text { return } 1 \\
& F_{\text {prev }}=1 \\
& \text { for } 2 \leq i \leq n \\
& F_{\text {cur }}=F_{\text {prev }}+F_{\text {prevprev }} \\
& F_{\text {prevprev }}=F_{\text {prev }} \\
& F_{\text {prev }}=F_{\text {cur }} \\
& \text { return } F_{\text {cur }}
\end{aligned}
$$

correctness: clear
complexity: $O(n)$ additions,

Fibonacci Numbers (V)

question: how much space do we need to memoize?

$$
\begin{aligned}
& \text { fib-iter }(n): \\
& \text { if } n=0 \\
& \text { return } 0 \\
& F_{\text {prevprev }}=0 \\
& \text { if } n=1 \\
& \text { return } 1 \\
& F_{\text {prev }}=1 \\
& \text { for } 2 \leq i \leq n \\
& F_{\text {cur }}=F_{\text {prev }}+F_{\text {prevprev }} \\
& F_{\text {prevprev }}=F_{\text {prev }} \\
& F_{\text {prev }}=F_{\text {cur }} \\
& \text { return } F_{\text {cur }}
\end{aligned}
$$

correctness: clear
complexity: $O(n)$ additions, $O(1)$ numbers stored

Fibonacci Numbers (V)

question: how much space do we need to memoize?

$$
\begin{aligned}
& \text { fib-iter }(n): \\
& \text { if } n=0 \\
& \text { return } 0 \\
& F_{\text {prevprev }}=0 \\
& \text { if } n=1 \\
& \text { return } 1 \\
& F_{\text {prev }}=1 \\
& \text { for } 2 \leq i \leq n \\
& F_{\text {cur }}=F_{\text {prev }}+F_{\text {prevprev }} \\
& F_{\text {prevprev }}=F_{\text {prev }} \\
& F_{\text {prev }}=F_{\text {cur }} \\
& \text { return } F_{\text {cur }}
\end{aligned}
$$

correctness: clear
complexity: $O(n)$ additions, $O(1)$ numbers stored $\Longrightarrow O(n)$ bits stored

Memoization (IV)

Memoization (IV)

Definition
Dynamic programming is the method of speeding up naive recursion through memoization.

Memoization (IV)

Definition
Dynamic programming is the method of speeding up naive recursion through memoization. goals:

Memoization (IV)

Definition
Dynamic programming is the method of speeding up naive recursion through memoization.

goals:

■ Given a recursive algorithm,

Memoization (IV)

Definition
Dynamic programming is the method of speeding up naive recursion through memoization.

goals:

■ Given a recursive algorithm, analyze the complexity of its memoized version.

Memoization (IV)

Definition

Dynamic programming is the method of speeding up naive recursion through memoization.

goals:

■ Given a recursive algorithm, analyze the complexity of its memoized version.

- Find the right recursion that can be memoized.

Memoization (IV)

Definition

Dynamic programming is the method of speeding up naive recursion through memoization.

goals:

- Given a recursive algorithm, analyze the complexity of its memoized version.

■ Find the right recursion that can be memoized.
■ Recognize when dynamic programming will efficiently solve a problem.

Memoization (IV)

Definition

Dynamic programming is the method of speeding up naive recursion through memoization.

goals:

■ Given a recursive algorithm, analyze the complexity of its memoized version.
■ Find the right recursion that can be memoized.
■ Recognize when dynamic programming will efficiently solve a problem.
■ Further optimize time- and space-complexity of dynamic programming algorithms.

Edit Distance

Edit Distance

Definition

Edit Distance

Definition
 Let $x, y \in \Sigma^{\star}$ be two strings over the alphabet Σ.

Edit Distance

Definition

Let $x, y \in \Sigma^{\star}$ be two strings over the alphabet Σ. The edit distance between x and y

Edit Distance

Definition

Let $x, y \in \Sigma^{\star}$ be two strings over the alphabet Σ. The edit distance between x and y is the minimum number of insertions, deletions and substitutions required to transform x into y.

Edit Distance

Definition

Let $x, y \in \Sigma^{\star}$ be two strings over the alphabet Σ. The edit distance between x and y is the minimum number of insertions, deletions and substitutions required to transform x into y.

Example

Edit Distance

Definition

Let $x, y \in \Sigma^{\star}$ be two strings over the alphabet Σ. The edit distance between x and y is the minimum number of insertions, deletions and substitutions required to transform x into y.

Example

money

Edit Distance

Definition

Let $x, y \in \Sigma^{\star}$ be two strings over the alphabet Σ. The edit distance between x and y is the minimum number of insertions, deletions and substitutions required to transform x into y.

Example

money \rightarrow

Edit Distance

Definition

Let $x, y \in \Sigma^{\star}$ be two strings over the alphabet Σ. The edit distance between x and y is the minimum number of insertions, deletions and substitutions required to transform x into y.

Example

```
money }->\mathrm{ boney
```


Edit Distance

Definition

Let $x, y \in \Sigma^{\star}$ be two strings over the alphabet Σ. The edit distance between x and y is the minimum number of insertions, deletions and substitutions required to transform x into y.

Example

$\underline{\text { money }} \rightarrow$ boney \rightarrow

Edit Distance

Definition

Let $x, y \in \Sigma^{\star}$ be two strings over the alphabet Σ. The edit distance between x and y is the minimum number of insertions, deletions and substitutions required to transform x into y.

Example

$\underline{\text { money }} \rightarrow$ boney \rightarrow bone

Edit Distance

Definition

Let $x, y \in \Sigma^{\star}$ be two strings over the alphabet Σ. The edit distance between x and y is the minimum number of insertions, deletions and substitutions required to transform x into y.

Example

money \rightarrow bonex \rightarrow bone \rightarrow

Edit Distance

Definition

Let $x, y \in \Sigma^{\star}$ be two strings over the alphabet Σ. The edit distance between x and y is the minimum number of insertions, deletions and substitutions required to transform x into y.

Example

$$
\underline{\text { money }} \rightarrow \text { boney } \rightarrow \text { bone } \rightarrow \text { bona }
$$

Edit Distance

Definition

Let $x, y \in \Sigma^{\star}$ be two strings over the alphabet Σ. The edit distance between x and y is the minimum number of insertions, deletions and substitutions required to transform x into y.

Example

$\underline{\text { money }} \rightarrow$ boney \rightarrow bone \rightarrow bona \rightarrow

Edit Distance

Definition

Let $x, y \in \Sigma^{\star}$ be two strings over the alphabet Σ. The edit distance between x and y is the minimum number of insertions, deletions and substitutions required to transform x into y.

```
Example
money }->\mathrm{ bone\ }->\mathrm{ bone }->\mathrm{ bona }->\mathrm{ boa
```


Edit Distance

Definition

Let $x, y \in \Sigma^{\star}$ be two strings over the alphabet Σ. The edit distance between x and y is the minimum number of insertions, deletions and substitutions required to transform x into y.

Example

$$
\underline{\text { money }} \rightarrow \text { boney } \rightarrow \text { bone } \rightarrow \text { bona } \rightarrow \text { bo_a } \rightarrow
$$

Edit Distance

Definition

Let $x, y \in \Sigma^{\star}$ be two strings over the alphabet Σ. The edit distance between x and y is the minimum number of insertions, deletions and substitutions required to transform x into y.

Example

$$
\underline{\text { money }} \rightarrow \text { boney } \rightarrow \text { bone } \rightarrow \text { bona } \rightarrow \text { bo_a } \rightarrow \text { boba }
$$

Edit Distance

Definition

Let $x, y \in \Sigma^{\star}$ be two strings over the alphabet Σ. The edit distance between x and y is the minimum number of insertions, deletions and substitutions required to transform x into y.

```
Example
money }->\mathrm{ bone\ }->\mathrm{ bone_ }->\mathrm{ bona }->\mathrm{ bo_a }->\mathrm{ boba }\Longrightarrow\mathrm{ edit distance }\leq
```


Edit Distance

Definition

Let $x, y \in \Sigma^{\star}$ be two strings over the alphabet Σ. The edit distance between x and y is the minimum number of insertions, deletions and substitutions required to transform x into y.

Example

$\underline{\text { money }} \rightarrow$ boney \rightarrow bone \rightarrow bona \rightarrow bo_a \rightarrow boba \Longrightarrow edit distance ≤ 5

remarks:

Edit Distance

Definition

Let $x, y \in \Sigma^{\star}$ be two strings over the alphabet Σ. The edit distance between x and y is the minimum number of insertions, deletions and substitutions required to transform x into y.

Example

$$
\text { money } \rightarrow \text { boney } \rightarrow \text { bone } \rightarrow \text { bona } \rightarrow \text { bo_a } \rightarrow \text { boba } \Longrightarrow \text { edit distance } \leq 5
$$

remarks:

- edit distance ≤ 4

Edit Distance

Definition

Let $x, y \in \Sigma^{\star}$ be two strings over the alphabet Σ. The edit distance between x and y is the minimum number of insertions, deletions and substitutions required to transform x into y.

Example

$\underline{\text { money }} \rightarrow$ boney \rightarrow bone \rightarrow bona \rightarrow bo_a \rightarrow boba \Longrightarrow edit distance ≤ 5

remarks:

- edit distance ≤ 4

■ intermediate strings can be arbitrary in Σ^{\star}

Edit Distance (II)

Edit Distance (II)

Definition

Edit Distance (II)

Definition

Let $x, y \in \Sigma^{\star}$ be two strings over the alphabet Σ.

Edit Distance (II)

Definition
Let $x, y \in \Sigma^{\star}$ be two strings over the alphabet Σ. An alignment is a sequence M of pairs of indices (i, j) such that

Edit Distance (II)

Definition

Let $x, y \in \Sigma^{\star}$ be two strings over the alphabet Σ. An alignment is a sequence M of pairs of indices (i, j) such that

- an index could be empty,

Edit Distance (II)

Definition

Let $x, y \in \Sigma^{\star}$ be two strings over the alphabet Σ. An alignment is a sequence M of pairs of indices (i, j) such that

■ an index could be empty, such as $(, 4)$ or $(5$,

Edit Distance (II)

Definition

Let $x, y \in \Sigma^{\star}$ be two strings over the alphabet Σ. An alignment is a sequence M of pairs of indices (i, j) such that

■ an index could be empty, such as $(, 4)$ or $(5$,
■ each index appears exactly once per coordinate

Edit Distance (II)

Definition

Let $x, y \in \Sigma^{\star}$ be two strings over the alphabet Σ. An alignment is a sequence M of pairs of indices (i, j) such that

■ an index could be empty, such as (, 4) or (5,)
■ each index appears exactly once per coordinate
■ no crossings:

Edit Distance (II)

Definition

Let $x, y \in \Sigma^{\star}$ be two strings over the alphabet Σ. An alignment is a sequence M of pairs of indices (i, j) such that

■ an index could be empty, such as $(, 4)$ or (5,)

- each index appears exactly once per coordinate

■ no crossings: for $(i, j),\left(i^{\prime}, j^{\prime}\right) \in M$ either $i<i^{\prime}$ and $j<j^{\prime}$,

Edit Distance (II)

Definition

Let $x, y \in \Sigma^{\star}$ be two strings over the alphabet Σ. An alignment is a sequence M of pairs of indices (i, j) such that

■ an index could be empty, such as $(, 4)$ or (5,)

- each index appears exactly once per coordinate

■ no crossings: for $(i, j),\left(i^{\prime}, j^{\prime}\right) \in M$ either $i<i^{\prime}$ and $j<j^{\prime}$, or

Edit Distance (II)

Definition

Let $x, y \in \Sigma^{\star}$ be two strings over the alphabet Σ. An alignment is a sequence M of pairs of indices (i, j) such that

■ an index could be empty, such as $(, 4)$ or (5,)

- each index appears exactly once per coordinate
\square no crossings: for $(i, j),\left(i^{\prime}, j^{\prime}\right) \in M$ either $i<i^{\prime}$ and $j<j^{\prime}$, or $i>i^{\prime}$ and $j>j^{\prime}$

Edit Distance (II)

Definition

Let $x, y \in \Sigma^{\star}$ be two strings over the alphabet Σ. An alignment is a sequence M of pairs of indices (i, j) such that

■ an index could be empty, such as (4) or (5,)
■ each index appears exactly once per coordinate
\square no crossings: for $(i, j),\left(i^{\prime}, j^{\prime}\right) \in M$ either $i<i^{\prime}$ and $j<j^{\prime}$, or $i>i^{\prime}$ and $j>j^{\prime}$
The cost of an alignment is the number of pairs (i, j) where $x_{i} \neq y_{j}$.

Edit Distance (II)

Definition

Let $x, y \in \Sigma^{\star}$ be two strings over the alphabet Σ. An alignment is a sequence M of pairs of indices (i, j) such that

■ an index could be empty, such as $(, 4)$ or (5,)

- each index appears exactly once per coordinate
\square no crossings: for $(i, j),\left(i^{\prime}, j^{\prime}\right) \in M$ either $i<i^{\prime}$ and $j<j^{\prime}$, or $i>i^{\prime}$ and $j>j^{\prime}$
The cost of an alignment is the number of pairs (i, j) where $x_{i} \neq y_{j}$.

Example

mon ey
bo ba

Edit Distance (II)

Definition

Let $x, y \in \Sigma^{\star}$ be two strings over the alphabet Σ. An alignment is a sequence M of pairs of indices (i, j) such that

■ an index could be empty, such as $(, 4)$ or (5,)

- each index appears exactly once per coordinate
\square no crossings: for $(i, j),\left(i^{\prime}, j^{\prime}\right) \in M$ either $i<i^{\prime}$ and $j<j^{\prime}$, or $i>i^{\prime}$ and $j>j^{\prime}$
The cost of an alignment is the number of pairs (i, j) where $x_{i} \neq y_{j}$.

Example

```
mon ey
bo ba
M ={(1, 1),(2, 2),(3,),(,3),(4,4),(5,)},
```


Edit Distance (II)

Definition

Let $x, y \in \Sigma^{\star}$ be two strings over the alphabet Σ. An alignment is a sequence M of pairs of indices (i, j) such that

■ an index could be empty, such as $(, 4)$ or (5,)

- each index appears exactly once per coordinate
\square no crossings: for $(i, j),\left(i^{\prime}, j^{\prime}\right) \in M$ either $i<i^{\prime}$ and $j<j^{\prime}$, or $i>i^{\prime}$ and $j>j^{\prime}$
The cost of an alignment is the number of pairs (i, j) where $x_{i} \neq y_{j}$.

Example

```
mon ey
bo ba
M ={(1,1),(2,2),(3,),(,3),(4,4),(5,)}, cost 5
```

Edit Distance (III)

Edit Distance (III)

question:

Edit Distance (III)

question: given two strings $x, y \in \Sigma^{\star}$,

Edit Distance (III)

question: given two strings $x, y \in \Sigma^{\star}$, compute their edit distance

Edit Distance (III)

question: given two strings $x, y \in \Sigma^{\star}$, compute their edit distance
Lemma

Edit Distance (III)

question: given two strings $x, y \in \Sigma^{\star}$, compute their edit distance
Lemma
The edit distance between two strings $x, y \in \Sigma^{\star}$ is the minimum cost of an alignment.

Edit Distance (III)

question: given two strings $x, y \in \Sigma^{\star}$, compute their edit distance
Lemma
The edit distance between two strings $x, y \in \Sigma^{\star}$ is the minimum cost of an alignment.

Proof.

Edit Distance (III)

question: given two strings $x, y \in \Sigma^{\star}$, compute their edit distance
Lemma
The edit distance between two strings $x, y \in \Sigma^{\star}$ is the minimum cost of an alignment.

Proof.

Exercise.

Edit Distance (III)

question: given two strings $x, y \in \Sigma^{\star}$, compute their edit distance
Lemma
The edit distance between two strings $x, y \in \Sigma^{\star}$ is the minimum cost of an alignment.

Proof.

Exercise.
question: given two strings $x, y \in \Sigma^{\star}$, compute the minimum cost of an alignment

Edit Distance (III)

question: given two strings $x, y \in \Sigma^{\star}$, compute their edit distance
Lemma
The edit distance between two strings $x, y \in \Sigma^{\star}$ is the minimum cost of an alignment.

Proof.

Exercise.
question: given two strings $x, y \in \Sigma^{\star}$, compute the minimum cost of an alignment remarks:

Edit Distance (III)

question: given two strings $x, y \in \Sigma^{\star}$, compute their edit distance

Lemma

The edit distance between two strings $x, y \in \Sigma^{\star}$ is the minimum cost of an alignment.

Proof.

Exercise.
question: given two strings $x, y \in \Sigma^{\star}$, compute the minimum cost of an alignment remarks:

■ can also ask to compute the alignment itself

Edit Distance (III)

question: given two strings $x, y \in \Sigma^{\star}$, compute their edit distance

Lemma

The edit distance between two strings $x, y \in \Sigma^{\star}$ is the minimum cost of an alignment.

Proof.

Exercise.
question: given two strings $x, y \in \Sigma^{\star}$, compute the minimum cost of an alignment remarks:

- can also ask to compute the alignment itself

■ widely solved in practice,

Edit Distance (III)

question: given two strings $x, y \in \Sigma^{\star}$, compute their edit distance

Lemma

The edit distance between two strings $x, y \in \Sigma^{\star}$ is the minimum cost of an alignment.

Proof.

Exercise.

question: given two strings $x, y \in \Sigma^{\star}$, compute the minimum cost of an alignment remarks:

■ can also ask to compute the alignment itself
■ widely solved in practice, e.g., the BLAST heuristic for DNA edit distance

Edit Distance (IV)

Edit Distance (IV)

Edit Distance (IV)

Lemma

Let $x, y \in \Sigma^{*}$ be strings,

Edit Distance (IV)

Lemma

Let $x, y \in \Sigma^{*}$ be strings, and $a, b \in \Sigma$ be symbols.

Edit Distance (IV)

Lemma
Let $x, y \in \Sigma^{*}$ be strings, and $a, b \in \Sigma$ be symbols. Then

Edit Distance (IV)

Lemma
Let $x, y \in \Sigma^{*}$ be strings, and $a, b \in \Sigma$ be symbols. Then
$\operatorname{dist}(x \circ a$,

Edit Distance (IV)

Lemma

Let $x, y \in \Sigma^{*}$ be strings, and $a, b \in \Sigma$ be symbols. Then

$$
\operatorname{dist}(x \circ a, y \circ b)=
$$

Edit Distance (IV)

Lemma

Let $x, y \in \Sigma^{*}$ be strings, and $a, b \in \Sigma$ be symbols. Then

$$
\operatorname{dist}(x \circ a, y \circ b)=\min \{
$$

Edit Distance (IV)

Lemma

Let $x, y \in \Sigma^{*}$ be strings, and $a, b \in \Sigma$ be symbols. Then

$$
\operatorname{dist}(x \circ a, y \circ b)=\min \left\{\begin{array}{l}
\operatorname{dist}(x, y)+\mathbb{1} \llbracket a \neq b \rrbracket
\end{array}\right.
$$

Edit Distance (IV)

Lemma

Let $x, y \in \Sigma^{*}$ be strings, and $a, b \in \Sigma$ be symbols. Then

$$
\operatorname{dist}(x \circ a, y \circ b)=\min \left\{\begin{array}{l}
\operatorname{dist}(x, y)+\mathbb{1} \llbracket a \neq b \rrbracket \\
\operatorname{dist}(x, y \circ b)+1
\end{array}\right.
$$

Edit Distance (IV)

Lemma

Let $x, y \in \Sigma^{*}$ be strings, and $a, b \in \Sigma$ be symbols. Then

$$
\operatorname{dist}(x \circ a, y \circ b)=\min \left\{\begin{array}{l}
\operatorname{dist}(x, y)+\mathbb{1} \llbracket a \neq b \rrbracket \\
\operatorname{dist}(x, y \circ b)+1 \\
\operatorname{dist}(x \circ a, y)+1
\end{array}\right.
$$

Edit Distance (IV)

Lemma

Let $x, y \in \Sigma^{*}$ be strings, and $a, b \in \Sigma$ be symbols. Then

$$
\operatorname{dist}(x \circ a, y \circ b)=\min \left\{\begin{array}{l}
\operatorname{dist}(x, y)+\mathbb{1} \llbracket a \neq b \rrbracket \\
\operatorname{dist}(x, y \circ b)+1 \\
\operatorname{dist}(x \circ a, y)+1
\end{array}\right.
$$

Proof.

Edit Distance (IV)

Lemma

Let $x, y \in \Sigma^{*}$ be strings, and $a, b \in \Sigma$ be symbols. Then

$$
\operatorname{dist}(x \circ a, y \circ b)=\min \left\{\begin{array}{l}
\operatorname{dist}(x, y)+\mathbb{1} \llbracket a \neq b \rrbracket \\
\operatorname{dist}(x, y \circ b)+1 \\
\operatorname{dist}(x \circ a, y)+1
\end{array}\right.
$$

Proof.

In an optimal alignment from $x \circ a$ to $y \circ b$, either:

Edit Distance (IV)

Lemma

Let $x, y \in \Sigma^{*}$ be strings, and $a, b \in \Sigma$ be symbols. Then

$$
\operatorname{dist}(x \circ a, y \circ b)=\min \left\{\begin{array}{l}
\operatorname{dist}(x, y)+\mathbb{1} \llbracket a \neq b \rrbracket \\
\operatorname{dist}(x, y \circ b)+1 \\
\operatorname{dist}(x \circ a, y)+1
\end{array}\right.
$$

Proof.

In an optimal alignment from $x \circ a$ to $y \circ b$, either:

- a aligns to b,

Edit Distance (IV)

Lemma

Let $x, y \in \Sigma^{*}$ be strings, and $a, b \in \Sigma$ be symbols. Then

$$
\operatorname{dist}(x \circ a, y \circ b)=\min \left\{\begin{array}{l}
\operatorname{dist}(x, y)+\mathbb{1} \llbracket a \neq b \rrbracket \\
\operatorname{dist}(x, y \circ b)+1 \\
\operatorname{dist}(x \circ a, y)+1
\end{array}\right.
$$

Proof.

In an optimal alignment from $x \circ a$ to $y \circ b$, either:
■ a aligns to b, with cost $\mathbb{1} \llbracket a \neq b \rrbracket$

Edit Distance (IV)

Lemma

Let $x, y \in \Sigma^{*}$ be strings, and $a, b \in \Sigma$ be symbols. Then

$$
\operatorname{dist}(x \circ a, y \circ b)=\min \left\{\begin{array}{l}
\operatorname{dist}(x, y)+\mathbb{1} \llbracket a \neq b \rrbracket \\
\operatorname{dist}(x, y \circ b)+1 \\
\operatorname{dist}(x \circ a, y)+1
\end{array}\right.
$$

Proof.

In an optimal alignment from $x \circ a$ to $y \circ b$, either:
■ a aligns to b, with cost $\mathbb{1} \llbracket a \neq b \rrbracket$

- a is deleted,

Edit Distance (IV)

Lemma

Let $x, y \in \Sigma^{*}$ be strings, and $a, b \in \Sigma$ be symbols. Then

$$
\operatorname{dist}(x \circ a, y \circ b)=\min \left\{\begin{array}{l}
\operatorname{dist}(x, y)+\mathbb{1} \llbracket a \neq b \rrbracket \\
\operatorname{dist}(x, y \circ b)+1 \\
\operatorname{dist}(x \circ a, y)+1
\end{array}\right.
$$

Proof.

In an optimal alignment from $x \circ a$ to $y \circ b$, either:

- a aligns to b, with cost $\mathbb{1} \llbracket a \neq b \rrbracket$
- a is deleted, with cost 1

Edit Distance (IV)

Lemma

Let $x, y \in \Sigma^{*}$ be strings, and $a, b \in \Sigma$ be symbols. Then

$$
\operatorname{dist}(x \circ a, y \circ b)=\min \left\{\begin{array}{l}
\operatorname{dist}(x, y)+\mathbb{1} \llbracket a \neq b \rrbracket \\
\operatorname{dist}(x, y \circ b)+1 \\
\operatorname{dist}(x \circ a, y)+1
\end{array}\right.
$$

Proof.

In an optimal alignment from $x \circ a$ to $y \circ b$, either:

- a aligns to b, with cost $\mathbb{1} \llbracket a \neq b \rrbracket$
- a is deleted, with cost 1
- b is deleted,

Edit Distance (IV)

Lemma

Let $x, y \in \Sigma^{*}$ be strings, and $a, b \in \Sigma$ be symbols. Then

$$
\operatorname{dist}(x \circ a, y \circ b)=\min \left\{\begin{array}{l}
\operatorname{dist}(x, y)+\mathbb{1} \llbracket a \neq b \rrbracket \\
\operatorname{dist}(x, y \circ b)+1 \\
\operatorname{dist}(x \circ a, y)+1
\end{array}\right.
$$

Proof.

In an optimal alignment from $x \circ a$ to $y \circ b$, either:

- a aligns to b, with cost $\mathbb{1} \llbracket a \neq b \rrbracket$
- a is deleted, with cost 1
- b is deleted, with cost 1

Edit Distance (V)

Edit Distance (V)

recursive algorithm:

Edit Distance (V)

recursive algorithm:
dist (x

Edit Distance (V)

recursive algorithm:

$$
\operatorname{dist}\left(x=x_{1} x_{2} \cdots x_{n}\right.
$$

Edit Distance (V)

recursive algorithm:

$$
\operatorname{dist}\left(x=x_{1} x_{2} \cdots x_{n}, y\right.
$$

Edit Distance (V)

recursive algorithm:

$$
\operatorname{dist}\left(x=x_{1} x_{2} \cdots x_{n}, y=y_{1} y_{2} \cdots y_{m}\right)
$$

Edit Distance (V)

recursive algorithm:

$$
\begin{aligned}
& \operatorname{dist}\left(x=x_{1} x_{2} \cdots x_{n}, y=y_{1} y_{2} \cdots y_{m}\right) \\
& \quad \text { if } n=0 \text {, return } m
\end{aligned}
$$

Edit Distance (V)

recursive algorithm:

$$
\begin{aligned}
& \text { dist }\left(x=x_{1} x_{2} \cdots x_{n}, y=y_{1} y_{2} \cdots y_{m}\right) \\
& \text { if } n=0 \text {, return } m \\
& \text { if } m=0 \text {, return } n
\end{aligned}
$$

Edit Distance (V)

recursive algorithm:

$$
\begin{aligned}
& \operatorname{dist}\left(x=x_{1} x_{2} \cdots x_{n}, y=y_{1} y_{2} \cdots y_{m}\right) \\
& \text { if } n=0, \text { return } m \\
& \text { if } m=0 \text {, return } n \\
& d_{1}=\operatorname{dist}\left(x_{<n}, y_{<m}\right)+\mathbb{1} \llbracket x_{n} \neq y_{m} \rrbracket
\end{aligned}
$$

Edit Distance (V)

recursive algorithm:

$$
\begin{aligned}
& \operatorname{dist}\left(x=x_{1} x_{2} \cdots x_{n}, y=y_{1} y_{2} \cdots y_{m}\right) \\
& \text { if } n=0, \text { return } m \\
& \text { if } m=0, \text { return } n \\
& d_{1}=\operatorname{dist}\left(x_{<n}, y_{<m}\right)+\mathbb{1} \llbracket x_{n} \neq y_{m} \rrbracket \\
& d_{2}=\operatorname{dist}\left(x_{<n}, y\right)+1
\end{aligned}
$$

Edit Distance (V)

recursive algorithm:

$$
\begin{aligned}
& \operatorname{dist}\left(x=x_{1} x_{2} \cdots x_{n}, y=y_{1} y_{2} \cdots y_{m}\right) \\
& \text { if } n=0, \text { return } m \\
& \text { if } m=0, \text { return } n \\
& d_{1}=\operatorname{dist}\left(x_{<n}, y_{<m}\right)+\mathbb{1} \llbracket x_{n} \neq y_{m} \rrbracket \\
& d_{2}=\operatorname{dist}\left(x_{<n}, y\right)+1 \\
& d_{3}=\operatorname{dist}\left(x, y_{<m}\right)+1
\end{aligned}
$$

Edit Distance (V)

recursive algorithm:

$$
\begin{aligned}
& \operatorname{dist}\left(x=x_{1} x_{2} \cdots x_{n}, y=y_{1} y_{2} \cdots y_{m}\right) \\
& \text { if } n=0, \text { return } m \\
& \text { if } m=0 \text {, return } n \\
& d_{1}=\operatorname{dist}\left(x_{<n}, y_{<m}\right)+\mathbb{1} \llbracket x_{n} \neq y_{m} \rrbracket \\
& d_{2}=\operatorname{dist}\left(x_{<n}, y\right)+1 \\
& d_{3}=\operatorname{dist}\left(x, y_{<m}\right)+1 \\
& \text { return } \min \left(d_{1}, d_{2}, d_{3}\right)
\end{aligned}
$$

Edit Distance (V)

recursive algorithm:

$$
\begin{aligned}
& \operatorname{dist}\left(x=x_{1} x_{2} \cdots x_{n}, y=y_{1} y_{2} \cdots y_{m}\right) \\
& \text { if } n=0, \text { return } m \\
& \text { if } m=0 \text {, return } n \\
& d_{1}=\operatorname{dist}\left(x_{<n}, y_{<m}\right)+\mathbb{1} \llbracket x_{n} \neq y_{m} \rrbracket \\
& d_{2}=\operatorname{dist}\left(x_{<n}, y\right)+1 \\
& d_{3}=\operatorname{dist}\left(x, y_{<m}\right)+1 \\
& \text { return min }\left(d_{1}, d_{2}, d_{3}\right)
\end{aligned}
$$

Edit Distance (V)

recursive algorithm:

$$
\begin{aligned}
& \operatorname{dist}\left(x=x_{1} x_{2} \cdots x_{n}, y=y_{1} y_{2} \cdots y_{m}\right) \\
& \text { if } n=0, \text { return } m \\
& \text { if } m=0 \text {, return } n \\
& d_{1}=\operatorname{dist}\left(x_{<n}, y_{<m}\right)+\mathbb{1} \llbracket x_{n} \neq y_{m} \rrbracket \\
& d_{2}=\operatorname{dist}\left(x_{<n}, y\right)+1 \\
& d_{3}=\operatorname{dist}\left(x, y_{<m}\right)+1 \\
& \text { return } \min \left(d_{1}, d_{2}, d_{3}\right)
\end{aligned}
$$

correctness:

Edit Distance (V)

recursive algorithm:

$$
\begin{aligned}
& \operatorname{dist}\left(x=x_{1} x_{2} \cdots x_{n}, y=y_{1} y_{2} \cdots y_{m}\right) \\
& \text { if } n=0, \text { return } m \\
& \text { if } m=0 \text {, return } n \\
& d_{1}=\operatorname{dist}\left(x_{<n}, y_{<m}\right)+\mathbb{1} \llbracket x_{n} \neq y_{m} \rrbracket \\
& d_{2}=\operatorname{dist}\left(x_{<n}, y\right)+1 \\
& d_{3}=\operatorname{dist}\left(x, y_{<m}\right)+1 \\
& \text { return } \min \left(d_{1}, d_{2}, d_{3}\right)
\end{aligned}
$$

correctness: clear

Edit Distance (V)

recursive algorithm:

$$
\begin{aligned}
& \operatorname{dist}\left(x=x_{1} x_{2} \cdots x_{n}, y=y_{1} y_{2} \cdots y_{m}\right) \\
& \text { if } n=0, \text { return } m \\
& \text { if } m=0 \text {, return } n \\
& d_{1}=\operatorname{dist}\left(x_{<n}, y_{<m}\right)+\mathbb{1} \llbracket x_{n} \neq y_{m} \rrbracket \\
& d_{2}=\operatorname{dist}\left(x_{<n}, y\right)+1 \\
& d_{3}=\operatorname{dist}\left(x, y_{<m}\right)+1 \\
& \text { return } \min \left(d_{1}, d_{2}, d_{3}\right)
\end{aligned}
$$

correctness: clear
complexity:

Edit Distance (V)

recursive algorithm:

$$
\begin{aligned}
& \operatorname{dist}\left(x=x_{1} x_{2} \cdots x_{n}, y=y_{1} y_{2} \cdots y_{m}\right) \\
& \text { if } n=0, \text { return } m \\
& \text { if } m=0 \text {, return } n \\
& d_{1}=\operatorname{dist}\left(x_{<n}, y_{<m}\right)+\mathbb{1} \llbracket x_{n} \neq y_{m} \rrbracket \\
& d_{2}=\operatorname{dist}\left(x_{<n}, y\right)+1 \\
& d_{3}=\operatorname{dist}\left(x, y_{<m}\right)+1 \\
& \text { return } \min \left(d_{1}, d_{2}, d_{3}\right)
\end{aligned}
$$

correctness: clear complexity: ???

Edit Distance (VI)

Edit Distance (VI)
(abab, baba)

Edit Distance (VI)

(abab, baba)
(aba,bab)

Edit Distance (VI)

Edit Distance (VI)

($\mathrm{ab}, \mathrm{bab}$) is repeated!

Edit Distance (VI)

Edit Distance (VI)

Edit Distance (VII)

Edit Distance (VII)

memoized algorithm:

Edit Distance (VII)

memoized algorithm:
global $d[\cdot][\cdot]$

Edit Distance (VII)

memoized algorithm:
global $d[\cdot][\cdot]$
dist $\left(x_{1} x_{2} \cdots x_{n}, y_{1} y_{2} \cdots y_{m}\right.$,

Edit Distance (VII)

memoized algorithm:

```
global d[.][]]
dist(}\mp@subsup{x}{1}{}\mp@subsup{x}{2}{}\cdots\mp@subsup{x}{n}{},\mp@subsup{y}{1}{}\mp@subsup{y}{2}{}\cdots\mp@subsup{y}{m}{},(i,j)
```


Edit Distance (VII)

memoized algorithm:

```
global d[.][]]
dist( }\mp@subsup{x}{1}{}\mp@subsup{x}{2}{}\cdots\mp@subsup{x}{n}{},\mp@subsup{y}{1}{}\mp@subsup{y}{2}{}\cdots\mp@subsup{y}{m}{},(i,j)
    if d[i][j] initialized
```


Edit Distance (VII)

memoized algorithm:

$$
\begin{aligned}
& \text { global } d[\cdot][\cdot] \\
& \text { dist }\left(x_{1} x_{2} \cdots x_{n}, y_{1} y_{2} \cdots y_{m},(i, j)\right) \\
& \text { if } d[i][j] \text { initialized } \\
& \text { return } d[i][j]
\end{aligned}
$$

Edit Distance (VII)

memoized algorithm:

$$
\begin{aligned}
& \text { global } d[\cdot][\cdot] \\
& \text { dist }\left(x_{1} x_{2} \cdots x_{n}, y_{1} y_{2} \cdots y_{m},(i, j)\right) \\
& \text { if } d[i][j] \text { initialized } \\
& \quad \text { return } d[i][j] \\
& \text { if } i=0
\end{aligned}
$$

Edit Distance (VII)

memoized algorithm:

$$
\begin{aligned}
& \text { global } d[\cdot][\cdot] \\
& \text { dist }\left(x_{1} x_{2} \cdots x_{n}, y_{1} y_{2} \cdots y_{m},(i, j)\right) \\
& \text { if } d[i][j] \text { initialized } \\
& \text { return } d[i][j] \\
& \text { if } i=0 \\
& d[i][j]=j
\end{aligned}
$$

Edit Distance (VII)

memoized algorithm:

$$
\begin{aligned}
& \text { global } d[\cdot][\cdot] \\
& \text { dist }\left(x_{1} x_{2} \cdots x_{n}, y_{1} y_{2} \cdots y_{m},(i, j)\right) \\
& \text { if } d[i][j] \text { initialized } \\
& \text { return } d[i][j] \\
& \text { if } i=0 \\
& d[i][j]=j \\
& \text { elif } j=0
\end{aligned}
$$

Edit Distance (VII)

memoized algorithm:

$$
\begin{aligned}
& \text { global } d[\cdot][[] \\
& \text { dist }\left(x_{1} x_{2} \cdots x_{n}, y_{1} y_{2} \cdots y_{m},(i, j)\right) \\
& \text { if } d[i][j] \text { initialized } \\
& \text { return } d[i][j] \\
& \text { if } i=0 \\
& d[i][j]=j \\
& \text { elif } j=0 \\
& d[i][j]=i
\end{aligned}
$$

Edit Distance (VII)

memoized algorithm:

$$
\begin{aligned}
& \text { global } d[\cdot][[\cdot] \\
& \text { dist }\left(x_{1} x_{2} \cdots x_{n}, y_{1} y_{2} \cdots y_{m},(i, j)\right) \\
& \text { if } d[i][j] \text { initialized } \\
& \text { return } d[i][j] \\
& \text { if } i=0 \\
& d[i][j]=j \\
& \text { elif } j=0 \\
& d[i][j]=i \\
& \text { else }
\end{aligned}
$$

Edit Distance (VII)

memoized algorithm:

$$
\begin{aligned}
& \text { global } d[\cdot][\cdot] \\
& \text { dist }\left(x_{1} x_{2} \cdots x_{n}, y_{1} y_{2} \cdots y_{m},(i, j)\right) \\
& \text { if } d[i][j] \text { initialized } \\
& \quad \text { return } d[i][j] \\
& \text { if } i=0 \\
& \quad d[i][j]=j \\
& \text { elif } j=0 \\
& \quad d[i][j]=i \\
& \text { else } \\
& \quad d_{1}=\operatorname{dist}(x, y,(i-1, j-1))+\mathbb{1} \llbracket x_{i} \neq y_{j} \rrbracket
\end{aligned}
$$

Edit Distance (VII)

memoized algorithm:

$$
\begin{aligned}
& \text { global } d[\cdot][\cdot] \\
& \text { dist }\left(x_{1} x_{2} \cdots x_{n}, y_{1} y_{2} \cdots y_{m},(i, j)\right) \\
& \text { if } d[i][j] \text { initialized } \\
& \text { return } d[i][j] \\
& \text { if } i=0 \\
& \quad d[i][j]=j \\
& \text { elif } j=0 \\
& d[i][j]=i \\
& \text { else } \\
& \quad d_{1}=\operatorname{dist}(x, y,(i-1, j-1))+\mathbb{1} \llbracket x_{i} \neq y_{j} \rrbracket \\
& d_{2}=\operatorname{dist}(x, y,(i-1, j))+1
\end{aligned}
$$

Edit Distance (VII)

memoized algorithm:

$$
\begin{aligned}
& \text { global } d[\cdot][[] \\
& \text { dist }\left(x_{1} x_{2} \cdots x_{n}, y_{1} y_{2} \cdots y_{m},(i, j)\right) \\
& \text { if } d[i][j] \text { initialized } \\
& \text { return } d[i][j] \\
& \text { if } i=0 \\
& d[i][j]=j \\
& \text { elif } j=0 \\
& d[i][j]=i \\
& \text { else } \\
& d_{1}=\operatorname{dist}(x, y,(i-1, j-1))+\mathbb{1} \llbracket x_{i} \neq y_{j} \rrbracket \\
& d_{2}=\operatorname{dist}(x, y,(i-1, j))+1 \\
& d_{3}=\operatorname{dist}(x, y,(i, j-1))+1
\end{aligned}
$$

Edit Distance (VII)

memoized algorithm:

$$
\begin{aligned}
& \text { global } d[\cdot][\cdot] \\
& \text { dist }\left(x_{1} x_{2} \cdots x_{n}, y_{1} y_{2} \cdots y_{m},(i, j)\right) \\
& \text { if } d[i][j] \text { initialized } \\
& \text { return } d[i][j] \\
& \text { if } i=0 \\
& d[i][j]=j \\
& \text { elif } j=0 \\
& d[i][j]=i \\
& \text { else } \\
& \quad d_{1}=\operatorname{dist}(x, y,(i-1, j-1))+\mathbb{1} \llbracket x_{i} \neq y_{j} \rrbracket \\
& d_{2}=\operatorname{dist}(x, y,(i-1, j))+1 \\
& d_{3}=\operatorname{dist}(x, y,(i, j-1))+1 \\
& d[i][j]=\min \left(d_{1}, d_{2}, d_{3}\right)
\end{aligned}
$$

Edit Distance (VII)

memoized algorithm:

$$
\begin{aligned}
& \text { global } d[\cdot][\cdot] \\
& \text { dist }\left(x_{1} x_{2} \cdots x_{n}, y_{1} y_{2} \cdots y_{m},(i, j)\right) \\
& \text { if } d[i][j] \text { initialized } \\
& \text { return } d[i][j] \\
& \text { if } i=0 \\
& d[i][j]=j \\
& \text { elif } j=0 \\
& d[i][j]=i \\
& \text { else } \\
& d_{1}=\operatorname{dist}(x, y,(i-1, j-1))+\mathbb{1}\left[x_{i} \neq y_{j} \rrbracket\right. \\
& d_{2}=\operatorname{dist}(x, y,(i-1, j))+1 \\
& d_{3}=\operatorname{dist}(x, y,(i, j-1))+1 \\
& d[i][j]=\min \left(d_{1}, d_{2}, d_{3}\right) \\
& \text { return } d[i][j]
\end{aligned}
$$

Edit Distance (VII)

memoized algorithm:

```
global \(d[\cdot][\cdot]\)
\(\operatorname{dist}\left(x_{1} x_{2} \cdots x_{n}, y_{1} y_{2} \cdots y_{m},(i, j)\right)\)
    if \(d[i][j]\) initialized
        return \(d[i][j]\)
    if \(i=0\)
        \(d[i][j]=j\)
    elif \(j=0\)
        \(d[i][j]=i\)
    else
        \(d_{1}=\boldsymbol{\operatorname { d i s t }}(x, y,(i-1, j-1))+\mathbb{1} \llbracket x_{i} \neq y_{j} \rrbracket\)
        \(d_{2}=\boldsymbol{\operatorname { d i s t }}(x, y,(i-1, j))+1\)
        \(d_{3}=\boldsymbol{\operatorname { d i s t }}(x, y,(i, j-1))+1\)
        \(d[i][j]=\min \left(d_{1}, d_{2}, d_{3}\right)\)
    return \(d[i][j]\)
```


Edit Distance (VIII)

Edit Distance (VIII)

dependency graph:

$$
\begin{gathered}
n \\
m \\
\\
n \\
m-1
\end{gathered}
$$

Edit Distance (VIII)

dependency graph:

n m	$n-1$ m
n $m-1$	$n-1$ $m-1$

Edit Distance (VIII)

dependency graph:

$\substack{n \\ m \\ \downarrow}$	\searrow	$n-1$ m
n $m-1$	$n-1$ $m-1$	

Edit Distance (VIII)

dependency graph:

$\begin{gathered} n \\ m \end{gathered}$	$n-1$ m
\downarrow	
$\stackrel{n}{m-1}$	$\begin{aligned} & n-1 \\ & m-1 \end{aligned}$

Edit Distance (VIII)

dependency graph:

Edit Distance (IX)

Edit Distance (IX)

iterative algorithm:

Edit Distance (IX)

iterative algorithm:
$\operatorname{dist}\left(x_{1} x_{2} \cdots x_{n}, y_{1} y_{2} \cdots y_{m}\right)$

Edit Distance (IX)

iterative algorithm:

$$
\begin{aligned}
& \operatorname{dist}\left(x_{1} x_{2} \cdots x_{n}, y_{1} y_{2} \cdots y_{m}\right) \\
& \quad \text { for } 0 \leq i \leq n
\end{aligned}
$$

Edit Distance (IX)

iterative algorithm:

$$
\begin{gathered}
\operatorname{dist}\left(x_{1} x_{2} \cdots x_{n}, y_{1} y_{2} \cdots y_{m}\right) \\
\text { for } 0 \leq i \leq n \\
d[i][0]=i
\end{gathered}
$$

Edit Distance (IX)

iterative algorithm:

$$
\begin{gathered}
\operatorname{dist}\left(x_{1} x_{2} \cdots x_{n}, y_{1} y_{2} \cdots y_{m}\right) \\
\quad \text { for } 0 \leq i \leq n \\
d[i][0]=i \\
\text { for } 0 \leq j \leq m
\end{gathered}
$$

Edit Distance (IX)

iterative algorithm:

$$
\begin{gathered}
\operatorname{dist}\left(x_{1} x_{2} \cdots x_{n}, y_{1} y_{2} \cdots y_{m}\right) \\
\text { for } 0 \leq i \leq n \\
d[i][0]=i \\
\text { for } 0 \leq j \leq m \\
d[0][j]=j
\end{gathered}
$$

Edit Distance (IX)

iterative algorithm:

$$
\begin{gathered}
\text { dist }\left(x_{1} x_{2} \cdots x_{n}, y_{1} y_{2} \cdots y_{m}\right) \\
\text { for } 0 \leq i \leq n \\
d[i][0]=i \\
\text { for } 0 \leq j \leq m \\
d[0][j]=j \\
\text { for } 0 \leq i \leq n \\
\text { for } 0 \leq j \leq m
\end{gathered}
$$

Edit Distance (IX)

iterative algorithm:

$$
\begin{gathered}
\text { dist }\left(x_{1} x_{2} \cdots x_{n}, y_{1} y_{2} \cdots y_{m}\right) \\
\text { for } 0 \leq i \leq n \\
d[i][0]=i \\
\text { for } 0 \leq j \leq m \\
d[0][j]=j \\
\text { for } 0 \leq i \leq n \\
\text { for } 0 \leq j \leq m \\
d[i][j]=
\end{gathered}
$$

Edit Distance (IX)

iterative algorithm:

$$
\begin{gathered}
\text { dist }\left(x_{1} x_{2} \cdots x_{n}, y_{1} y_{2} \cdots y_{m}\right) \\
\text { for } 0 \leq i \leq n \\
d[i][0]=i \\
\text { for } 0 \leq j \leq m \\
d[0][j]=j \\
\text { for } 0 \leq i \leq n \\
\text { for } 0 \leq j \leq m
\end{gathered}
$$

$$
d[i][j]=\min \{
$$

Edit Distance (IX)

iterative algorithm:

$$
\begin{aligned}
& \text { dist }\left(x_{1} x_{2} \cdots x_{n}, y_{1} y_{2} \cdots y_{m}\right) \\
& \text { for } 0 \leq i \leq n \\
& d[i][0]=i \\
& \text { for } 0 \leq j \leq m \\
& d[0][j]=j \\
& \text { for } 0 \leq i \leq n \\
& \text { for } 0 \leq j \leq m \\
& \\
& \qquad d[i][j]=\min \left\{\begin{array}{l}
d[i-1][j-1]+\mathbb{1} \llbracket x_{i} \neq y_{j} \rrbracket \\
\end{array}\right.
\end{aligned}
$$

Edit Distance (IX)

iterative algorithm:

$$
\begin{aligned}
& \text { dist }\left(x_{1} x_{2} \cdots x_{n}, y_{1} y_{2} \cdots y_{m}\right) \\
& \text { for } 0 \leq i \leq n \\
& d[i][0]=i \\
& \text { for } 0 \leq j \leq m \\
& d[0][j]=j \\
& \text { for } 0 \leq i \leq n \\
& \quad \text { for } 0 \leq j \leq m \\
& \qquad d[i][j]=\min \left\{\begin{array}{l}
d[i-1][j-1]+\mathbb{1}\left[x_{i} \neq y_{j} \rrbracket\right. \\
d[i-1][j]+1
\end{array}\right.
\end{aligned}
$$

Edit Distance (IX)

iterative algorithm:

$$
\begin{aligned}
& \operatorname{dist}\left(x_{1} x_{2} \cdots x_{n}, y_{1} y_{2} \cdots y_{m}\right) \\
& \quad \text { for } 0 \leq i \leq n \\
& \quad d[i][0]=i \\
& \text { for } 0 \leq j \leq m \\
& d[0][j]=j \\
& \text { for } 0 \leq i \leq n \\
& \quad \text { for } 0 \leq j \leq m \\
& \qquad d[i][j]=\min \left\{\begin{array}{l}
d[i-1][j-1]+\mathbb{1} \llbracket x_{i} \neq y_{j} \rrbracket \\
d[i-1][j]+1 \\
d[i][j-1]+1
\end{array}\right.
\end{aligned}
$$

Edit Distance (IX)

iterative algorithm:

$$
\begin{aligned}
& \text { dist }\left(x_{1} x_{2} \cdots x_{n}, y_{1} y_{2} \cdots y_{m}\right) \\
& \text { for } 0 \leq i \leq n \\
& d[i][0]=i \\
& \text { for } 0 \leq j \leq m \\
& d[0][j]=j \\
& \text { for } 0 \leq i \leq n \\
& \text { for } 0 \leq j \leq m \\
& \qquad d[i][j]=\min \left\{\begin{array}{l}
d[i-1][j-1]+\mathbb{1}\left[x_{i} \neq y_{j}\right] \\
d[i-1][j]+1 \\
d[i][j-1]+1
\end{array}\right.
\end{aligned}
$$

return $d[n][m]$

Edit Distance (IX)

iterative algorithm:

$$
\begin{aligned}
& \text { dist }\left(x_{1} x_{2} \cdots x_{n}, y_{1} y_{2} \cdots y_{m}\right) \\
& \text { for } 0 \leq i \leq n \\
& d[i][0]=i \\
& \text { for } 0 \leq j \leq m \\
& d[0][j]=j \\
& \text { for } 0 \leq i \leq n \\
& \text { for } 0 \leq j \leq m \\
& \qquad d[j][j]=\min \left\{\begin{array}{l}
d[i-1][j-1]+\mathbb{1}\left[x_{i} \neq y_{j}\right] \\
d[i-1][j]+1 \\
d[i][j-1]+1
\end{array}\right. \\
& \text { return } d[n][m]
\end{aligned}
$$

Edit Distance (IX)

iterative algorithm:

$$
\begin{gathered}
\text { dist }\left(x_{1} x_{2} \cdots x_{n}, y_{1} y_{2} \cdots y_{m}\right) \\
\text { for } 0 \leq i \leq n \\
d[i][0]=i \\
\text { for } 0 \leq j \leq m \\
d[0][j]=j \\
\text { for } 0 \leq i \leq n \\
\text { for } 0 \leq j \leq m
\end{gathered}
$$

$$
d[i][j]=\min \left\{\begin{array}{l}
d[i-1][j-1]+\mathbb{1} \llbracket x_{i} \neq y_{j} \rrbracket \\
d[i-1][j]+1 \\
d[i][j-1]+1
\end{array}\right.
$$

return $d[n][m]$
correctness:

Edit Distance (IX)

iterative algorithm:

$$
\begin{gathered}
\operatorname{dist}\left(x_{1} x_{2} \cdots x_{n}, y_{1} y_{2} \cdots y_{m}\right) \\
\text { for } 0 \leq i \leq n \\
d[i][0]=i \\
\text { for } 0 \leq j \leq m \\
d[0][j]=j \\
\text { for } 0 \leq i \leq n \\
\text { for } 0 \leq j \leq m
\end{gathered}
$$

$$
d[i][j]=\min \left\{\begin{array}{l}
d[i-1][j-1]+\mathbb{1} \llbracket x_{i} \neq y_{j} \rrbracket \\
d[i-1][j]+1 \\
d[i][j-1]+1
\end{array}\right.
$$

return $d[n][m]$
correctness: clear

Edit Distance (IX)

iterative algorithm:

$$
\begin{gathered}
\operatorname{dist}\left(x_{1} x_{2} \cdots x_{n}, y_{1} y_{2} \cdots y_{m}\right) \\
\text { for } 0 \leq i \leq n \\
d[i][0]=i \\
\text { for } 0 \leq j \leq m \\
d[0][j]=j \\
\text { for } 0 \leq i \leq n \\
\text { for } 0 \leq j \leq m
\end{gathered}
$$

$$
d[i][j]=\min \left\{\begin{array}{l}
d[i-1][j-1]+\mathbb{1} \llbracket x_{i} \neq y_{j} \rrbracket \\
d[i-1][j]+1 \\
d[i][j-1]+1
\end{array}\right.
$$

return $d[n][m]$
correctness: clear

complexity:

Edit Distance (IX)

iterative algorithm:

$$
\begin{gathered}
\operatorname{dist}\left(x_{1} x_{2} \cdots x_{n}, y_{1} y_{2} \cdots y_{m}\right) \\
\text { for } 0 \leq i \leq n \\
d[i][0]=i \\
\text { for } 0 \leq j \leq m \\
d[0][j]=j \\
\text { for } 0 \leq i \leq n \\
\text { for } 0 \leq j \leq m
\end{gathered}
$$

$$
d[i][j]=\min \left\{\begin{array}{l}
d[i-1][j-1]+\mathbb{1} \llbracket x_{i} \neq y_{j} \rrbracket \\
d[i-1][j]+1 \\
d[i][j-1]+1
\end{array}\right.
$$

return $d[n][m]$
correctness: clear
complexity: $O(n m)$ time,

Edit Distance (IX)

iterative algorithm:

$$
\begin{gathered}
\operatorname{dist}\left(x_{1} x_{2} \cdots x_{n}, y_{1} y_{2} \cdots y_{m}\right) \\
\text { for } 0 \leq i \leq n \\
d[i][0]=i \\
\text { for } 0 \leq j \leq m \\
d[0][j]=j \\
\text { for } 0 \leq i \leq n \\
\text { for } 0 \leq j \leq m
\end{gathered}
$$

$$
d[i][j]=\min \left\{\begin{array}{l}
d[i-1][j-1]+\mathbb{1} \llbracket x_{i} \neq y_{j} \rrbracket \\
d[i-1][j]+1 \\
d[i][j-1]+1
\end{array}\right.
$$

return $d[n][m]$
correctness: clear
complexity: $O(n m)$ time, $O(n m)$ space

Edit Distance (X)

Edit Distance (X)
Corollary

Edit Distance (X)

Corollary
Given two strings $x, y \in \Sigma^{\star}$ can compute the minimum cost alignment

Edit Distance (X)

Corollary
Given two strings $x, y \in \Sigma^{\star}$ can compute the minimum cost alignment in $O(n m)$-time and $O(n m)$-space.

Edit Distance (X)

Corollary
Given two strings $x, y \in \Sigma^{\star}$ can compute the minimum cost alignment in $O(\mathrm{~nm})$-time and $O(\mathrm{~nm})$-space.

Proof.

Edit Distance (X)

Corollary

Given two strings $x, y \in \Sigma^{\star}$ can compute the minimum cost alignment in $O(n m)$-time and $O(n m)$-space.

Proof.

Exercise.

Edit Distance (X)

Corollary

Given two strings $x, y \in \Sigma^{\star}$ can compute the minimum cost alignment in $O(n m)$-time and $O(n m)$-space.

Proof.

Exercise. Hint:

Edit Distance (X)

Corollary

Given two strings $x, y \in \Sigma^{\star}$ can compute the minimum cost alignment in $O(\mathrm{~nm})$-time and $O(\mathrm{~nm})$-space.

Proof.

Exercise. Hint: follow how each subproblem was solved.

Edit Distance (X)

Corollary

Given two strings $x, y \in \Sigma^{\star}$ can compute the minimum cost alignment in $O(n m)$-time and $O(n m)$-space.

Proof.

Exercise. Hint: follow how each subproblem was solved.

Dynamic Programming

Dynamic Programming

template:

Dynamic Programming

template:

- develop recursive algorithm

Dynamic Programming

template:

- develop recursive algorithm

■ understand structure of subproblems

Dynamic Programming

template:

- develop recursive algorithm

■ understand structure of subproblems
■ memoize

Dynamic Programming

template:

- develop recursive algorithm

■ understand structure of subproblems

- memoize
- implicitly,

Dynamic Programming

template:

- develop recursive algorithm

■ understand structure of subproblems

- memoize
- implicitly, via data structure

Dynamic Programming

template:

- develop recursive algorithm

■ understand structure of subproblems

- memoize
- implicitly, via data structure
- explicitly,

Dynamic Programming

template:

- develop recursive algorithm

■ understand structure of subproblems

- memoize
- implicitly, via data structure
- explicitly, converting to iterative algorithm

Dynamic Programming

template:

- develop recursive algorithm

■ understand structure of subproblems

- memoize
- implicitly, via data structure

■ explicitly, converting to iterative algorithm to traverse dependency graph

Dynamic Programming

template:

- develop recursive algorithm

■ understand structure of subproblems

- memoize
- implicitly, via data structure

■ explicitly, converting to iterative algorithm to traverse dependency graph via topological sort

Dynamic Programming

template:

- develop recursive algorithm

■ understand structure of subproblems

- memoize

■ implicitly, via data structure
■ explicitly, converting to iterative algorithm to traverse dependency graph via topological sort

- analysis

Dynamic Programming

template:

- develop recursive algorithm

■ understand structure of subproblems

- memoize
- implicitly, via data structure

■ explicitly, converting to iterative algorithm to traverse dependency graph via topological sort

- analysis (time,

Dynamic Programming

template:

- develop recursive algorithm

■ understand structure of subproblems

- memoize
- implicitly, via data structure

■ explicitly, converting to iterative algorithm to traverse dependency graph via topological sort

- analysis (time, space)

Dynamic Programming

template:

- develop recursive algorithm

■ understand structure of subproblems

- memoize

■ implicitly, via data structure
■ explicitly, converting to iterative algorithm to traverse dependency graph via topological sort

- analysis (time, space)
- further optimization

Knapsack

Knapsack

the knapsack problem:

Knapsack

the knapsack problem:
input: knapsack capacity $W \in \mathbb{N}$

Knapsack

the knapsack problem:
input: knapsack capacity $W \in \mathbb{N}$ (in pounds).

Knapsack

the knapsack problem:
input: knapsack capacity $W \in \mathbb{N}$ (in pounds). n items with weights $w_{1}, \ldots, w_{n} \in \mathbb{N}$,

Knapsack

the knapsack problem:
input: knapsack capacity $W \in \mathbb{N}$ (in pounds). n items with weights $w_{1}, \ldots, w_{n} \in \mathbb{N}$, and values $v_{1}, \ldots, v_{n} \in \mathbb{N}$.

Knapsack

the knapsack problem:
input: knapsack capacity $W \in \mathbb{N}$ (in pounds). n items with weights $w_{1}, \ldots, w_{n} \in \mathbb{N}$, and values $v_{1}, \ldots, v_{n} \in \mathbb{N}$.
goal: a subset $S \subseteq[n]$ of items

Knapsack

the knapsack problem:
input: knapsack capacity $W \in \mathbb{N}$ (in pounds). n items with weights $w_{1}, \ldots, w_{n} \in \mathbb{N}$, and values $v_{1}, \ldots, v_{n} \in \mathbb{N}$.
goal: a subset $S \subseteq[n]$ of items that fit in the knapsack,

Knapsack

the knapsack problem:
input: knapsack capacity $W \in \mathbb{N}$ (in pounds). n items with weights $w_{1}, \ldots, w_{n} \in \mathbb{N}$, and values $v_{1}, \ldots, v_{n} \in \mathbb{N}$.
goal: a subset $S \subseteq[n]$ of items that fit in the knapsack, with maximum value

Knapsack

the knapsack problem:
input: knapsack capacity $W \in \mathbb{N}$ (in pounds). n items with weights $w_{1}, \ldots, w_{n} \in \mathbb{N}$, and values $v_{1}, \ldots, v_{n} \in \mathbb{N}$.
goal: a subset $S \subseteq[n]$ of items that fit in the knapsack, with maximum value

$$
\max _{S \subseteq[n]} \sum_{i \in S} v_{i}
$$

Knapsack

the knapsack problem:
input: knapsack capacity $W \in \mathbb{N}$ (in pounds). n items with weights $w_{1}, \ldots, w_{n} \in \mathbb{N}$, and values $v_{1}, \ldots, v_{n} \in \mathbb{N}$.
goal: a subset $S \subseteq[n]$ of items that fit in the knapsack, with maximum value

$$
\max _{\substack{S \subseteq[n] \\ \sum_{i \in S} w_{i} \leq W}} \sum_{i \in S} v_{i}
$$

Knapsack

the knapsack problem:
input: knapsack capacity $W \in \mathbb{N}$ (in pounds). n items with weights $w_{1}, \ldots, w_{n} \in \mathbb{N}$, and values $v_{1}, \ldots, v_{n} \in \mathbb{N}$.
goal: a subset $S \subseteq[n]$ of items that fit in the knapsack, with maximum value

$$
\max _{\substack{S \subseteq[n] \\ \sum_{i \in S} w_{i} \leq W}} \sum_{i \in S} v_{i}
$$

remarks:

Knapsack

the knapsack problem:
input: knapsack capacity $W \in \mathbb{N}$ (in pounds). n items with weights $w_{1}, \ldots, w_{n} \in \mathbb{N}$, and values $v_{1}, \ldots, v_{n} \in \mathbb{N}$.
goal: a subset $S \subseteq[n]$ of items that fit in the knapsack, with maximum value

$$
\max _{\substack{S \subseteq[n] \\ \sum_{i \in S} w_{i} \leq W}} \sum_{i \in S} v_{i}
$$

remarks:

■ prototypical problem in combinatorial optimization,

Knapsack

the knapsack problem:
input: knapsack capacity $W \in \mathbb{N}$ (in pounds). n items with weights $w_{1}, \ldots, w_{n} \in \mathbb{N}$, and values $v_{1}, \ldots, v_{n} \in \mathbb{N}$.
goal: a subset $S \subseteq[n]$ of items that fit in the knapsack, with maximum value

$$
\max _{\substack{S \subseteq[n] \\ \sum_{i \in S} w_{i} \leq W}} \sum_{i \in S} v_{i}
$$

remarks:

- prototypical problem in combinatorial optimization, can be generalized in numerous ways

Knapsack

the knapsack problem:
input: knapsack capacity $W \in \mathbb{N}$ (in pounds). n items with weights $w_{1}, \ldots, w_{n} \in \mathbb{N}$, and values $v_{1}, \ldots, v_{n} \in \mathbb{N}$.
goal: a subset $S \subseteq[n]$ of items that fit in the knapsack, with maximum value

$$
\max _{\substack{S \subseteq[n] \\ \sum_{i \in S} w_{i} \leq W}} \sum_{i \in S} v_{i}
$$

remarks:

- prototypical problem in combinatorial optimization, can be generalized in numerous ways
- needs to be solved in practice

Knapsack (II)

Knapsack (II)

Knapsack (II)

Example

item	1	2	3	4	5
weight	1	2	5	6	7
value	1	6	18	22	28

Knapsack (II)

Example

item	1	2	3	4	5
weight	1	2	5	6	7
value	1	6	18	22	28

For $W=11$,

Knapsack (II)

Example

item	1	2	3	4	5
weight	1	2	5	6	7
value	1	6	18	22	28

For $W=11$, the best is $\{3,4\}$ giving value 40 .

Knapsack (II)

Example

item	1	2	3	4	5
weight	1	2	5	6	7
value	1	6	18	22	28

For $W=11$, the best is $\{3,4\}$ giving value 40 .
Definition

Knapsack (II)

Example

item	1	2	3	4	5
weight	1	2	5	6	7
value	1	6	18	22	28

For $W=11$, the best is $\{3,4\}$ giving value 40 .

Definition

In the special case of when $v_{i}=w_{i}$ for all i,

Knapsack (II)

Example

item	1	2	3	4	5
weight	1	2	5	6	7
value	1	6	18	22	28

For $W=11$, the best is $\{3,4\}$ giving value 40 .

Definition

In the special case of when $v_{i}=w_{i}$ for all i, the knapsack problem is called the subset sum problem.

Knapsack (III)

Knapsack (III)

item	1	2	3	4	5
value	1	6	16	22	28
weight	1	2	5	6	7

Knapsack (III)

item	1	2	3	4	5
value	1	6	16	22	28
weight	1	2	5	6	7

and weight limit $W=15$.

Knapsack (III)

item	1	2	3	4	5
value	1	6	16	22	28
weight	1	2	5	6	7

and weight limit $W=15$. What is the best solution value?

Knapsack (III)

item	1	2	3	4	5
value	1	6	16	22	28
weight	1	2	5	6	7

and weight limit $W=15$. What is the best solution value?
(a) 22
(b) 28
(c) 38
(d) 50
(e) 56

Knapsack (IV)

Knapsack (IV)

greedy approaches:

Knapsack (IV)

greedy approaches:

- greedily select by maximum value:

Knapsack (IV)

greedy approaches:
■ greedily select by maximum value:

item	1	2	3
value	2	2	3
weight	1	1	2

Knapsack (IV)

greedy approaches:

- greedily select by maximum value:

item	1	2	3
value	2	2	3
weight	1	1	2

For $W=2$,

Knapsack (IV)

greedy approaches:
■ greedily select by maximum value:

item	1	2	3
value	2	2	3
weight	1	1	2

For $W=2$, greedy-value will pick \{3\},

Knapsack (IV)

greedy approaches:

- greedily select by maximum value:

item	1	2	3
value	2	2	3
weight	1	1	2

For $W=2$, greedy-value will pick
$\{3\}$, but optimal is $\{1,2\}$.

Knapsack (IV)

greedy approaches:

- greedily select by maximum value:

item	1	2	3
value	2	2	3
weight	1	1	2

For $W=2$, greedy-value will pick
$\{3\}$, but optimal is $\{1,2\}$.

- greedily select by minimum weight:

Knapsack (IV)

greedy approaches:

- greedily select by maximum value:

item	1	2	3
value	2	2	3
weight	1	1	2

For $W=2$, greedy-value will pick
$\{3\}$, but optimal is $\{1,2\}$.

- greedily select by minimum weight:

item	1	2
value	1	3
weight	1	2

Knapsack (IV)

greedy approaches:

- greedily select by maximum value:

item	1	2	3
value	2	2	3
weight	1	1	2

For $W=2$, greedy-value will pick
$\{3\}$, but optimal is $\{1,2\}$.

- greedily select by minimum weight:

item	1	2
value	1	3
weight	1	2

For $W=2$,

Knapsack (IV)

greedy approaches:

- greedily select by maximum value:

item	1	2	3
value	2	2	3
weight	1	1	2

For $W=2$, greedy-value will pick
$\{3\}$, but optimal is $\{1,2\}$.

- greedily select by minimum weight:

item	1	2
value	1	3
weight	1	2

For $W=2$, greedy-weight will pick \{1\},

Knapsack (IV)

greedy approaches:

- greedily select by maximum value:

item	1	2	3
value	2	2	3
weight	1	1	2

For $W=2$, greedy-value will pick
$\{3\}$, but optimal is $\{1,2\}$.

- greedily select by minimum weight:

item	1	2
value	1	3
weight	1	2

For $W=2$, greedy-weight will pick
$\{1\}$, but optimal is $\{2\}$.

Knapsack (IV)

greedy approaches:

- greedily select by maximum value:

item	1	2	3
value	2	2	3
weight	1	1	2

For $W=2$, greedy-value will pick
$\{3\}$, but optimal is $\{1,2\}$.

- greedily select by minimum weight:

item	1	2
value	1	3
weight	1	2

For $W=2$, greedy-weight will pick $\{1\}$, but optimal is $\{2\}$.

- greedily select by maximum value/weight ratio:

Knapsack (IV)

greedy approaches:

- greedily select by maximum value:

item	1	2	3
value	2	2	3
weight	1	1	2

For $W=2$, greedy-value will pick
$\{3\}$, but optimal is $\{1,2\}$.

- greedily select by minimum weight:

item	1	2
value	1	3
weight	1	2

For $W=2$, greedy-weight will pick $\{1\}$, but optimal is $\{2\}$.

- greedily select by maximum value/weight ratio:

item	1	2	3
value	3	3	5
weight	2	2	3

Knapsack (IV)

greedy approaches:

- greedily select by maximum value:

item	1	2	3
value	2	2	3
weight	1	1	2

For $W=2$, greedy-value will pick
$\{3\}$, but optimal is $\{1,2\}$.

- greedily select by minimum weight:

item	1	2
value	1	3
weight	1	2

For $W=2$, greedy-weight will pick $\{1\}$, but optimal is $\{2\}$.

- greedily select by maximum value/weight ratio:

item	1	2	3
value	3	3	5
weight	2	2	3

For $W=4$,

Knapsack (IV)

greedy approaches:

- greedily select by maximum value:

item	1	2	3
value	2	2	3
weight	1	1	2

For $W=2$, greedy-value will pick $\{3\}$, but optimal is $\{1,2\}$.

- greedily select by minimum weight:

item	1	2
value	1	3
weight	1	2

For $W=2$, greedy-weight will pick $\{1\}$, but optimal is $\{2\}$.
sectares

- greedily select by maximum value/weight ratio:

item	1	2	3
value	3	3	5
weight	2	2	3

For $W=4$, greedy-value will pick \{3\},

Knapsack (IV)

greedy approaches:

- greedily select by maximum value:

item	1	2	3
value	2	2	3
weight	1	1	2

For $W=2$, greedy-value will pick $\{3\}$, but optimal is $\{1,2\}$.

- greedily select by minimum weight:

item	1	2
value	1	3
weight	1	2

For $W=2$, greedy-weight will pick $\{1\}$, but optimal is $\{2\}$.

- greedily select by maximum value/weight ratio:

item	1	2	3
value	3	3	5
weight	2	2	3

For $W=4$, greedy-value will pick $\{3\}$, but optimal is $\{1,2\}$.

Knapsack (IV)

greedy approaches:

- greedily select by maximum value:

item	1	2	3
value	2	2	3
weight	1	1	2

For $W=2$, greedy-value will pick $\{3\}$, but optimal is $\{1,2\}$.

- greedily select by minimum weight:

item	1	2
value	1	3
weight	1	2

For $W=2$, greedy-weight will pick $\{1\}$, but optimal is $\{2\}$.

■ greedily select by maximum value/weight ratio:

item	1	2	3
value	3	3	5
weight	2	2	3

For $W=4$, greedy-value will pick $\{3\}$, but optimal is $\{1,2\}$.

remark:

Knapsack (IV)

greedy approaches:

- greedily select by maximum value:

item	1	2	3
value	2	2	3
weight	1	1	2

For $W=2$, greedy-value will pick $\{3\}$, but optimal is $\{1,2\}$.

- greedily select by minimum weight:

item	1	2
value	1	3
weight	1	2

For $W=2$, greedy-weight will pick $\{1\}$, but optimal is $\{2\}$.

■ greedily select by maximum value/weight ratio:

item	1	2	3
value	3	3	5
weight	2	2	3

For $W=4$, greedy-value will pick $\{3\}$, but optimal is $\{1,2\}$.
remark: while greedy algorithms fail to get the best result,

Knapsack (IV)

greedy approaches:

- greedily select by maximum value:

item	1	2	3
value	2	2	3
weight	1	1	2

For $W=2$, greedy-value will pick
$\{3\}$, but optimal is $\{1,2\}$.

- greedily select by minimum weight:

item	1	2
value	1	3
weight	1	2

For $W=2$, greedy-weight will pick $\{1\}$, but optimal is $\{2\}$.

■ greedily select by maximum value/weight ratio:

item	1	2	3
value	3	3	5
weight	2	2	3

For $W=4$, greedy-value will pick $\{3\}$, but optimal is $\{1,2\}$.
remark: while greedy algorithms fail to get the best result, they can still be useful for getting solutions that are approximately the best

Knapsack (V)

Knapsack (V)

Lemma

Knapsack (V)

Lemma
Consider the instance $W,\left(v_{i}\right)_{i=1}^{n}$, and $\left(w_{i}\right)_{i=1}^{n}$,

Knapsack (V)

Lemma

Consider the instance $W,\left(v_{i}\right)_{i=1}^{n}$, and $\left(w_{i}\right)_{i=1}^{n}$, with optimal solution $S \subseteq[n]$.

Knapsack (V)

Lemma

Consider the instance $W,\left(v_{i}\right)_{i=1}^{n}$, and $\left(w_{i}\right)_{i=1}^{n}$, with optimal solution $S \subseteq[n]$. Then,

Knapsack (V)

Lemma

Consider the instance $W,\left(v_{i}\right)_{i=1}^{n}$, and $\left(w_{i}\right)_{i=1}^{n}$, with optimal solution $S \subseteq[n]$. Then, 1 if $n \notin S$,

Knapsack (V)

Lemma

Consider the instance $W,\left(v_{i}\right)_{i=1}^{n}$, and $\left(w_{i}\right)_{i=1}^{n}$, with optimal solution $S \subseteq[n]$. Then, 1 if $n \notin S$, then $S \subseteq[n-1]$

Knapsack (V)

Lemma

Consider the instance $W,\left(v_{i}\right)_{i=1}^{n}$, and $\left(w_{i}\right)_{i=1}^{n}$, with optimal solution $S \subseteq[n]$. Then, 1 if $n \notin S$, then $S \subseteq[n-1]$ is an optimal solution for the knapsack instance $\left(W,\left(v_{i}\right)_{i<n},\left(w_{i}\right)_{i<n}\right)$.

Knapsack (V)

Lemma

Consider the instance $W,\left(v_{i}\right)_{i=1}^{n}$, and $\left(w_{i}\right)_{i=1}^{n}$, with optimal solution $S \subseteq[n]$. Then, 1 if $n \notin S$, then $S \subseteq[n-1]$ is an optimal solution for the knapsack instance $\left(W,\left(v_{i}\right)_{i<n},\left(w_{i}\right)_{i<n}\right)$.
2 if $n \in S$,

Knapsack (V)

Lemma

Consider the instance $W,\left(v_{i}\right)_{i=1}^{n}$, and $\left(w_{i}\right)_{i=1}^{n}$, with optimal solution $S \subseteq[n]$. Then, 1 if $n \notin S$, then $S \subseteq[n-1]$ is an optimal solution for the knapsack instance $\left(W,\left(v_{i}\right)_{i<n},\left(w_{i}\right)_{i<n}\right)$.
2 if $n \in S$, then $S \backslash\{n\} \subseteq[n-1]$

Knapsack (V)

Lemma

Consider the instance $W,\left(v_{i}\right)_{i=1}^{n}$, and $\left(w_{i}\right)_{i=1}^{n}$, with optimal solution $S \subseteq[n]$. Then, 1 if $n \notin S$, then $S \subseteq[n-1]$ is an optimal solution for the knapsack instance $\left(W,\left(v_{i}\right)_{i<n},\left(w_{i}\right)_{i<n}\right)$.
2 if $n \in S$, then $S \backslash\{n\} \subseteq[n-1]$ is an optimal solution for the knapsack instance $\left(W-w_{n},\left(v_{i}\right)_{i<n},\left(w_{i}\right)_{i<n}\right)$.

Knapsack (V)

Lemma

Consider the instance $W,\left(v_{i}\right)_{i=1}^{n}$, and $\left(w_{i}\right)_{i=1}^{n}$, with optimal solution $S \subseteq[n]$. Then,
1 if $n \notin S$, then $S \subseteq[n-1]$ is an optimal solution for the knapsack instance

$$
\left(W,\left(v_{i}\right)_{i<n},\left(w_{i}\right)_{i<n}\right)
$$

2 if $n \in S$, then $S \backslash\{n\} \subseteq[n-1]$ is an optimal solution for the knapsack instance $\left(W-w_{n},\left(v_{i}\right)_{i<n},\left(w_{i}\right)_{i<n}\right)$.

Proof.

Knapsack (V)

Lemma

Consider the instance $W,\left(v_{i}\right)_{i=1}^{n}$, and $\left(w_{i}\right)_{i=1}^{n}$, with optimal solution $S \subseteq[n]$. Then,
1 if $n \notin S$, then $S \subseteq[n-1]$ is an optimal solution for the knapsack instance

$$
\left(W,\left(v_{i}\right)_{i<n},\left(w_{i}\right)_{i<n}\right)
$$

2 if $n \in S$, then $S \backslash\{n\} \subseteq[n-1]$ is an optimal solution for the knapsack instance $\left(W-w_{n},\left(v_{i}\right)_{i<n},\left(w_{i}\right)_{i<n}\right)$.

Proof.

1 Any $S \subseteq[n-1]$ feasible for $\left(W,\left(v_{i}\right)_{i<n},\left(w_{i}\right)_{i<n}\right)$,

Knapsack (V)

Lemma

Consider the instance $W,\left(v_{i}\right)_{i=1}^{n}$, and $\left(w_{i}\right)_{i=1}^{n}$, with optimal solution $S \subseteq[n]$. Then,
1 if $n \notin S$, then $S \subseteq[n-1]$ is an optimal solution for the knapsack instance

$$
\left(W,\left(v_{i}\right)_{i<n},\left(w_{i}\right)_{i<n}\right)
$$

2 if $n \in S$, then $S \backslash\{n\} \subseteq[n-1]$ is an optimal solution for the knapsack instance $\left(W-w_{n},\left(v_{i}\right)_{i<n},\left(w_{i}\right)_{i<n}\right)$.

Proof.

1 Any $S \subseteq[n-1]$ feasible for $\left(W,\left(v_{i}\right)_{i<n},\left(w_{i}\right)_{i<n}\right)$, will also satisfy the original weight constraint

Knapsack (V)

Lemma

Consider the instance $W,\left(v_{i}\right)_{i=1}^{n}$, and $\left(w_{i}\right)_{i=1}^{n}$, with optimal solution $S \subseteq[n]$. Then,
1 if $n \notin S$, then $S \subseteq[n-1]$ is an optimal solution for the knapsack instance

$$
\left(W,\left(v_{i}\right)_{i<n},\left(w_{i}\right)_{i<n}\right)
$$

2 if $n \in S$, then $S \backslash\{n\} \subseteq[n-1]$ is an optimal solution for the knapsack instance $\left(W-w_{n},\left(v_{i}\right)_{i<n},\left(w_{i}\right)_{i<n}\right)$.

Proof.

1 Any $S \subseteq[n-1]$ feasible for $\left(W,\left(v_{i}\right)_{i<n},\left(w_{i}\right)_{i<n}\right)$, will also satisfy the original weight constraint
2 Any $S \subseteq[n-1]$ feasible for $\left(W-w_{n},\left(v_{i}\right)_{i<n},\left(w_{i}\right)_{i<n}\right)$,

Knapsack (V)

Lemma

Consider the instance $W,\left(v_{i}\right)_{i=1}^{n}$, and $\left(w_{i}\right)_{i=1}^{n}$, with optimal solution $S \subseteq[n]$. Then,
1 if $n \notin S$, then $S \subseteq[n-1]$ is an optimal solution for the knapsack instance $\left(W,\left(v_{i}\right)_{i<n},\left(w_{i}\right)_{i<n}\right)$.
2 if $n \in S$, then $S \backslash\{n\} \subseteq[n-1]$ is an optimal solution for the knapsack instance $\left(W-w_{n},\left(v_{i}\right)_{i<n},\left(w_{i}\right)_{i<n}\right)$.

Proof.

1 Any $S \subseteq[n-1]$ feasible for $\left(W,\left(v_{i}\right)_{i<n},\left(w_{i}\right)_{i<n}\right)$, will also satisfy the original weight constraint
2 Any $S \subseteq[n-1]$ feasible for $\left(W-w_{n},\left(v_{i}\right)_{i<n},\left(w_{i}\right)_{i<n}\right)$, will have that $S \cup\{n\}$ will also satisfy the original weight constraint

Knapsack (V)

Lemma

Consider the instance $W,\left(v_{i}\right)_{i=1}^{n}$, and $\left(w_{i}\right)_{i=1}^{n}$, with optimal solution $S \subseteq[n]$. Then,
1 if $n \notin S$, then $S \subseteq[n-1]$ is an optimal solution for the knapsack instance $\left(W,\left(v_{i}\right)_{i<n},\left(w_{i}\right)_{i<n}\right)$.
2 if $n \in S$, then $S \backslash\{n\} \subseteq[n-1]$ is an optimal solution for the knapsack instance $\left(W-w_{n},\left(v_{i}\right)_{i<n},\left(w_{i}\right)_{i<n}\right)$.

Proof.

1 Any $S \subseteq[n-1]$ feasible for $\left(W,\left(v_{i}\right)_{i<n},\left(w_{i}\right)_{i<n}\right)$, will also satisfy the original weight constraint
2 Any $S \subseteq[n-1]$ feasible for $\left(W-w_{n},\left(v_{i}\right)_{i<n},\left(w_{i}\right)_{i<n}\right)$, will have that $S \cup\{n\}$ will also satisfy the original weight constraint

Knapsack (VI)

Knapsack (VI)

Corollary

Knapsack (VI)

Corollary
Fix an instance W, v_{1}, \ldots, v_{n}, and w_{1}, \ldots, w_{n}.

Knapsack (VI)

Corollary
Fix an instance W, v_{1}, \ldots, v_{n}, and w_{1}, \ldots, w_{n}. Define OPT (i, w) to be the maximum value of the knapsack instance w, v_{1}, \ldots, v_{i} and w_{1}, \ldots, w_{i}.

Knapsack (VI)

Corollary
Fix an instance W, v_{1}, \ldots, v_{n}, and w_{1}, \ldots, w_{n}. Define OPT (i, w) to be the maximum value of the knapsack instance w, v_{1}, \ldots, v_{i} and w_{1}, \ldots, w_{i}. Then,

$$
\mathrm{OPT}(i, w)=
$$

Knapsack (VI)

Corollary
Fix an instance W, v_{1}, \ldots, v_{n}, and w_{1}, \ldots, w_{n}. Define OPT (i, w) to be the maximum value of the knapsack instance w, v_{1}, \ldots, v_{i} and w_{1}, \ldots, w_{i}. Then,

$$
\operatorname{OPT}(i, w)=\left\{\begin{array}{l}
0 \\
\end{array}\right.
$$

Knapsack (VI)

Corollary

Fix an instance W, v_{1}, \ldots, v_{n}, and w_{1}, \ldots, w_{n}. Define OPT (i, w) to be the maximum value of the knapsack instance w, v_{1}, \ldots, v_{i} and w_{1}, \ldots, w_{i}. Then,

$$
\operatorname{OPT}(i, w)= \begin{cases}0 & i=0 \\ & \end{cases}
$$

Knapsack (VI)

Corollary

Fix an instance W, v_{1}, \ldots, v_{n}, and w_{1}, \ldots, w_{n}. Define OPT (i, w) to be the maximum value of the knapsack instance w, v_{1}, \ldots, v_{i} and w_{1}, \ldots, w_{i}. Then,

$$
\operatorname{OPT}(i, w)= \begin{cases}0 & i=0 \\ \operatorname{OPT}(i-1, w) & \end{cases}
$$

Knapsack (VI)

Corollary

Fix an instance W, v_{1}, \ldots, v_{n}, and w_{1}, \ldots, w_{n}. Define OPT (i, w) to be the maximum value of the knapsack instance w, v_{1}, \ldots, v_{i} and w_{1}, \ldots, w_{i}. Then,

$$
\operatorname{OPT}(i, w)= \begin{cases}0 & i=0 \\ \operatorname{OPT}(i-1, w) & w_{i}>w\end{cases}
$$

Knapsack (VI)

Corollary

Fix an instance W, v_{1}, \ldots, v_{n}, and w_{1}, \ldots, w_{n}. Define OPT (i, w) to be the maximum value of the knapsack instance w, v_{1}, \ldots, v_{i} and w_{1}, \ldots, w_{i}. Then,

$$
\operatorname{OPT}(i, w)= \begin{cases}0 & i=0 \\ \operatorname{OPT}(i-1, w) & w_{i}>w \\ \max \{ & \end{cases}
$$

Knapsack (VI)

Corollary

Fix an instance W, v_{1}, \ldots, v_{n}, and w_{1}, \ldots, w_{n}. Define OPT (i, w) to be the maximum value of the knapsack instance w, v_{1}, \ldots, v_{i} and w_{1}, \ldots, w_{i}. Then,

$$
\operatorname{OPT}(i, w)= \begin{cases}0 & i=0 \\ \operatorname{OPT}(i-1, w) & w_{i}>w \\ \max \{\operatorname{OPT}(i-1, w)\end{cases}
$$

Knapsack (VI)

Corollary

Fix an instance W, v_{1}, \ldots, v_{n}, and w_{1}, \ldots, w_{n}. Define OPT (i, w) to be the maximum value of the knapsack instance w, v_{1}, \ldots, v_{i} and w_{1}, \ldots, w_{i}. Then,

$$
\operatorname{OPT}(i, w)= \begin{cases}0 & i=0 \\
\operatorname{OPT}(i-1, w) & w_{i}>w \\
\max \left\{\begin{array}{l}
\operatorname{OPT}(i-1, w) \\
\operatorname{OPT}\left(i-1, w-w_{i}\right)+v_{i}
\end{array}\right. & \end{cases}
$$

Knapsack (VI)

Corollary

Fix an instance W, v_{1}, \ldots, v_{n}, and w_{1}, \ldots, w_{n}. Define OPT (i, w) to be the maximum value of the knapsack instance w, v_{1}, \ldots, v_{i} and w_{1}, \ldots, w_{i}. Then,

$$
\operatorname{OPT}(i, w)= \begin{cases}0 & i=0 \\
\operatorname{OPT}(i-1, w) & w_{i}>w \\
\max \left\{\begin{array}{l}
\operatorname{OPT}(i-1, w) \\
\operatorname{OPT}\left(i-1, w-w_{i}\right)+v_{i}
\end{array}\right. & \text { else }\end{cases}
$$

Knapsack (VI)

Corollary

Fix an instance W, v_{1}, \ldots, v_{n}, and w_{1}, \ldots, w_{n}. Define OPT (i, w) to be the maximum value of the knapsack instance w, v_{1}, \ldots, v_{i} and w_{1}, \ldots, w_{i}. Then,

$$
\operatorname{OPT}(i, w)= \begin{cases}0 & i=0 \\
\operatorname{OPT}(i-1, w) & w_{i}>w \\
\max \left\{\begin{array}{l}
\operatorname{OPT}(i-1, w) \\
\operatorname{OPT}\left(i-1, w-w_{i}\right)+v_{i}
\end{array}\right. & \text { else }\end{cases}
$$

\Longrightarrow from instance W, v_{1}, \ldots, v_{n}, and w_{1}, \ldots, w_{n}

Knapsack (VI)

Corollary

Fix an instance W, v_{1}, \ldots, v_{n}, and w_{1}, \ldots, w_{n}. Define OPT (i, w) to be the maximum value of the knapsack instance w, v_{1}, \ldots, v_{i} and w_{1}, \ldots, w_{i}. Then,

$$
\operatorname{OPT}(i, w)= \begin{cases}0 & i=0 \\
\operatorname{OPT}(i-1, w) & w_{i}>w \\
\max \left\{\begin{array}{l}
\operatorname{OPT}(i-1, w) \\
\operatorname{OPT}\left(i-1, w-w_{i}\right)+v_{i}
\end{array}\right. & \text { else }\end{cases}
$$

\Longrightarrow from instance W, v_{1}, \ldots, v_{n}, and w_{1}, \ldots, w_{n} we generate $O(n \cdot W)$-many subproblems

Knapsack (VI)

Corollary

Fix an instance W, v_{1}, \ldots, v_{n}, and w_{1}, \ldots, w_{n}. Define OPT (i, w) to be the maximum value of the knapsack instance w, v_{1}, \ldots, v_{i} and w_{1}, \ldots, w_{i}. Then,

$$
\operatorname{OPT}(i, w)= \begin{cases}0 & i=0 \\
\operatorname{OPT}(i-1, w) & w_{i}>w \\
\max \left\{\begin{array}{l}
\operatorname{OPT}(i-1, w) \\
\operatorname{OPT}\left(i-1, w-w_{i}\right)+v_{i}
\end{array}\right. & \text { else }\end{cases}
$$

\Longrightarrow from instance W, v_{1}, \ldots, v_{n}, and w_{1}, \ldots, w_{n} we generate $O(n \cdot W)$-many subproblems $(i, w)_{i \in[n], w \leq W}$.

Knapsack (VII)

Knapsack (VII)

an iterative algorithm:

Knapsack (VII)

an iterative algorithm: $M[i, w]$ will compute $\operatorname{OPT}(i, w)$

Knapsack (VII)

an iterative algorithm: $M[i, w]$ will
compute $\operatorname{OPT}(i, w)$

for $0 \leq w \leq W$

$M[0, w]=0$

Knapsack (VII)

an iterative algorithm: $M[i, w]$ will
compute OPT (i, w)

```
for 0\leqw\leqW
    M[0,w]=0
for 1\leqi\leqn
```


Knapsack (VII)

an iterative algorithm: $M[i, w]$ will
compute $\operatorname{OPT}(i, w)$

```
for 0\leqw\leqW
    M[0,w]=0
for 1\leqi\leqn
    for 1\leqw\leqW
```


Knapsack (VII)

an iterative algorithm: $M[i, w]$ will
compute OPT (i, w)

```
for 0\leqw\leqW
    M[0,w]=0
for 1\leqi\leqn
    for 1\leqw\leqW
        if }\mp@subsup{w}{i}{}>
```


Knapsack (VII)

an iterative algorithm: $M[i, w]$ will
compute OPT (i, w)

```
for 0\leqw\leqW
    M[0,w]=0
for 1\leqi\leqn
    for 1\leqw\leqW
        if }\mp@subsup{w}{i}{}>
            M[i,w]=M[i-1,w]
```


Knapsack (VII)

an iterative algorithm: $M[i, w]$ will
compute OPT (i, w)

```
for 0\leqw\leqW
    M[0,w]=0
for 1\leqi\leqn
    for 1\leqw\leqW
        if }\mp@subsup{w}{i}{}>
            M[i,w]=M[i-1,w]
        else
```


Knapsack (VII)

an iterative algorithm: $M[i, w]$ will
compute OPT (i, w)

```
for 0\leqw\leqW
    M[0,w]=0
for 1\leqi\leqn
    for 1\leqw\leqW
        if }\mp@subsup{w}{i}{}>
            M[i,w]=M[i-1,w]
        else
            M[i,w] = max(
```


Knapsack (VII)

an iterative algorithm: $M[i, w]$ will
compute OPT (i, w)

```
for \(0 \leq w \leq W\)
    \(M[0, w]=0\)
for \(1 \leq i \leq n\)
    for \(1 \leq w \leq W\)
        if \(w_{i}>w\)
            \(M[i, w]=M[i-1, w]\)
        else
            \(M[i, w]=\max (M[i-1, w]\),
```


Knapsack (VII)

an iterative algorithm: $M[i, w]$ will
compute OPT (i, w)

```
for 0\leqw\leqW
    M[0,w]=0
for 1\leqi\leqn
    for 1\leqw\leqW
        if }\mp@subsup{w}{i}{}>
            M[i,w]=M[i-1,w]
        else
            M[i,w] = max(M[i-1,w],
                M[i-1,w-wi]+ vi}
```


Knapsack (VII)

an iterative algorithm: $M[i, w]$ will compute $\operatorname{OPT}(i, w)$

```
for \(0 \leq w \leq W\)
    \(M[0, w]=0\)
for \(1 \leq i \leq n\)
    for \(1 \leq w \leq W\)
        if \(w_{i}>w\)
            \(M[i, w]=M[i-1, w]\)
        else
            \(M[i, w]=\max (M[i-1, w]\),
                \(\left.M\left[i-1, w-w_{i}\right]+v_{i}\right)\)
```


Knapsack (VII)

an iterative algorithm: $M[i, w]$ will
compute OPT (i, w)

```
for \(0 \leq w \leq W\)
    \(M[0, w]=0\)
    for \(1 \leq i \leq n\)
    for \(1 \leq w \leq W\)
        if \(w_{i}>w\)
            \(M[i, w]=M[i-1, w]\)
        else
            \(M[i, w]=\max (M[i-1, w]\),
            \(\left.M\left[i-1, w-w_{i}\right]+v_{i}\right)\)
```


correctness:

Knapsack (VII)

an iterative algorithm: $M[i, w]$ will
compute OPT (i, w)

```
for \(0 \leq w \leq W\)
    \(M[0, w]=0\)
for \(1 \leq i \leq n\)
    for \(1 \leq w \leq W\)
        if \(w_{i}>w\)
            \(M[i, w]=M[i-1, w]\)
        else
            \(M[i, w]=\max (M[i-1, w]\),
            \(\left.M\left[i-1, w-w_{i}\right]+v_{i}\right)\)
```

correctness: clear

Knapsack (VII)

an iterative algorithm: $M[i, w]$ will
compute $\operatorname{OPT}(i, w)$

```
for \(0 \leq w \leq W\)
    \(M[0, w]=0\)
for \(1 \leq i \leq n\)
    for \(1 \leq w \leq W\)
        if \(w_{i}>w\)
            \(M[i, w]=M[i-1, w]\)
        else
            \(M[i, w]=\max (M[i-1, w]\),
            \(\left.M\left[i-1, w-w_{i}\right]+v_{i}\right)\)
```

correctness: clear
complexity:

Knapsack (VII)

an iterative algorithm: $M[i, w]$ will
compute $\operatorname{OPT}(i, w)$

```
for \(0 \leq w \leq W\)
    \(M[0, w]=0\)
for \(1 \leq i \leq n\)
    for \(1 \leq w \leq W\)
        if \(w_{i}>w\)
            \(M[i, w]=M[i-1, w]\)
        else
            \(M[i, w]=\max (M[i-1, w]\),
                \(\left.M\left[i-1, w-w_{i}\right]+v_{i}\right)\)
```

correctness: clear

complexity:

- $O(n W)$ time,

Knapsack (VII)

an iterative algorithm: $M[i, w]$ will compute $\operatorname{OPT}(i, w)$

```
for \(0 \leq w \leq W\)
    \(M[0, w]=0\)
for \(1 \leq i \leq n\)
    for \(1 \leq w \leq W\)
        if \(w_{i}>w\)
            \(M[i, w]=M[i-1, w]\)
        else
            \(M[i, w]=\max (M[i-1, w]\),
            \(\left.M\left[i-1, w-w_{i}\right]+v_{i}\right)\)
```

correctness: clear

complexity:

- $O(n W)$ time, but input size is $O(n$

Knapsack (VII)

an iterative algorithm: $M[i, w]$ will compute $\operatorname{OPT}(i, w)$

```
for \(0 \leq w \leq W\)
    \(M[0, w]=0\)
for \(1 \leq i \leq n\)
    for \(1 \leq w \leq W\)
        if \(w_{i}>w\)
            \(M[i, w]=M[i-1, w]\)
        else
            \(M[i, w]=\max (M[i-1, w]\),
            \(\left.M\left[i-1, w-w_{i}\right]+v_{i}\right)\)
```

correctness: clear

complexity:

- $O(n W)$ time, but input size is

$$
O(n+\log W
$$

Knapsack (VII)

an iterative algorithm: $M[i, w]$ will compute $\operatorname{OPT}(i, w)$

```
for \(0 \leq w \leq W\)
    \(M[0, w]=0\)
for \(1 \leq i \leq n\)
    for \(1 \leq w \leq W\)
        if \(w_{i}>w\)
            \(M[i, w]=M[i-1, w]\)
        else
            \(M[i, w]=\max (M[i-1, w]\),
            \(\left.M\left[i-1, w-w_{i}\right]+v_{i}\right)\)
```

correctness: clear

complexity:

- $O(n W)$ time, but input size is

$$
O\left(n+\log W+\sum_{i=1}^{n}\left(\log v_{i}\right.\right.
$$

Knapsack (VII)

an iterative algorithm: $M[i, w]$ will compute $\operatorname{OPT}(i, w)$

```
for \(0 \leq w \leq W\)
    \(M[0, w]=0\)
for \(1 \leq i \leq n\)
    for \(1 \leq w \leq W\)
        if \(w_{i}>w\)
            \(M[i, w]=M[i-1, w]\)
        else
            \(M[i, w]=\max (M[i-1, w]\),
            \(\left.M\left[i-1, w-w_{i}\right]+v_{i}\right)\)
```

correctness: clear

complexity:

- $O(n W)$ time, but input size is

$$
O\left(n+\log W+\sum_{i=1}^{n}\left(\log v_{i}+\log w_{i}\right)\right)
$$

Knapsack (VII)

an iterative algorithm: $M[i, w]$ will compute OPT (i, w)

$$
\begin{aligned}
& \text { for } 0 \leq w \leq W \\
& M[0, w]=0 \\
& \text { for } 1 \leq i \leq n \\
& \text { for } 1 \leq w \leq W \\
& \text { if } w_{i}>w \\
& M[i, w]=M[i-1, w] \\
& \text { else } \\
& M[i, w]=\max (M[i-1, w], \\
& \left.M\left[i-1, w-w_{i}\right]+v_{i}\right)
\end{aligned}
$$

correctness: clear

complexity:

- $O(n W)$ time, but input size is

$$
O\left(n+\log W+\sum_{i=1}^{n}\left(\log v_{i}+\log w_{i}\right)\right)
$$

- e.g., $W=2^{n}$ has $O(n)$ bits but requires $\Omega\left(2^{n}\right)$ runtime

Knapsack (VII)

an iterative algorithm: $M[i, w]$ will compute OPT (i, w)

$$
\begin{aligned}
& \text { for } 0 \leq w \leq W \\
& M[0, w]=0 \\
& \text { for } 1 \leq i \leq n \\
& \text { for } 1 \leq w \leq W \\
& \text { if } w_{i}>w \\
& M[i, w]=M[i-1, w] \\
& \text { else } M[i, w]=\max (M[i-1, w] \\
& \left.M\left[i-1, w-w_{i}\right]+v_{i}\right)
\end{aligned}
$$

correctness: clear

complexity:

- $O(n W)$ time, but input size is

$$
O\left(n+\log W+\sum_{i=1}^{n}\left(\log v_{i}+\log w_{i}\right)\right)
$$

- e.g., $W=2^{n}$ has $O(n)$ bits but requires $\Omega\left(2^{n}\right)$ runtime \Longrightarrow running time is not polynomial in the input

Knapsack (VII)

an iterative algorithm: $M[i, w]$ will compute OPT (i, w)

$$
\begin{aligned}
& \text { for } 0 \leq w \leq W \\
& M[0, w]=0 \\
& \text { for } 1 \leq i \leq n \\
& \text { for } 1 \leq w \leq W \\
& \text { if } w_{i}>w \\
& \quad M[i, w]=M[i-1, w] \\
& \\
& \quad \text { else } M[i, w]=\max (M[i-1, w], \\
& \\
& \left.\quad M\left[i-1, w-w_{i}\right]+v_{i}\right)
\end{aligned}
$$

correctness: clear

complexity:

- $O(n W)$ time, but input size is

$$
O\left(n+\log W+\sum_{i=1}^{n}\left(\log v_{i}+\log w_{i}\right)\right)
$$

- e.g., $W=2^{n}$ has $O(n)$ bits but requires $\Omega\left(2^{n}\right)$ runtime \Longrightarrow running time is not polynomial in the input
- Algorithm is pseudo-polynomial:

Knapsack (VII)

an iterative algorithm: $M[i, w]$ will compute OPT (i, w)

$$
\begin{aligned}
& \text { for } 0 \leq w \leq W \\
& M[0, w]=0 \\
& \text { for } \begin{array}{l}
1 \leq i \leq n \\
\text { for } 1 \leq w \leq W \\
\\
\text { if } w_{i}>w \\
M[i, w]=M[i-1, w] \\
\text { else } \quad M[i, w]=\max (M[i-1, w] \\
\left.M\left[i-1, w-w_{i}\right]+v_{i}\right)
\end{array}
\end{aligned}
$$

correctness: clear

complexity:

- $O(n W)$ time, but input size is

$$
O\left(n+\log W+\sum_{i=1}^{n}\left(\log v_{i}+\log w_{i}\right)\right)
$$

- e.g., $W=2^{n}$ has $O(n)$ bits but requires $\Omega\left(2^{n}\right)$ runtime \Longrightarrow running time is not polynomial in the input
- Algorithm is pseudo-polynomial: running time is polynomial in magnitude of the input numbers

Knapsack (VII)

an iterative algorithm: $M[i, w]$ will compute OPT (i, w)

$$
\begin{aligned}
& \text { for } 0 \leq w \leq W \\
& M[0, w]=0 \\
& \text { for } 1 \leq i \leq n \\
& \text { for } 1 \leq w \leq w \\
& \text { if } w_{i}>w \\
& \quad M[i, w]=M[i-1, w] \\
& \\
& \quad \text { else } M[i, w]=\max (M[i-1, w], \\
& \left.\quad M\left[i-1, w-w_{i}\right]+v_{i}\right)
\end{aligned}
$$

correctness: clear

complexity:

- $O(n W)$ time, but input size is

$$
O\left(n+\log W+\sum_{i=1}^{n}\left(\log v_{i}+\log w_{i}\right)\right)
$$

- e.g., $W=2^{n}$ has $O(n)$ bits but requires $\Omega\left(2^{n}\right)$ runtime \Longrightarrow running time is not polynomial in the input
- Algorithm is pseudo-polynomial: running time is polynomial in magnitude of the input numbers

■ Knapsack is NP-hard in general

Knapsack (VII)

an iterative algorithm: $M[i, w]$ will compute OPT (i, w)

$$
\begin{aligned}
& \text { for } 0 \leq w \leq W \\
& M[0, w]=0 \\
& \text { for } \begin{array}{l}
1 \leq i \leq n \\
\text { for } 1 \leq w \leq W \\
\text { if } w_{i}>w \\
M[i, w]=M[i-1, w] \\
\text { else } \\
M[i, w]=\max (M[i-1, w] \\
\left.M\left[i-1, w-w_{i}\right]+v_{i}\right)
\end{array}
\end{aligned}
$$

correctness: clear

complexity:

- $O(n W)$ time, but input size is

$$
O\left(n+\log W+\sum_{i=1}^{n}\left(\log v_{i}+\log w_{i}\right)\right)
$$

- e.g., $W=2^{n}$ has $O(n)$ bits but requires $\Omega\left(2^{n}\right)$ runtime \Longrightarrow running time is not polynomial in the input
- Algorithm is pseudo-polynomial: running time is polynomial in magnitude of the input numbers

■ Knapsack is NP-hard in general \Longrightarrow no efficient algorithm is expected to compute the exact optimum

Knapsack (VII)

an iterative algorithm: $M[i, w]$ will compute OPT (i, w)

$$
\begin{aligned}
& \text { for } 0 \leq w \leq W \\
& M[0, w]=0 \\
& \text { for } 1 \leq i \leq n \\
& \text { for } 1 \leq w \leq W \\
& \text { if } w_{i}>w \\
& M[i, w]=M[i-1, w] \\
& \text { else } \quad M[i, w]=\max (M[i-1, w], \\
& \left.M\left[i-1, w-w_{i}\right]+v_{i}\right)
\end{aligned}
$$

correctness: clear

complexity:

- $O(n W)$ time, but input size is

$$
O\left(n+\log W+\sum_{i=1}^{n}\left(\log v_{i}+\log w_{i}\right)\right)
$$

- e.g., $W=2^{n}$ has $O(n)$ bits but requires $\Omega\left(2^{n}\right)$ runtime \Longrightarrow running time is not polynomial in the input
- Algorithm is pseudo-polynomial: running time is polynomial in magnitude of the input numbers

■ Knapsack is NP-hard in general \Longrightarrow no efficient algorithm is expected to compute the exact optimum

Knapsack (VII)

an iterative algorithm: $M[i, w]$ will compute OPT (i, w)

$$
\begin{aligned}
& \text { for } 0 \leq w \leq W \\
& M[0, w]=0 \\
& \text { for } 1 \leq i \leq n \\
& \text { for } 1 \leq w \leq W \\
& \text { if } w_{i}>w \\
& M[i, w]=M[i-1, w] \\
& \text { else } M[i, w]=\max (M[i-1, w], \\
& \left.M\left[i-1, w-w_{i}\right]+v_{i}\right)
\end{aligned}
$$

correctness: clear

complexity:

- $O(n W)$ time, but input size is

$$
O\left(n+\log W+\sum_{i=1}^{n}\left(\log v_{i}+\log w_{i}\right)\right)
$$

- e.g., $W=2^{n}$ has $O(n)$ bits but requires $\Omega\left(2^{n}\right)$ runtime \Longrightarrow running time is not polynomial in the input
- Algorithm is pseudo-polynomial: running time is polynomial in magnitude of the input numbers

■ Knapsack is NP-hard in general \Longrightarrow no efficient algorithm is expected to compute the exact optimum
punchline: had to correctly parameterize knapsack sub-problems $\left(v_{j}\right)_{j \leq i},\left(w_{j}\right)_{j \leq i}$ by also considering arbitrary w.

Knapsack (VII)

an iterative algorithm: $M[i, w]$ will compute OPT (i, w)

$$
\begin{aligned}
& \text { for } 0 \leq w \leq W \\
& M[0, w]=0 \\
& \text { for } 1 \leq i \leq n \\
& \text { for } 1 \leq w \leq W \\
& \text { if } w_{i}>w \\
& M[i, w]=M[i-1, w] \\
& \text { else } M[i, w]=\max (M[i-1, w], \\
& \left.M\left[i-1, w-w_{i}\right]+v_{i}\right)
\end{aligned}
$$

correctness: clear

complexity:

- $O(n W)$ time, but input size is

$$
O\left(n+\log W+\sum_{i=1}^{n}\left(\log v_{i}+\log w_{i}\right)\right)
$$

- e.g., $W=2^{n}$ has $O(n)$ bits but requires $\Omega\left(2^{n}\right)$ runtime \Longrightarrow running time is not polynomial in the input
- Algorithm is pseudo-polynomial: running time is polynomial in magnitude of the input numbers

■ Knapsack is NP-hard in general \Longrightarrow no efficient algorithm is expected to compute the exact optimum
punchline: had to correctly parameterize knapsack sub-problems $\left(v_{j}\right)_{j \leq i},\left(w_{j}\right)_{j \leq i}$ by also considering arbitrary w. This is a common theme in dynamic programming problems.

Today

today:

- recursion
- dynamic programming

■ fibonacci numbers

- edit distance
- knapsack
next time: more dynamic programming logistics:
- pset0 due R5, (aka, tomorrow) - submit individually!
- pset1 out tomorrow, due R5 (next week)
- piazza signup

1 Title
2 Today
3 Recursion
4 Recursion (II)
5 Recursion (II)
6 Fibonacci Numbers
7 Fibonacci Numbers (II)
8 Fibonacci Numbers (III)
9 Fibonacci Numbers (IV)
10 Memoization
11 Memoization (II)
12 Memoization (III)
13 Fibonacci Numbers (V)
14 Memoization (IV)
15 Edit Distance
16 Edit Distance (II)

```
17 Edit Distance (III)
18 Edit Distance (IV)
IG Edit Distance (V)
20 Edit Distance (VI)
21 Edit Distance (VII)
22 Edit Distance (VIII)
23 Edit Distance (IX)
24 Edit Distance (X)
25 Dynamic Programming
26 Knapsack
27 Knapsack (II)
28 Knapsack (III)
2g Knapsack (IV)
30 Knapsack (V)
31 Knapsack (VI)
32 Knapsack (VII)
33 Today
```

