cs473: Algorithms Lecture 3: Dynamic Programming

Michael A. Forbes

University of Illinois at Urbana-Champaign

September 2, 2019

logistics:

pset0 due R5,

logistics:

■ pset0 due R5, (aka, tomorrow)

logistics:

■ pset0 due R5, (aka, tomorrow) — submit *individually*!

- pset0 due R5, (aka, tomorrow) submit individually!
- pset1 out tomorrow,

- pset0 due R5, (aka, tomorrow) submit individually!
- pset1 out tomorrow, due R5 (next week)

- pset0 due R5, (aka, tomorrow) submit individually!
- pset1 out tomorrow, due R5 (next week)
- piazza signup

logistics:

- pset0 due R5, (aka, tomorrow) submit individually!
- pset1 out tomorrow, due R5 (next week)
- piazza signup

last lecture:

logistics:

- pset0 due R5, (aka, tomorrow) submit individually!
- pset1 out tomorrow, due R5 (next week)
- piazza signup

last lecture:

divide and conqueror

logistics:

- pset0 due R5, (aka, tomorrow) submit *individually*!
- pset1 out tomorrow, due R5 (next week)
- piazza signup

last lecture:

- divide and conqueror
 - triangle detection

logistics:

- pset0 due R5, (aka, tomorrow) submit *individually*!
- pset1 out tomorrow, due R5 (next week)
- piazza signup

last lecture:

- divide and conqueror
 - triangle detection
 - matrix multiplication

logistics:

- pset0 due R5, (aka, tomorrow) submit *individually*!
- pset1 out tomorrow, due R5 (next week)
- piazza signup

last lecture:

- divide and conqueror
 - triangle detection
 - matrix multiplication

today:

logistics:

- pset0 due R5, (aka, tomorrow) submit *individually*!
- pset1 out tomorrow, due R5 (next week)
- piazza signup

last lecture:

- divide and conqueror
 - triangle detection
 - matrix multiplication

today:

recursion

logistics:

- pset0 due R5, (aka, tomorrow) submit *individually*!
- pset1 out tomorrow, due R5 (next week)
- piazza signup

last lecture:

- divide and conqueror
 - triangle detection
 - matrix multiplication

today:

- recursion
- dynamic programming

Definition

Definition

A **reduction** transforms a given problem into a yet another problem,

Definition

A **reduction** transforms a given problem into a yet another problem, possibly into *several instances* of another problem.

Definition

A **reduction** transforms a given problem into a yet another problem, possibly into *several instances* of another problem.

Recursion is a reduction from one instance of a problem to instances of the *same* problem.

Definition

A **reduction** transforms a given problem into a yet another problem, possibly into *several instances* of another problem.

Recursion is a reduction from one instance of a problem to instances of the *same* problem.

example

Definition

A **reduction** transforms a given problem into a yet another problem, possibly into *several instances* of another problem.

Recursion is a reduction from one instance of a problem to instances of the *same* problem.

example (Karatsuba,

Definition

A **reduction** transforms a given problem into a yet another problem, possibly into *several instances* of another problem.

Recursion is a reduction from one instance of a problem to instances of the *same* problem.

example (Karatsuba, Strassen, ...):

Definition

A **reduction** transforms a given problem into a yet another problem, possibly into *several instances* of another problem.

Recursion is a reduction from one instance of a problem to instances of the *same* problem.

example (Karatsuba, Strassen, ...):

■ reduce problem instances of size n to problem instances of size n/2

Definition

A **reduction** transforms a given problem into a yet another problem, possibly into *several instances* of another problem.

Recursion is a reduction from one instance of a problem to instances of the *same* problem.

example (Karatsuba, Strassen, ...):

- reduce problem instances of size n to problem instances of size n/2
- \blacksquare terminate recursion at O(1)-size problem instances,

Definition

A **reduction** transforms a given problem into a yet another problem, possibly into *several instances* of another problem.

Recursion is a reduction from one instance of a problem to instances of the *same* problem.

example (Karatsuba, Strassen, ...):

- reduce problem instances of size n to problem instances of size n/2
- terminate recursion at O(1)-size problem instances, solve straightforwardly as a base case

recursive paradigms:

recursive paradigms:

■ tail recursion:

recursive paradigms:

■ tail recursion: expend effort

recursive paradigms:

■ tail recursion: expend effort to reduce given problem to *single* problem.

recursive paradigms:

■ **tail recursion**: expend effort to reduce given problem to *single* (smaller) problem.

recursive paradigms:

■ tail recursion: expend effort to reduce given problem to *single* (smaller) problem. Often can be reformulated as a non-recursive *iterative* algorithm.

recursive paradigms:

- tail recursion: expend effort to reduce given problem to *single* (smaller) problem. Often can be reformulated as a non-recursive *iterative* algorithm.
- divide and conquer:

recursive paradigms:

- tail recursion: expend effort to reduce given problem to *single* (smaller) problem. Often can be reformulated as a non-recursive *iterative* algorithm.
- divide and conquer: expend effort to reduce

- tail recursion: expend effort to reduce given problem to *single* (smaller) problem. Often can be reformulated as a non-recursive *iterative* algorithm.
- divide and conquer: expend effort to reduce (divide)

- tail recursion: expend effort to reduce given problem to *single* (smaller) problem. Often can be reformulated as a non-recursive *iterative* algorithm.
- **divide and conquer:** expend effort to reduce (divide) given problem to *multiple*, smaller problems,

- tail recursion: expend effort to reduce given problem to *single* (smaller) problem. Often can be reformulated as a non-recursive *iterative* algorithm.
- **divide and conquer:** expend effort to reduce (divide) given problem to *multiple*, *independent* smaller problems,

- tail recursion: expend effort to reduce given problem to *single* (smaller) problem. Often can be reformulated as a non-recursive *iterative* algorithm.
- **divide and conquer:** expend effort to reduce (divide) given problem to *multiple*, *independent* smaller problems, which are solved separately.

- tail recursion: expend effort to reduce given problem to *single* (smaller) problem. Often can be reformulated as a non-recursive *iterative* algorithm.
- **divide and conquer:** expend effort to reduce (divide) given problem to *multiple*, *independent* smaller problems, which are solved separately. Solutions to smaller problems are combined to solve original problem

- tail recursion: expend effort to reduce given problem to *single* (smaller) problem. Often can be reformulated as a non-recursive *iterative* algorithm.
- **divide and conquer:** expend effort to reduce (divide) given problem to *multiple*, *independent* smaller problems, which are solved separately. Solutions to smaller problems are combined to solve original problem (conquer).

- tail recursion: expend effort to reduce given problem to *single* (smaller) problem. Often can be reformulated as a non-recursive *iterative* algorithm.
- **divide and conquer:** expend effort to reduce (divide) given problem to *multiple*, *independent* smaller problems, which are solved separately. Solutions to smaller problems are combined to solve original problem (conquer). For example:

- **tail recursion**: expend effort to reduce given problem to *single* (smaller) problem. Often can be reformulated as a non-recursive *iterative* algorithm.
- divide and conquer: expend effort to reduce (divide) given problem to multiple, independent smaller problems, which are solved separately. Solutions to smaller problems are combined to solve original problem (conquer). For example: Karatsuba,

- tail recursion: expend effort to reduce given problem to *single* (smaller) problem. Often can be reformulated as a non-recursive *iterative* algorithm.
- divide and conquer: expend effort to reduce (divide) given problem to multiple, independent smaller problems, which are solved separately. Solutions to smaller problems are combined to solve original problem (conquer). For example: Karatsuba, Strassen,

- tail recursion: expend effort to reduce given problem to *single* (smaller) problem. Often can be reformulated as a non-recursive *iterative* algorithm.
- **divide and conquer:** expend effort to reduce (divide) given problem to *multiple*, *independent* smaller problems, which are solved separately. Solutions to smaller problems are combined to solve original problem (conquer). For example: Karatsuba, Strassen,

- tail recursion: expend effort to reduce given problem to *single* (smaller) problem. Often can be reformulated as a non-recursive *iterative* algorithm.
- divide and conquer: expend effort to reduce (divide) given problem to *multiple*, *independent* smaller problems, which are solved separately. Solutions to smaller problems are combined to solve original problem (conquer). For example: Karatsuba, Strassen,
- dynamic programming:

- tail recursion: expend effort to reduce given problem to *single* (smaller) problem. Often can be reformulated as a non-recursive *iterative* algorithm.
- divide and conquer: expend effort to reduce (divide) given problem to *multiple*, *independent* smaller problems, which are solved separately. Solutions to smaller problems are combined to solve original problem (conquer). For example: Karatsuba, Strassen,
- dynamic programming: expend effort to reduce given problem to multiple smaller problems.

- tail recursion: expend effort to reduce given problem to *single* (smaller) problem. Often can be reformulated as a non-recursive *iterative* algorithm.
- divide and conquer: expend effort to reduce (divide) given problem to *multiple*, *independent* smaller problems, which are solved separately. Solutions to smaller problems are combined to solve original problem (conquer). For example: Karatsuba, Strassen,
- dynamic programming: expend effort to reduce given problem to multiple correlated smaller problems.

- **tail recursion**: expend effort to reduce given problem to *single* (smaller) problem. Often can be reformulated as a non-recursive *iterative* algorithm.
- divide and conquer: expend effort to reduce (divide) given problem to *multiple*, *independent* smaller problems, which are solved separately. Solutions to smaller problems are combined to solve original problem (conquer). For example: Karatsuba, Strassen,
- dynamic programming: expend effort to reduce given problem to multiple correlated smaller problems. Naive recursion often not efficient,

- tail recursion: expend effort to reduce given problem to *single* (smaller) problem. Often can be reformulated as a non-recursive *iterative* algorithm.
- divide and conquer: expend effort to reduce (divide) given problem to *multiple*, *independent* smaller problems, which are solved separately. Solutions to smaller problems are combined to solve original problem (conquer). For example: Karatsuba, Strassen,
- dynamic programming: expend effort to reduce given problem to multiple correlated smaller problems. Naive recursion often not efficient, use memoization to avoid wasteful recomputation.

foo(X)

foo(X) **if** X is a base case

foo(X)if X is a base case solve it

```
foo(X)

if X is a base case solve it return solution
```

```
foo(X)

if X is a base case solve it return solution else
```

```
foo(X)

if X is a base case solve it return solution else do stuff
```

```
\begin{array}{c} \mathbf{foo}(X) \\ \quad \mathbf{if} \ X \ \text{is a base case} \\ \quad \text{solve it} \\ \quad \mathbf{return} \ \text{solution} \\ \quad \mathbf{else} \\ \quad \quad do \ stuff \\ \quad \mathbf{foo}(X_1) \end{array}
```

```
\begin{array}{c} \textbf{foo}(X) \\ \textbf{if} \ X \ \text{is a base case} \\ \text{solve it} \\ \textbf{return} \ \text{solution} \\ \textbf{else} \\ do \ stuff \\ \textbf{foo}(X_1) \\ do \ stuff \end{array}
```

```
\begin{array}{c} \textbf{foo}(X) \\ \textbf{if} \ X \ \text{is a base case} \\ \text{solve it} \\ \textbf{return} \ \text{solution} \\ \textbf{else} \\ do \ stuff \\ foo(X_1) \\ do \ stuff \\ foo(X_2) \\ foo(X_3) \end{array}
```

```
\begin{array}{c} \textbf{foo}(X) \\ \textbf{if} \ X \ \text{is a base case} \\ \text{solve it} \\ \textbf{return} \ \text{solution} \\ \textbf{else} \\ \\ do \ stuff \\ foo(X_1) \\ do \ stuff \\ foo(X_2) \\ foo(X_3) \\ more \ stuff \end{array}
```

```
foo(X)
    if X is a base case
         solve it
         return solution
    else
         do stuff
         foo(X_1)
         do stuff
         foo(X_2)
         foo(X_3)
         more stuff
         return solution for X
```

```
foo(X)
    if X is a base case
         solve it
         return solution
    else
         do stuff
         foo(X_1)
         do stuff
         foo(X_2)
         foo(X_3)
         more stuff
         return solution for X
```

```
foo(X)
    if X is a base case
         solve it
         return solution
    else
         do stuff
         foo(X_1)
         do stuff
         foo(X_2)
         foo(X_3)
         more stuff
         return solution for X
```

analysis:

```
foo(X)
    if X is a base case
         solve it
         return solution
    else
         do stuff
         foo(X_1)
         do stuff
         foo(X_2)
         foo(X_3)
         more stuff
         return solution for X
```

analysis:

■ recursion tree:

```
foo(X)
    if X is a base case
         solve it
         return solution
    else
         do stuff
         foo(X_1)
         do stuff
         foo(X_2)
         foo(X_3)
         more stuff
         return solution for X
```

analysis:

■ recursion tree: each instance X spawns new children X_1, X_2, X_3

```
foo(X)
    if X is a base case
         solve it
         return solution
    else
         do stuff
         foo(X_1)
         do stuff
         foo(X_2)
         foo(X_3)
         more stuff
         return solution for X
```

analysis:

- recursion tree: each instance X spawns new children X_1, X_2, X_3
- dependency graph:

```
foo(X)
    if X is a base case
         solve it
         return solution
     else
         do stuff
         foo(X_1)
         do stuff
         foo(X_2)
         foo(X_3)
         more stuff
         return solution for X
```

analysis:

- recursion tree: each instance X spawns new children X_1, X_2, X_3
- dependency graph: each instance X links to sub-problems X_1, X_2, X_3

Fibonacci Numbers

Fibonacci Numbers

Definition (Fibonacci 1200,)

Fibonacci Numbers

Definition (Fibonacci 1200, Pingala -200)

Definition (Fibonacci 1200, Pingala -200)

Definition (Fibonacci 1200, Pingala -200)

Definition (Fibonacci 1200, Pingala -200)

$$F_0 = 0$$

Definition (Fibonacci 1200, Pingala -200)

- $F_0 = 0$
- $F_1 = 1$

Definition (Fibonacci 1200, Pingala -200)

- $F_0 = 0$
- $F_1 = 1$
- $F_n = F_{n-1} + F_{n-2}$,

Definition (Fibonacci 1200, Pingala -200)

- $F_0 = 0$
- $F_1 = 1$
- $F_n = F_{n-1} + F_{n-2}$, for $n \ge 2$

Definition (Fibonacci 1200, Pingala -200)

The Fibonacci sequence $F_0, F_1, F_2, F_3, \ldots \in \mathbb{N}$ is the sequence of numbers defined by

- $F_0 = 0$
- $F_1 = 1$
- $F_n = F_{n-1} + F_{n-2}$, for $n \ge 2$

Definition (Fibonacci 1200, Pingala -200)

The Fibonacci sequence $F_0, F_1, F_2, F_3, \ldots \in \mathbb{N}$ is the sequence of numbers defined by

- $F_0 = 0$
- $F_1 = 1$
- $F_n = F_{n-1} + F_{n-2}$, for $n \ge 2$

remarks:

arises in surprisingly many places

Definition (Fibonacci 1200, Pingala -200)

The Fibonacci sequence $F_0, F_1, F_2, F_3, \ldots \in \mathbb{N}$ is the sequence of numbers defined by

- $F_0 = 0$
- $F_1 = 1$
- $F_n = F_{n-1} + F_{n-2}$, for $n \ge 2$

remarks:

■ arises in surprisingly many places — the journal *The Fibonacci Quarterly*

Definition (Fibonacci 1200, Pingala -200)

The Fibonacci sequence $F_0, F_1, F_2, F_3, \ldots \in \mathbb{N}$ is the sequence of numbers defined by

- $F_0 = 0$
- $F_1 = 1$
- $F_n = F_{n-1} + F_{n-2}$, for $n \ge 2$

- arises in surprisingly many places the journal *The Fibonacci Quarterly*
- $F_n = \frac{\varphi^n (1 \varphi)^n}{\sqrt{5}},$

Definition (Fibonacci 1200, Pingala -200)

The Fibonacci sequence $F_0, F_1, F_2, F_3, \ldots \in \mathbb{N}$ is the sequence of numbers defined by

- $F_0 = 0$
- $F_1 = 1$
- $F_n = F_{n-1} + F_{n-2}$, for $n \ge 2$

- arises in surprisingly many places the journal *The Fibonacci Quarterly*
- $F_n = \frac{\varphi^n (1-\varphi)^n}{\sqrt{5}}$, φ is the golden ratio $\varphi := \frac{1+\sqrt{5}}{2}$

Definition (Fibonacci 1200, Pingala -200)

The Fibonacci sequence $F_0, F_1, F_2, F_3, \ldots \in \mathbb{N}$ is the sequence of numbers defined by

- $F_0 = 0$
- $F_1 = 1$
- $F_n = F_{n-1} + F_{n-2}$, for $n \ge 2$

- arises in surprisingly many places the journal *The Fibonacci Quarterly*
- $F_n = \frac{\varphi^n (1-\varphi)^n}{\sqrt{5}}$, φ is the golden ratio $\varphi := \frac{1+\sqrt{5}}{2} \approx 1.618 \cdots$

Definition (Fibonacci 1200, Pingala -200)

The Fibonacci sequence $F_0, F_1, F_2, F_3, \ldots \in \mathbb{N}$ is the sequence of numbers defined by

- $F_0 = 0$
- $F_1 = 1$
- $F_n = F_{n-1} + F_{n-2}$, for $n \ge 2$

- arises in surprisingly many places the journal *The Fibonacci Quarterly*
- $F_n = \frac{\varphi^n (1-\varphi)^n}{\sqrt{5}}$, φ is the golden ratio $\varphi := \frac{1+\sqrt{5}}{2} \approx 1.618 \cdots$
- $\blacksquare \implies 1 \varphi \approx -.618 \cdots$

Definition (Fibonacci 1200, Pingala -200)

The Fibonacci sequence $F_0, F_1, F_2, F_3, \ldots \in \mathbb{N}$ is the sequence of numbers defined by

- $F_0 = 0$
- $F_1 = 1$
- $F_n = F_{n-1} + F_{n-2}$, for $n \ge 2$

- arises in surprisingly many places the journal *The Fibonacci Quarterly*
- $F_n = \frac{\varphi^n (1-\varphi)^n}{\sqrt{5}}$, φ is the golden ratio $\varphi := \frac{1+\sqrt{5}}{2} \approx 1.618 \cdots$
- $\blacksquare \implies 1 \varphi \approx -.618 \cdots \implies |(1 \varphi)^n| \le 1,$

Definition (Fibonacci 1200, Pingala -200)

The Fibonacci sequence $F_0, F_1, F_2, F_3, \ldots \in \mathbb{N}$ is the sequence of numbers defined by

- $F_0 = 0$
- $F_1 = 1$
- $F_n = F_{n-1} + F_{n-2}$, for $n \ge 2$

- arises in surprisingly many places the journal *The Fibonacci Quarterly*
- $F_n = \frac{\varphi^n (1-\varphi)^n}{\sqrt{5}}$, φ is the golden ratio $\varphi := \frac{1+\sqrt{5}}{2} \approx 1.618 \cdots$
- \blacksquare \Longrightarrow $1-\varphi \approx -.618 \cdots \Longrightarrow |(1-\varphi)^n| \leq 1$, and further $(1-\varphi)^n \to_{n\to\infty} 0$

Definition (Fibonacci 1200, Pingala -200)

The Fibonacci sequence $F_0, F_1, F_2, F_3, \ldots \in \mathbb{N}$ is the sequence of numbers defined by

- $F_0 = 0$
- $F_1 = 1$
- $F_n = F_{n-1} + F_{n-2}$, for $n \ge 2$

- arises in surprisingly many places the journal *The Fibonacci Quarterly*
- $F_n = \frac{\varphi^n (1-\varphi)^n}{\sqrt{5}}$, φ is the golden ratio $\varphi := \frac{1+\sqrt{5}}{2} \approx 1.618 \cdots$
- $\implies 1 \varphi \approx -.618 \cdots \implies |(1 \varphi)^n| \le 1, \text{ and further } (1 \varphi)^n \to_{n \to \infty} 0$ $\implies F_n = \Theta(\varphi^n).$

question:

question: given n, compute F_n .

question: given n, compute F_n .

answer:

```
question: given n, compute F_n.
```

answer:

fib(n):

```
question: given n, compute F_n. answer:

fib(n):

if n = 0
```

question: given n, compute F_n .

answer:

```
 \begin{aligned} & \text{fib}(n): \\ & & \text{if } n = 0 \\ & & \text{return } 0 \\ & & \text{elif } n = 1 \\ & & \text{return } 1 \\ & & \text{else} \\ & & & \text{return } \text{fib}(n-1) + \text{fib}(n-2) \end{aligned}
```

question: given n, compute F_n . answer:

```
fib(n):
    if n = 0
        return 0
    elif n = 1
        return 1
    else
        return fib(n-1) + fib(n-2)
```

correctness:

question: given n, compute F_n .

answer:

```
\begin{array}{l} \mathtt{fib}(n): \\ & \mathtt{if} \ n = 0 \\ & \mathtt{return} \ 0 \\ & \mathtt{elif} \ n = 1 \\ & \mathtt{return} \ 1 \\ & \mathtt{else} \\ & \mathtt{return} \ \mathtt{fib}(n-1) \ + \ \mathtt{fib}(n-2) \end{array}
```

correctness: clear

question: given n, compute F_n . answer:

```
fib(n):
    if n = 0
        return 0
    elif n = 1
        return 1
    else
        return fib(n-1) + fib(n-2)
```

correctness: clear

complexity:

question: given n, compute F_n . answer:

```
fib(n):
    if n = 0
        return 0
    elif n = 1
        return 1
    else
        return fib(n-1) + fib(n-2)
```

correctness: clear

complexity: let T(n) denote the number of *additions*.

question: given n, compute F_n .

answer:

```
\begin{aligned} & \text{fib}(n): \\ & & \text{if } n = 0 \\ & & \text{return } 0 \\ & & \text{elif } n = 1 \\ & & \text{return } 1 \\ & & \text{else} \\ & & & \text{return } \text{fib}(n-1) + \text{fib}(n-2) \end{aligned}
```

correctness: clear

complexity: let T(n) denote the number of *additions*. Then

question: given n, compute F_n .

answer:

```
\begin{array}{l} \mathtt{fib}(n): \\ & \mathtt{if} \ n = 0 \\ & \mathtt{return} \ 0 \\ & \mathtt{elif} \ n = 1 \\ & \mathtt{return} \ 1 \\ & \mathtt{else} \\ & \mathtt{return} \ \mathtt{fib}(n-1) \ + \ \mathtt{fib}(n-2) \end{array}
```

correctness: clear

complexity: let T(n) denote the number of *additions*. Then

T(0) = 0,

question: given n, compute F_n .

answer:

```
fib(n):

if n = 0

return 0

elif n = 1

return 1

else

return fib(n - 1) + fib(n - 2)
```

correctness: clear

complexity: let T(n) denote the number of *additions*. Then

$$T(0) = 0, T(1) = 0$$

question: given n, compute F_n .

answer:

```
fib(n):

if n = 0

return 0

elif n = 1

return 1

else

return fib(n - 1) + fib(n - 2)
```

correctness: clear

- T(0) = 0, T(1) = 0
- T(2) =

question: given n, compute F_n .

answer:

```
fib(n):

if n = 0

return 0

elif n = 1

return 1

else

return fib(n - 1) + fib(n - 2)
```

correctness: clear

- T(0) = 0, T(1) = 0
- T(2) = 1,

question: given n, compute F_n .

answer:

```
fib(n):

if n = 0

return 0

elif n = 1

return 1

else

return fib(n - 1) + fib(n - 2)
```

correctness: clear

- T(0) = 0, T(1) = 0
- T(2) = 1,
- T(n) = T(n-1) + T(n-2)

question: given n, compute F_n .

answer:

```
fib(n):

if n = 0

return 0

elif n = 1

return 1

else

return fib(n - 1) + fib(n - 2)
```

correctness: clear

- T(0) = 0, T(1) = 0
- T(2) = 1,
- T(n) = T(n-1) + T(n-2)
- $\blacksquare \implies T(n) = F_{n-1}$

question: given n, compute F_n .

answer:

```
fib(n):

if n = 0

return 0

elif n = 1

return 1

else

return fib(n-1) + fib(n-2)
```

correctness: clear

- T(0) = 0, T(1) = 0
- T(2) = 1,
- T(n) = T(n-1) + T(n-2)
- $\blacksquare \implies T(n) = F_{n-1} = \Theta(\varphi^n)$

question: given n, compute F_n .

answer:

```
\begin{aligned} & \text{fib}(n): \\ & & \text{if } n = 0 \\ & & \text{return } 0 \\ & & \text{elif } n = 1 \\ & & \text{return } 1 \\ & & \text{else} \\ & & & \text{return } \text{fib}(n-1) + \text{fib}(n-2) \end{aligned}
```

correctness: clear

- T(0) = 0, T(1) = 0
- T(2) = 1,
- T(n) = T(n-1) + T(n-2)
- \blacksquare \Longrightarrow $T(n) = F_{n-1} = \Theta(\varphi^n) \implies$ exponential time!

recursion tree:

recursion tree: for F_4

dependency graph:

recursion tree: for F_4

recursion tree: for F_4

recursion tree: for F_4

recursion tree: for F_4

recursion tree: for F_4

dependency graph: for F_4

 F_4

 F_3

 F_2

 F_1

recursion tree: for F_4

dependency graph: for F_4

 F_4

 F_3

 F_2

 F_1

 F_0

recursion tree: for F_4

recursion tree: for F_4

recursion tree: for F_4

iterative algorithm:

fib-iter(n):

```
fib-iter(n):

if n = 0

return 0

if n = 1

return 1
```

```
\begin{aligned} & \textbf{fib-iter}(n): \\ & & \textbf{if} \ n = 0 \\ & & & \textbf{return} \ 0 \\ & & \textbf{if} \ n = 1 \\ & & & \textbf{return} \ 1 \\ & & & & F[0] = 0 \\ & & & & F[1] = 1 \end{aligned}
```

```
\begin{aligned} & \textbf{fib-iter}(n): \\ & \textbf{if} \ n = 0 \\ & \textbf{return} \ 0 \\ & \textbf{if} \ n = 1 \\ & \textbf{return} \ 1 \\ & F[0] = 0 \\ & F[1] = 1 \\ & \textbf{for} \ 2 \leq i \leq n \end{aligned}
```

```
\begin{aligned} & \text{fib-iter}(n): \\ & & \text{if } n = 0 \\ & & \text{return } 0 \\ & & \text{if } n = 1 \\ & & \text{return } 1 \\ & & F[0] = 0 \\ & & F[1] = 1 \\ & & \text{for } 2 \leq i \leq n \\ & & F[i] = F[i-1] + F[i-2] \end{aligned}
```

```
\begin{aligned} & \textbf{fib-iter}(n): \\ & \textbf{if} \ n = 0 \\ & \textbf{return} \ 0 \\ & \textbf{if} \ n = 1 \\ & \textbf{return} \ 1 \\ & F[0] = 0 \\ & F[1] = 1 \\ & \textbf{for} \ 2 \leq i \leq n \\ & F[i] = F[i-1] + F[i-2] \\ & \textbf{return} \ F[n] \end{aligned}
```

```
fib-iter(n):

if n = 0

return 0

if n = 1

return 1

F[0] = 0

F[1] = 1

for 2 \le i \le n

F[i] = F[i-1] + F[i-2]

return F[n]
```

iterative algorithm:

```
fib-iter(n):

if n = 0

return 0

if n = 1

return 1

F[0] = 0

F[1] = 1

for 2 \le i \le n

F[i] = F[i-1] + F[i-2]

return F[n]
```

correctness:

iterative algorithm:

```
fib-iter(n):

if n = 0

return 0

if n = 1

return 1

F[0] = 0

F[1] = 1

for 2 \le i \le n

F[i] = F[i - 1] + F[i - 2]

return F[n]
```

correctness: clear

iterative algorithm:

```
fib-iter(n):

if n = 0

return 0

if n = 1

return 1

F[0] = 0

F[1] = 1

for 2 \le i \le n

F[i] = F[i-1] + F[i-2]

return F[n]
```

correctness: clear

complexity:

iterative algorithm:

```
fib-iter(n):

if n = 0

return 0

if n = 1

return 1

F[0] = 0

F[1] = 1

for 2 \le i \le n

F[i] = F[i-1] + F[i-2]

return F[n]
```

correctness: clear

complexity: O(n) additions

iterative algorithm:

```
fib-iter(n):

if n = 0

return 0

if n = 1

return 1

F[0] = 0

F[1] = 1

for 2 \le i \le n

F[i] = F[i-1] + F[i-2]

return F[n]
```

correctness: clear

complexity: O(n) additions

remarks:

iterative algorithm:

```
fib-iter(n):

if n = 0

return 0

if n = 1

return 1

F[0] = 0

F[1] = 1

for 2 \le i \le n

F[i] = F[i-1] + F[i-2]

return F[n]
```

correctness: clear

complexity: O(n) additions

remarks:

$$F_n = \Theta(\varphi^n)$$

iterative algorithm:

```
fib-iter(n):

if n = 0

return 0

if n = 1

return 1

F[0] = 0

F[1] = 1

for 2 \le i \le n

F[i] = F[i-1] + F[i-2]

return F[n]
```

correctness: clear

complexity: O(n) additions

remarks:

• $F_n = \Theta(\varphi^n) \implies F_n \text{ takes } \Theta(n) \text{ bits}$

iterative algorithm:

```
\begin{aligned} &\textbf{fib-iter}(n):\\ &\textbf{if } n = 0\\ &\textbf{return } 0\\ &\textbf{if } n = 1\\ &\textbf{return } 1\\ &F[0] = 0\\ &F[1] = 1\\ &\textbf{for } 2 \leq i \leq n\\ &F[i] = F[i-1] + F[i-2]\\ &\textbf{return } F[n] \end{aligned}
```

correctness: clear

complexity: O(n) additions

remarks:

■ $F_n = \Theta(\varphi^n) \implies F_n$ takes $\Theta(n)$ bits \implies each addition takes $\Theta(n)$ steps

iterative algorithm:

```
fib-iter(n):

if n = 0

return 0

if n = 1

return 1

F[0] = 0

F[1] = 1

for 2 \le i \le n

F[i] = F[i-1] + F[i-2]

return F[n]
```

correctness: clear

complexity: O(n) additions

remarks:

■ $F_n = \Theta(\varphi^n) \implies F_n$ takes $\Theta(n)$ bits \implies each addition takes $\Theta(n)$ steps $\implies O(n^2)$ is the *actual* runtime

recursive paradigms for F_n :

naive recursion:

recursive paradigms for F_n :

■ naive recursion: recurse on subproblems,

recursive paradigms for F_n :

■ **naive recursion:** recurse on subproblems, solves the *same* subproblem multiple times

- **naive recursion:** recurse on subproblems, solves the *same* subproblem multiple times
- iterative algorithm:

- naive recursion: recurse on subproblems, solves the *same* subproblem multiple times
- iterative algorithm: stores solutions to subproblems to avoid recomputation

- naive recursion: recurse on subproblems, solves the *same* subproblem multiple times
- iterative algorithm: stores solutions to subproblems to avoid recomputation memoization

recursive paradigms for F_n :

- **naive recursion:** recurse on subproblems, solves the *same* subproblem multiple times
- iterative algorithm: stores solutions to subproblems to avoid recomputation memoization

Definition

recursive paradigms for F_n :

- naive recursion: recurse on subproblems, solves the *same* subproblem multiple times
- iterative algorithm: stores solutions to subproblems to avoid recomputation memoization

Definition

Dynamic programming is the method of speeding up naive recursion through memoization.

recursive paradigms for F_n :

- naive recursion: recurse on subproblems, solves the *same* subproblem multiple times
- iterative algorithm: stores solutions to subproblems to avoid recomputation memoization

Definition

Dynamic programming is the method of speeding up naive recursion through memoization.

remarks:

recursive paradigms for F_n :

- naive recursion: recurse on subproblems, solves the *same* subproblem multiple times
- iterative algorithm: stores solutions to subproblems to avoid recomputation memoization

Definition

Dynamic programming is the method of speeding up naive recursion through memoization.

remarks:

If number of subproblems is polynomially bounded,

recursive paradigms for F_n :

- naive recursion: recurse on subproblems, solves the *same* subproblem multiple times
- iterative algorithm: stores solutions to subproblems to avoid recomputation memoization

Definition

Dynamic programming is the method of speeding up naive recursion through memoization.

remarks:

If number of subproblems is polynomially bounded, often implies a polynomial-time algorithm

recursive paradigms for F_n :

- naive recursion: recurse on subproblems, solves the *same* subproblem multiple times
- iterative algorithm: stores solutions to subproblems to avoid recomputation memoization

Definition

Dynamic programming is the method of speeding up naive recursion through memoization.

remarks:

- If number of subproblems is polynomially bounded, often implies a polynomial-time algorithm
- Memoizing a recursive algorithm is done by tracing through the dependency graph

question:

question: how to memoize exactly?

question: how to memoize exactly?

fib(n):

```
question: how to memoize exactly?  \begin{array}{c} \mathtt{fib}(n): \\ \mathbf{if} \ n=0 \\ \mathbf{return} \ 0 \\ \mathbf{if} \ n=1 \\ \mathbf{return} \ 1 \end{array}
```

```
question: how to memoize exactly?

fib(n):
    if n = 0
        return 0
    if n = 1
        return 1
    if fib(n) was previously computed
        return stored value fib(n)
```

```
question: how to memoize exactly?

\begin{array}{c} \text{fib}(n): \\ \text{if } n=0 \\ \text{return } 0 \\ \text{if } n=1 \\ \text{return } 1 \\ \text{if } \text{fib}(n) \text{ was previously computed} \\ \text{return stored value } \text{fib}(n) \\ \text{else} \\ \text{return } \text{fib}(n-1) + \text{fib}(n-2) \end{array}
```

question: how to memoize exactly?

```
\begin{aligned} &\textbf{fib}(n):\\ &\textbf{if } n = 0\\ &\textbf{return } 0\\ &\textbf{if } n = 1\\ &\textbf{return } 1\\ &\textbf{if } \textbf{fib}(n) \text{ was previously computed}\\ &\textbf{return } \textbf{stored value } \textbf{fib}(n)\\ &\textbf{else}\\ &\textbf{return } \textbf{fib}(n-1) + \textbf{fib}(n-2) \end{aligned}
```

question: how to memoize exactly?

```
\begin{array}{c} \textbf{fib}(n): \\ \textbf{if } n = 0 \\ \textbf{return } 0 \\ \textbf{if } n = 1 \\ \textbf{return } 1 \\ \textbf{if } \textbf{fib}(n) \text{ was previously computed} \\ \textbf{return } \textbf{stored value } \textbf{fib}(n) \\ \textbf{else} \\ \textbf{return } \textbf{fib}(n-1) + \textbf{fib}(n-2) \end{array}
```

question:

question: how to memoize exactly?

```
fib(n):

if n = 0
return 0

if n = 1
return 1

if fib(n) was previously computed
return stored value fib(n)

else
return fib(n - 1) + fib(n - 2)
```

question: how to memoize exactly?

question: how to memoize exactly?

```
\begin{aligned} &\textbf{fib}(n):\\ &\textbf{if } n = 0\\ &\textbf{return } 0\\ &\textbf{if } n = 1\\ &\textbf{return } 1\\ &\textbf{if } \textbf{fib}(n) \text{ was previously computed}\\ &\textbf{return } \textbf{stored value } \textbf{fib}(n)\\ &\textbf{else}\\ &\textbf{return } \textbf{fib}(n-1) + \textbf{fib}(n-2) \end{aligned}
```

question: how to memoize exactly?

explicitly:

question: how to memoize exactly?

```
fib(n):
    if n = 0
        return 0
    if n = 1
        return 1
    if fib(n) was previously computed
        return stored value fib(n)
    else
        return fib(n-1) + fib(n-2)
```

question: how to memoize exactly?

explicitly: just do it!

question: how to memoize exactly?

```
fib(n):

if n = 0
return 0

if n = 1
return 1

if fib(n) was previously computed
return stored value fib(n)

else
return fib(n - 1) + fib(n - 2)
```

question: how to memoize exactly?

- explicitly: just do it!
- *implicitly:*

question: how to memoize exactly?

```
\begin{aligned} &\textbf{fib}(n):\\ &\textbf{if } n = 0\\ &\textbf{return } 0\\ &\textbf{if } n = 1\\ &\textbf{return } 1\\ &\textbf{if } \textbf{fib}(n) \text{ was previously computed}\\ &\textbf{return } \textbf{stored value } \textbf{fib}(n)\\ &\textbf{else}\\ &\textbf{return } \textbf{fib}(n-1) + \textbf{fib}(n-2) \end{aligned}
```

question: how to memoize exactly?

- explicitly: just do it!
- *implicitly*: allow clever data structures to do this automatically

global F[·]

```
global F[\cdot] fib(n):
```

```
global F[⋅]
fib(n):
    if n = 0
        return 0
    if n=1
        return 1
    if F[n] initialized
        return F[n]
    else
        F[n] = fib(n-1) + fib(n-2)
        return F[n]
```

```
global F[⋅]
fib(n):
    if n = 0
        return 0
    if n=1
        return 1
    if F[n] initialized
        return F[n]
    else
        F[n] = fib(n-1) + fib(n-2)
        return F[n]
```

■ *explicit* memoization:

```
global F[⋅]
fib(n):
    if n = 0
        return 0
    if n=1
        return 1
    if F[n] initialized
        return F[n]
    else
        F[n] = fib(n-1) + fib(n-2)
        return F[n]
```

■ *explicit* memoization: we decide *ahead* of time what types of objects *F* stores

```
global F[⋅]
fib(n):
    if n = 0
        return 0
    if n=1
        return 1
    if F[n] initialized
        return F[n]
    else
        F[n] = fib(n-1) + fib(n-2)
        return F[n]
```

- explicit memoization: we decide ahead of time what types of objects F stores
 - e.g., *F* is an array

```
global F[⋅]
fib(n):
    if n = 0
        return 0
    if n=1
        return 1
    if F[n] initialized
        return F[n]
    else
         F[n] = fib(n-1) + fib(n-2)
        return F[n]
```

- explicit memoization: we decide ahead of time what types of objects F stores
 - \blacksquare e.g., F is an array
 - requires more deliberation on problem structure,

```
global F[·]
fib(n):
    if n = 0
        return 0
    if n=1
        return 1
    if F[n] initialized
        return F[n]
    else
         F[n] = fib(n-1) + fib(n-2)
        return F[n]
```

- explicit memoization: we decide ahead of time what types of objects F stores
 - \blacksquare e.g., F is an array
 - requires more deliberation on problem structure, but can be more efficient

```
global F[·]
fib(n):
    if n = 0
        return 0
    if n=1
        return 1
    if F[n] initialized
         return F[n]
    else
         F[n] = fib(n-1) + fib(n-2)
        return F[n]
```

- explicit memoization: we decide ahead of time what types of objects F stores
 - e.g., F is an array
 - requires more deliberation on problem structure, but can be more efficient
- implicit memoization:

```
global F[·]
fib(n):
    if n = 0
        return 0
    if n=1
        return 1
    if F[n] initialized
         return F[n]
    else
         F[n] = fib(n-1) + fib(n-2)
         return F[n]
```

- explicit memoization: we decide ahead of time what types of objects F stores
 - \blacksquare e.g., F is an array
 - requires more deliberation on problem structure, but can be more efficient
- implicit memoization: we let the data structure for F handle whatever comes its way

```
global F[·]
fib(n):
    if n = 0
        return 0
    if n=1
        return 1
    if F[n] initialized
         return F[n]
    else
         F[n] = fib(n-1) + fib(n-2)
         return F[n]
```

- explicit memoization: we decide ahead of time what types of objects F stores
 - \blacksquare e.g., F is an array
 - requires more deliberation on problem structure, but can be more efficient
- implicit memoization: we let the data structure for F handle whatever comes its way
 - \blacksquare e.g., F is an dictionary

```
global F[·]
fib(n):
    if n = 0
         return 0
    if n=1
         return 1
    if F[n] initialized
         return F[n]
    else
         F[n] = fib(n-1) + fib(n-2)
         return F[n]
```

- explicit memoization: we decide ahead of time what types of objects F stores
 - \blacksquare e.g., F is an array
 - requires more deliberation on problem structure, but can be more efficient
- implicit memoization: we let the data structure for F handle whatever comes its way
 - \blacksquare e.g., F is an dictionary
 - requires less deliberation on problem structure,

```
global F[·]
fib(n):
    if n = 0
         return 0
    if n=1
         return 1
    if F[n] initialized
         return F[n]
    else
         F[n] = fib(n-1) + fib(n-2)
         return F[n]
```

- explicit memoization: we decide ahead of time what types of objects F stores
 - \blacksquare e.g., F is an array
 - requires more deliberation on problem structure, but can be more efficient
- implicit memoization: we let the data structure for F handle whatever comes its way
 - \blacksquare e.g., F is an dictionary
 - requires less deliberation on problem structure, and can be less efficient

```
global F[·]
fib(n):
    if n = 0
         return 0
    if n=1
         return 1
    if F[n] initialized
         return F[n]
    else
         F[n] = fib(n-1) + fib(n-2)
         return F[n]
```

- *explicit* memoization: we decide *ahead* of time what types of objects *F* stores
 - \blacksquare e.g., F is an array
 - requires more deliberation on problem structure, but can be more efficient
- implicit memoization: we let the data structure for F handle whatever comes its way
 - e.g., F is an dictionary
 - requires less deliberation on problem structure, and can be less efficient
 - sometimes can be done automatically by functional programming languages (LISP, etc.)

question: how much *space* do we need to memoize?

fib-iter(n):

```
fib-iter(n):

if n = 0

return 0
```

```
 \begin{aligned} & \text{fib-iter}(n): \\ & & \text{if } n = 0 \\ & & \text{return } 0 \\ & & F_{\text{prevprev}} = 0 \end{aligned}
```

```
\begin{aligned} & \textbf{fib-iter}(n): \\ & \textbf{if} \ \ n = 0 \\ & \textbf{return} \ \ 0 \\ & F_{\text{prevprev}} = 0 \\ & \textbf{if} \ \ n = 1 \\ & \textbf{return} \ \ 1 \end{aligned}
```

```
\begin{aligned} & \text{fib-iter}(n): \\ & & \textbf{if} \quad n = 0 \\ & & & \textbf{return} \quad 0 \\ & & F_{\text{prevprev}} = 0 \\ & & \textbf{if} \quad n = 1 \\ & & & \textbf{return} \quad 1 \\ & & F_{\text{prev}} = 1 \end{aligned}
```

```
\begin{aligned} & \textbf{fib-iter}(n): \\ & \textbf{if} \ n = 0 \\ & \textbf{return} \ 0 \\ & F_{\text{prevprev}} = 0 \\ & \textbf{if} \ n = 1 \\ & \textbf{return} \ 1 \\ & F_{\text{prev}} = 1 \\ & \textbf{for} \ 2 \leq i \leq n \\ & F_{\text{cur}} = F_{\text{prev}} + F_{\text{prevprev}} \end{aligned}
```

```
\begin{aligned} & \text{fib-iter}(n): \\ & & \textbf{if} \quad n = 0 \\ & & \textbf{return} \quad 0 \\ & & F_{\text{prevprev}} = 0 \\ & & \textbf{if} \quad n = 1 \\ & & \textbf{return} \quad 1 \\ & & F_{\text{prev}} = 1 \\ & & \textbf{for} \quad 2 \leq i \leq n \\ & & F_{\text{cur}} = F_{\text{prev}} + F_{\text{prevprev}} \\ & & F_{\text{prevprev}} = F_{\text{prev}} \end{aligned}
```

```
\begin{aligned} & \textbf{fib-iter}(n): \\ & & \textbf{if} \ \ n = 0 \\ & & \textbf{return} \ \ 0 \\ & & F_{\text{prevprev}} = 0 \\ & & \textbf{if} \ \ n = 1 \\ & & \textbf{return} \ \ 1 \\ & & F_{\text{prev}} = 1 \\ & \textbf{for} \ \ 2 \leq i \leq n \\ & & F_{\text{cur}} = F_{\text{prev}} + F_{\text{prevprev}} \\ & & F_{\text{prevprev}} = F_{\text{prev}} \\ & & F_{\text{prev}} = F_{\text{cur}} \end{aligned}
```

```
fib-iter(n):
       if n=0
              return 0
       F_{\text{prevprev}} = 0
       if n=1
              return 1
       F_{
m prev}=1
       for 2 \le i \le n
              F_{\text{cur}} = F_{\text{prev}} + F_{\text{prevprev}}
              F_{\text{prevprev}} = F_{\text{prev}}
              F_{\text{prev}} = F_{\text{cur}}
       return F_{cur}
```

```
fib-iter(n):
       if n=0
               return 0
       F_{\text{prevprev}} = 0
       if n=1
               return 1
       F_{\text{prev}} = 1
       for 2 \le i \le n
              F_{\text{cur}} = F_{\text{prev}} + F_{\text{prevprev}}
              F_{\text{prevprev}} = F_{\text{prev}}
              F_{\text{prev}} = F_{\text{cur}}
       return F_{cur}
```

question: how much space do we need to memoize?

```
fib-iter(n):
       if n=0
              return 0
       F_{\text{prevprev}} = 0
       if n=1
              return 1
       F_{\text{prev}} = 1
       for 2 \le i \le n
              F_{\text{cur}} = F_{\text{prev}} + F_{\text{prevprev}}
              F_{\text{prevprev}} = F_{\text{prev}}
             F_{
m prev} = F_{
m cur}
       return F_{cur}
```

correctness:

question: how much space do we need to memoize?

```
fib-iter(n):
       if n=0
               return 0
       F_{\text{prevprev}} = 0
       if n=1
               return 1
       F_{\text{prev}} = 1
       for 2 \le i \le n
              F_{\text{cur}} = F_{\text{prev}} + F_{\text{prevprev}}
              F_{\text{prevprev}} = F_{\text{prev}}
              F_{\text{prev}} = F_{\text{cur}}
       return F_{cur}
```

correctness: clear

question: how much space do we need to memoize?

```
fib-iter(n):
       if n=0
               return 0
       F_{\text{prevprev}} = 0
       if n=1
               return 1
       F_{\text{prev}} = 1
       for 2 \le i \le n
               F_{\text{cur}} = F_{\text{prev}} + F_{\text{prevprev}}
              F_{\text{prevprev}} = F_{\text{prev}}
              F_{\text{prev}} = F_{\text{cur}}
       return F_{cur}
```

correctness: clear

complexity:

Fibonacci Numbers (V)

question: how much space do we need to memoize?

```
fib-iter(n):
       if n=0
               return 0
       F_{\text{prevprev}} = 0
       if n=1
               return 1
       F_{\text{prev}} = 1
       for 2 \le i \le n
               F_{\text{cur}} = F_{\text{prev}} + F_{\text{prevprev}}
              F_{\text{prevprev}} = F_{\text{prev}}
              F_{\text{prev}} = F_{\text{cur}}
       return F_{cur}
```

correctness: clear

complexity: O(n) additions,

Fibonacci Numbers (V)

question: how much space do we need to memoize?

```
fib-iter(n):
       if n=0
               return 0
       F_{\text{prevprev}} = 0
       if n=1
               return 1
       F_{\text{prev}} = 1
       for 2 < i < n
              F_{\text{cur}} = F_{\text{prev}} + F_{\text{prevprev}}
              F_{\text{prevprev}} = F_{\text{prev}}
              F_{\text{prev}} = F_{\text{cur}}
       return F_{cur}
```

correctness: clear

complexity: O(n) additions, O(1) numbers stored

Fibonacci Numbers (V)

question: how much space do we need to memoize?

```
fib-iter(n):
       if n=0
               return 0
       F_{\text{prevprev}} = 0
       if n=1
               return 1
       F_{\text{prev}} = 1
       for 2 \le i \le n
               F_{\text{cur}} = F_{\text{prev}} + F_{\text{prevprev}}
              F_{\text{prevprev}} = F_{\text{prev}}
               F_{\text{prev}} = F_{\text{cur}}
       return F_{cur}
```

correctness: clear

complexity: O(n) additions, O(1) numbers stored $\implies O(n)$ bits stored

Definition

Dynamic programming is the method of speeding up naive recursion through memoization.

Definition

Dynamic programming is the method of speeding up naive recursion through memoization.

Definition

Dynamic programming is the method of speeding up naive recursion through memoization.

goals:

■ Given a recursive algorithm,

Definition

Dynamic programming is the method of speeding up naive recursion through memoization.

goals:

■ Given a recursive algorithm, analyze the complexity of its memoized version.

Definition

Dynamic programming is the method of speeding up naive recursion through memoization.

- Given a recursive algorithm, analyze the complexity of its memoized version.
- Find the *right* recursion that can be memoized.

Definition

Dynamic programming is the method of speeding up naive recursion through memoization.

- Given a recursive algorithm, analyze the complexity of its memoized version.
- Find the *right* recursion that can be memoized.
- Recognize when dynamic programming will efficiently solve a problem.

Definition

Dynamic programming is the method of speeding up naive recursion through memoization.

- Given a recursive algorithm, analyze the complexity of its memoized version.
- Find the *right* recursion that can be memoized.
- Recognize when dynamic programming will efficiently solve a problem.
- Further optimize time- and space-complexity of dynamic programming algorithms.

Definition

Definition

Let $x, y \in \Sigma^*$ be two strings over the alphabet Σ .

Definition

Let $x,y\in \Sigma^*$ be two strings over the alphabet Σ . The **edit distance** between x and y

Definition

Let $x, y \in \Sigma^*$ be two strings over the alphabet Σ . The **edit distance** between x and y is the minimum number of insertions, deletions and substitutions required to transform x into y.

Definition

Let $x, y \in \Sigma^*$ be two strings over the alphabet Σ . The **edit distance** between x and y is the minimum number of insertions, deletions and substitutions required to transform x into y.

Example

Definition

Let $x, y \in \Sigma^*$ be two strings over the alphabet Σ . The **edit distance** between x and y is the minimum number of insertions, deletions and substitutions required to transform x into y.

Example

money

Definition

Let $x, y \in \Sigma^*$ be two strings over the alphabet Σ . The **edit distance** between x and y is the minimum number of insertions, deletions and substitutions required to transform x into y.

Example

 $\underline{\mathsf{m}}\mathsf{oney} \to$

Definition

Let $x, y \in \Sigma^*$ be two strings over the alphabet Σ . The **edit distance** between x and y is the minimum number of insertions, deletions and substitutions required to transform x into y.

Example

 $\underline{\mathsf{m}}\mathsf{oney} \to \mathsf{boney}$

Definition

Let $x, y \in \Sigma^*$ be two strings over the alphabet Σ . The **edit distance** between x and y is the minimum number of insertions, deletions and substitutions required to transform x into y.

Example

 $\underline{\mathsf{m}}\mathsf{oney} \to \mathsf{bone}\underline{\mathsf{y}} \to$

Definition

Let $x, y \in \Sigma^*$ be two strings over the alphabet Σ . The **edit distance** between x and y is the minimum number of insertions, deletions and substitutions required to transform x into y.

Example

 $\underline{\mathsf{m}}\mathsf{oney} \to \mathsf{bone}\underline{\mathsf{y}} \to \mathsf{bone}$

Definition

Let $x, y \in \Sigma^*$ be two strings over the alphabet Σ . The **edit distance** between x and y is the minimum number of insertions, deletions and substitutions required to transform x into y.

Example

 $\underline{\mathsf{m}}\mathsf{oney} \to \mathsf{bone}\underline{\mathsf{y}} \to \mathsf{bon}\underline{\mathsf{e}} \to$

Definition

Let $x, y \in \Sigma^*$ be two strings over the alphabet Σ . The **edit distance** between x and y is the minimum number of insertions, deletions and substitutions required to transform x into y.

Example

 $\underline{\mathsf{m}}\mathsf{oney} \to \mathsf{bone}\underline{\mathsf{v}} \to \mathsf{bon}\underline{\mathsf{e}} \to \mathsf{bona}$

Definition

Let $x, y \in \Sigma^*$ be two strings over the alphabet Σ . The **edit distance** between x and y is the minimum number of insertions, deletions and substitutions required to transform x into y.

Example

 $\underline{\mathsf{m}}\mathsf{oney} \to \mathsf{bone}\underline{\mathsf{y}} \to \mathsf{bon}\underline{\mathsf{e}} \to \mathsf{bo}\underline{\mathsf{n}}\mathsf{a} \to$

Definition

Let $x, y \in \Sigma^*$ be two strings over the alphabet Σ . The **edit distance** between x and y is the minimum number of insertions, deletions and substitutions required to transform x into y.

Example

 $\underline{\mathsf{m}}\mathsf{oney} \to \mathsf{bone}\underline{\mathsf{y}} \to \mathsf{bon}\underline{\mathsf{e}} \to \mathsf{bo}\underline{\mathsf{n}}\mathsf{a} \to \mathsf{boa}$

Definition

Let $x, y \in \Sigma^*$ be two strings over the alphabet Σ . The **edit distance** between x and y is the minimum number of insertions, deletions and substitutions required to transform x into y.

Example

 $\underline{\mathsf{m}}\mathsf{oney} \to \mathsf{bone}\underline{\mathsf{y}} \to \mathsf{bon}\underline{\mathsf{e}} \to \mathsf{bo}\underline{\mathsf{n}}\mathsf{a} \to \mathsf{bo}\underline{\mathsf{a}} \to$

Definition

Let $x, y \in \Sigma^*$ be two strings over the alphabet Σ . The **edit distance** between x and y is the minimum number of insertions, deletions and substitutions required to transform x into y.

Example

 $\underline{m} oney \rightarrow bon\underline{e} \rightarrow bo\underline{n} a \rightarrow bo\underline{n} a \rightarrow bo\underline{b} a$

Definition

Let $x, y \in \Sigma^*$ be two strings over the alphabet Σ . The **edit distance** between x and y is the minimum number of insertions, deletions and substitutions required to transform x into y.

Example

 $\underline{m} oney \rightarrow bon\underline{e} \rightarrow bo\underline{n} \underline{a} \rightarrow bo\underline{n} \underline{a} \rightarrow bob\underline{a} \implies edit \ distance \leq 5$

Definition

Let $x, y \in \Sigma^*$ be two strings over the alphabet Σ . The **edit distance** between x and y is the minimum number of insertions, deletions and substitutions required to transform x into y.

Example

 $\underline{m} oney \rightarrow bon\underline{e} \rightarrow bo\underline{n}\underline{a} \rightarrow bo\underline{n}\underline{a} \rightarrow bob\underline{a} \implies edit \ distance \leq 5$

remarks:

Definition

Let $x, y \in \Sigma^*$ be two strings over the alphabet Σ . The **edit distance** between x and y is the minimum number of insertions, deletions and substitutions required to transform x into y.

Example

 $\underline{m} oney \rightarrow bon\underline{e} \rightarrow bo\underline{n}\underline{a} \rightarrow bo\underline{n}\underline{a} \rightarrow bob\underline{a} \implies edit \ distance \leq 5$

remarks:

■ edit distance ≤ 4

Definition

Let $x, y \in \Sigma^*$ be two strings over the alphabet Σ . The **edit distance** between x and y is the minimum number of insertions, deletions and substitutions required to transform x into y.

Example

 $\underline{m} oney \rightarrow bon\underline{e} \rightarrow bo\underline{n}\underline{a} \rightarrow bo\underline{n}\underline{a} \rightarrow bob\underline{a} \implies edit \ distance \leq 5$

remarks:

- edit distance ≤ 4
- intermediate strings can be arbitrary in Σ^*

Definition

Let $x, y \in \Sigma^*$ be two strings over the alphabet Σ .

Definition

Let $x, y \in \Sigma^*$ be two strings over the alphabet Σ . An **alignment** is a sequence M of pairs of indices (i, j) such that

Definition

Let $x, y \in \Sigma^*$ be two strings over the alphabet Σ . An **alignment** is a sequence M of pairs of indices (i, j) such that

an index could be empty,

Definition

Let $x, y \in \Sigma^*$ be two strings over the alphabet Σ . An **alignment** is a sequence M of pairs of indices (i, j) such that

■ an index could be empty, such as (,4) or (5,)

Definition

- an index could be empty, such as (,4) or (5,)
- each index appears exactly once per coordinate

Definition

- an index could be empty, such as (,4) or (5,)
- each index appears exactly once per coordinate
- no crossings:

Definition

- an index could be empty, such as (,4) or (5,)
- each index appears exactly once per coordinate
- no crossings: for $(i,j), (i',j') \in M$ either i < i' and j < j',

Definition

- an index could be empty, such as (,4) or (5,)
- each index appears exactly once per coordinate
- no crossings: for $(i,j), (i',j') \in M$ either i < i' and j < j', or

Definition

- an index could be empty, such as (,4) or (5,)
- each index appears exactly once per coordinate
- lacktriangle no crossings: for $(i,j), (i',j') \in M$ either i < i' and j < j', or i > i' and j > j'

Definition

Let $x, y \in \Sigma^*$ be two strings over the alphabet Σ . An **alignment** is a sequence M of pairs of indices (i, j) such that

- an index could be empty, such as (,4) or (5,)
- each index appears exactly once per coordinate
- lacksquare no crossings: for $(i,j), (i',j') \in M$ either i < i' and j < j', or i > i' and j > j'

The **cost** of an alignment is the number of pairs (i, j) where $x_i \neq y_j$.

Definition

Let $x, y \in \Sigma^*$ be two strings over the alphabet Σ . An **alignment** is a sequence M of pairs of indices (i,j) such that

- an index could be empty, such as (,4) or (5,)
- each index appears exactly once per coordinate
- lacksquare no crossings: for $(i,j), (i',j') \in M$ either i < i' and j < j', or i > i' and j > j'

The **cost** of an alignment is the number of pairs (i, j) where $x_i \neq y_j$.

Example

mon ey

Definition

Let $x, y \in \Sigma^*$ be two strings over the alphabet Σ . An **alignment** is a sequence M of pairs of indices (i, j) such that

- an index could be empty, such as (,4) or (5,)
- each index appears exactly once per coordinate
- lacksquare no crossings: for $(i,j), (i',j') \in M$ either i < i' and j < j', or i > i' and j > j'

The **cost** of an alignment is the number of pairs (i,j) where $x_i \neq y_j$.

Example

```
mon ey bo ba  M = \{(1,1),(2,2),(3,),(,3),(4,4),(5,)\},
```

Definition

Let $x, y \in \Sigma^*$ be two strings over the alphabet Σ . An **alignment** is a sequence M of pairs of indices (i, j) such that

- an index could be empty, such as (,4) or (5,)
- each index appears exactly once per coordinate
- lacksquare no crossings: for $(i,j), (i',j') \in M$ either i < i' and j < j', or i > i' and j > j'

The **cost** of an alignment is the number of pairs (i,j) where $x_i \neq y_j$.

Example

```
mon ey bo ba  M = \{(1,1),(2,2),(3,),(,3),(4,4),(5,)\}, \; \text{cost 5}
```

question:

question: given two strings $x, y \in \Sigma^*$,

question: given two strings $x, y \in \Sigma^*$, compute their edit distance

question: given two strings $x, y \in \Sigma^*$, compute their edit distance

Lemma

question: given two strings $x, y \in \Sigma^*$, compute their edit distance

Lemma

The edit distance between two strings $x, y \in \Sigma^*$ is the minimum cost of an alignment.

question: given two strings $x, y \in \Sigma^*$, compute their edit distance

Lemma

The edit distance between two strings $x, y \in \Sigma^*$ is the minimum cost of an alignment.

Proof.

question: given two strings $x, y \in \Sigma^*$, compute their edit distance

Lemma

The edit distance between two strings $x, y \in \Sigma^*$ is the minimum cost of an alignment.

Proof.

Exercise.

question: given two strings $x, y \in \Sigma^*$, compute their edit distance

Lemma

The edit distance between two strings $x, y \in \Sigma^*$ is the minimum cost of an alignment.

Proof.

Exercise.

question: given two strings $x, y \in \Sigma^*$, compute the minimum cost of an alignment

question: given two strings $x, y \in \Sigma^*$, compute their edit distance

Lemma

The edit distance between two strings $x, y \in \Sigma^*$ is the minimum cost of an alignment.

Proof.

Exercise.

question: given two strings $x, y \in \Sigma^*$, compute the minimum cost of an alignment **remarks:**

17/33

question: given two strings $x, y \in \Sigma^*$, compute their edit distance

Lemma

The edit distance between two strings $x, y \in \Sigma^*$ is the minimum cost of an alignment.

Proof.

Exercise.

question: given two strings $x, y \in \Sigma^*$, compute the minimum cost of an alignment **remarks:**

can also ask to compute the alignment itself

question: given two strings $x, y \in \Sigma^*$, compute their edit distance

Lemma

The edit distance between two strings $x, y \in \Sigma^*$ is the minimum cost of an alignment.

Proof.

Exercise.

question: given two strings $x, y \in \Sigma^*$, compute the minimum cost of an alignment **remarks:**

- can also ask to compute the alignment itself
- widely solved in practice,

question: given two strings $x, y \in \Sigma^*$, compute their edit distance

Lemma

The edit distance between two strings $x, y \in \Sigma^*$ is the minimum cost of an alignment.

Proof.

Exercise.

question: given two strings $x, y \in \Sigma^*$, compute the minimum cost of an alignment **remarks:**

- can also ask to compute the alignment itself
- widely solved in practice, e.g., the BLAST heuristic for DNA edit distance

Lemma

Let $x, y \in \Sigma^*$ be strings,

Lemma

Lemma

Lemma

Let $x, y \in \Sigma^*$ be strings, and $a, b \in \Sigma$ be symbols. Then

 $\operatorname{dist}(x \circ a,$

Lemma

$$\mathsf{dist}(x \circ a, y \circ b) =$$

Lemma

$$\operatorname{dist}(x \circ a, y \circ b) = \min \left\{ \right.$$

Lemma

$$dist(x \circ a, y \circ b) = min \begin{cases} dist(x, y) + 1[a \neq b] \end{cases}$$

Lemma

$$\operatorname{dist}(x \circ a, y \circ b) = \min \left\{ egin{aligned} \operatorname{dist}(x, y) + \mathbb{1}\llbracket a
eq b
rbracket \\ \operatorname{dist}(x, y \circ b) + 1 \end{aligned}
ight.$$

Lemma

$$\operatorname{dist}(x \circ a, y \circ b) = \min \left\{ egin{array}{l} \operatorname{dist}(x, y) + \mathbbm{1}\llbracket a \neq b \rrbracket \\ \operatorname{dist}(x, y \circ b) + 1 \\ \operatorname{dist}(x \circ a, y) + 1 \end{array} \right. .$$

Lemma

Let $x, y \in \Sigma^*$ be strings, and $a, b \in \Sigma$ be symbols. Then

$$\operatorname{dist}(x \circ a, y \circ b) = \min \left\{ egin{array}{l} \operatorname{dist}(x, y) + \mathbbm{1}\llbracket a
eq b
rbracket \\ \operatorname{dist}(x, y \circ b) + 1 \\ \operatorname{dist}(x \circ a, y) + 1 \end{array} \right. .$$

Proof.

Lemma

Let $x, y \in \Sigma^*$ be strings, and $a, b \in \Sigma$ be symbols. Then

$$\operatorname{dist}(x \circ a, y \circ b) = \min \left\{ egin{array}{l} \operatorname{dist}(x, y) + \mathbbm{1}\llbracket a
eq b
rbracket \\ \operatorname{dist}(x, y \circ b) + 1 \\ \operatorname{dist}(x \circ a, y) + 1 \end{array}
ight. .$$

Proof.

Lemma

Let $x, y \in \Sigma^*$ be strings, and $a, b \in \Sigma$ be symbols. Then

$$\operatorname{dist}(x \circ a, y \circ b) = \min \left\{ egin{array}{l} \operatorname{dist}(x, y) + \mathbbm{1}\llbracket a
eq b
rbracket \\ \operatorname{dist}(x, y \circ b) + 1 \\ \operatorname{dist}(x \circ a, y) + 1 \end{array}
ight. .$$

Proof.

In an optimal alignment from $x \circ a$ to $y \circ b$, either:

 \blacksquare a aligns to b,

Lemma

Let $x, y \in \Sigma^*$ be strings, and $a, b \in \Sigma$ be symbols. Then

$$\operatorname{dist}(x \circ a, y \circ b) = \min \left\{ egin{array}{l} \operatorname{dist}(x, y) + \mathbbm{1}\llbracket a
eq b
rbracket \\ \operatorname{dist}(x, y \circ b) + 1 \\ \operatorname{dist}(x \circ a, y) + 1 \end{array}
ight. .$$

Proof.

In an optimal alignment from $x \circ a$ to $y \circ b$, either:

■ a aligns to b, with cost $1[a \neq b]$

Lemma

Let $x, y \in \Sigma^*$ be strings, and $a, b \in \Sigma$ be symbols. Then

$$\operatorname{dist}(x \circ a, y \circ b) = \min \left\{ egin{array}{l} \operatorname{dist}(x, y) + \mathbbm{1}\llbracket a
eq b
rbracket \\ \operatorname{dist}(x, y \circ b) + 1 \\ \operatorname{dist}(x \circ a, y) + 1 \end{array}
ight. .$$

Proof.

- *a* aligns to *b*, with cost $\mathbb{1}[a \neq b]$
- a is deleted,

Lemma

Let $x, y \in \Sigma^*$ be strings, and $a, b \in \Sigma$ be symbols. Then

$$\operatorname{dist}(x \circ a, y \circ b) = \min \left\{ egin{array}{l} \operatorname{dist}(x, y) + \mathbbm{1}\llbracket a
eq b
rbracket \\ \operatorname{dist}(x, y \circ b) + 1 \\ \operatorname{dist}(x \circ a, y) + 1 \end{array}
ight. .$$

Proof.

- *a* aligns to *b*, with cost $\mathbb{1}[a \neq b]$
- \blacksquare a is deleted, with cost 1

Lemma

Let $x, y \in \Sigma^*$ be strings, and $a, b \in \Sigma$ be symbols. Then

$$\operatorname{dist}(x \circ a, y \circ b) = \min \left\{ egin{array}{l} \operatorname{dist}(x, y) + \mathbbm{1}\llbracket a
eq b
rbracket \\ \operatorname{dist}(x, y \circ b) + 1 \\ \operatorname{dist}(x \circ a, y) + 1 \end{array}
ight. .$$

Proof.

- a aligns to b, with cost $1[a \neq b]$
- \blacksquare a is deleted, with cost 1
- *b* is deleted,

Lemma

Let $x, y \in \Sigma^*$ be strings, and $a, b \in \Sigma$ be symbols. Then

$$\operatorname{dist}(x \circ a, y \circ b) = \min \left\{ egin{array}{l} \operatorname{dist}(x, y) + \mathbbm{1}\llbracket a
eq b
rbracket \\ \operatorname{dist}(x, y \circ b) + 1 \\ \operatorname{dist}(x \circ a, y) + 1 \end{array}
ight. .$$

Proof.

- *a* aligns to *b*, with cost $\mathbb{1}[a \neq b]$
- \blacksquare a is deleted, with cost 1
- lacksquare b is deleted, with cost 1

recursive algorithm:

dist(x)

$$dist(x = x_1x_2 \cdots x_n,$$

$$dist(x = x_1x_2 \cdots x_n, y)$$

$$\texttt{dist}(x = x_1 x_2 \cdots x_n, y = y_1 y_2 \cdots y_m)$$

dist
$$(x = x_1x_2 \cdots x_n, y = y_1y_2 \cdots y_m)$$

if $n = 0$, return m

$$\begin{aligned} \operatorname{dist}(x &= x_1 x_2 \cdots x_n, y = y_1 y_2 \cdots y_m) \\ & \quad \text{if } n = 0, \text{ return } m \\ & \quad \text{if } m = 0, \text{ return } n \end{aligned}$$

$$\begin{aligned} \text{dist}(x = x_1 x_2 \cdots x_n, y = y_1 y_2 \cdots y_m) \\ & \text{if } n = 0 \text{, return } m \\ & \text{if } m = 0 \text{, return } n \\ & d_1 = \text{dist}(x_{< n}, y_{< m}) + \mathbb{1}[\![x_n \neq y_m]\!] \end{aligned}$$

```
\begin{aligned} \text{dist}(x = x_1 x_2 \cdots x_n, y = y_1 y_2 \cdots y_m) \\ & \text{if } n = 0 \text{, return } m \\ & \text{if } m = 0 \text{, return } n \\ & d_1 = \text{dist}(x_{< n}, y_{< m}) + \mathbb{1}[\![x_n \neq y_m]\!] \\ & d_2 = \text{dist}(x_{< n}, y) + 1 \end{aligned}
```

$$\begin{aligned} \text{dist}(x = x_1 x_2 \cdots x_n, y = y_1 y_2 \cdots y_m) \\ & \text{if } n = 0 \text{, return } m \\ & \text{if } m = 0 \text{, return } n \\ & d_1 = \text{dist}(x_{< n}, y_{< m}) + \mathbb{1}[x_n \neq y_m] \\ & d_2 = \text{dist}(x_{< n}, y) + 1 \\ & d_3 = \text{dist}(x, y_{< m}) + 1 \end{aligned}$$

```
\begin{aligned} \text{dist}(x &= x_1 x_2 \cdots x_n, y = y_1 y_2 \cdots y_m) \\ & \text{if } n = 0 \text{, return } m \\ & \text{if } m = 0 \text{, return } n \\ & d_1 &= \text{dist}(x_{< n}, y_{< m}) + \mathbb{1}[\![x_n \neq y_m]\!] \\ & d_2 &= \text{dist}(x_{< n}, y) + 1 \\ & d_3 &= \text{dist}(x, y_{< m}) + 1 \\ & \text{return } \min(d_1, d_2, d_3) \end{aligned}
```

```
dist(x = x_1 x_2 \cdots x_n, y = y_1 y_2 \cdots y_m)

if n = 0, return m

if m = 0, return n

d_1 = \text{dist}(x_{< n}, y_{< m}) + \mathbb{1}[x_n \neq y_m]

d_2 = \text{dist}(x_{< n}, y) + 1

d_3 = \text{dist}(x, y_{< m}) + 1

return \min(d_1, d_2, d_3)
```

recursive algorithm:

```
dist(x = x_1 x_2 \cdots x_n, y = y_1 y_2 \cdots y_m)

if n = 0, return m

if m = 0, return n

d_1 = \text{dist}(x_{< n}, y_{< m}) + \mathbb{1}[x_n \neq y_m]

d_2 = \text{dist}(x_{< n}, y) + 1

d_3 = \text{dist}(x, y_{< m}) + 1

return \min(d_1, d_2, d_3)
```

correctness:

recursive algorithm:

```
dist(x = x_1 x_2 \cdots x_n, y = y_1 y_2 \cdots y_m)

if n = 0, return m

if m = 0, return n

d_1 = \text{dist}(x_{< n}, y_{< m}) + \mathbb{1}[x_n \neq y_m]

d_2 = \text{dist}(x_{< n}, y) + 1

d_3 = \text{dist}(x, y_{< m}) + 1

return \min(d_1, d_2, d_3)
```

correctness: clear

recursive algorithm:

```
dist(x = x_1 x_2 \cdots x_n, y = y_1 y_2 \cdots y_m)

if n = 0, return m

if m = 0, return n

d_1 = \text{dist}(x_{< n}, y_{< m}) + \mathbb{1}[x_n \neq y_m]

d_2 = \text{dist}(x_{< n}, y) + 1

d_3 = \text{dist}(x, y_{< m}) + 1

return \min(d_1, d_2, d_3)
```

correctness: clear

complexity:

recursive algorithm:

```
dist(x = x_1 x_2 \cdots x_n, y = y_1 y_2 \cdots y_m)

if n = 0, return m

if m = 0, return n

d_1 = \text{dist}(x_{< n}, y_{< m}) + \mathbb{1}[x_n \neq y_m]

d_2 = \text{dist}(x_{< n}, y) + 1

d_3 = \text{dist}(x, y_{< m}) + 1

return \min(d_1, d_2, d_3)
```

correctness: clear
complexity: ???

(abab,baba)

memoization:

(ab,bab) is repeated!

memoization: define subproblem (i,j) as computing $\operatorname{dist}(x_{\leq i},y_{\leq j})$

memoized algorithm:

global $d[\cdot][\cdot]$

global
$$d[\cdot][\cdot]$$
 dist $(x_1x_2\cdots x_n, y_1y_2\cdots y_m,$

```
global d[\cdot][\cdot] dist(x_1x_2\cdots x_n, y_1y_2\cdots y_m, (i,j))
```

```
 \begin{array}{c} \textbf{global} \ d[\cdot][\cdot] \\ \texttt{dist}(x_1x_2\cdots x_n, y_1y_2\cdots y_m, (i,j)) \\ \textbf{if} \ d[i][j] \ \text{initialized} \\ \textbf{return} \ d[i][j] \end{array}
```

```
 \begin{array}{l} \textbf{global} \ d[\cdot][\cdot] \\ \texttt{dist}(x_1x_2\cdots x_n, y_1y_2\cdots y_m, (i,j)) \\ \textbf{if} \ d[i][j] \ \textbf{initialized} \\ \textbf{return} \ d[i][j] \\ \textbf{if} \ i=0 \end{array}
```

```
 \begin{array}{l} \textbf{global} \ d[\cdot][\cdot] \\ \texttt{dist}(x_1x_2\cdots x_n, y_1y_2\cdots y_m, (i,j)) \\ \textbf{if} \ d[i][j] \ \text{initialized} \\ \textbf{return} \ d[i][j] \\ \textbf{if} \ i = 0 \\ d[i][j] = j \end{array}
```

```
 \begin{array}{l} \textbf{global} \ \ d[\cdot][\cdot] \\ \text{dist}(x_1x_2\cdots x_n, y_1y_2\cdots y_m, (i,j)) \\ \textbf{if} \ \ d[i][j] \ \ \text{initialized} \\ \textbf{return} \ \ d[i][j] \\ \textbf{if} \ \ i=0 \\ d[i][j]=j \\ \textbf{elif} \ \ j=0 \\ d[i][j]=i \end{array}
```

```
 \begin{aligned} &\textbf{global} \ d[\cdot][\cdot] \\ & \text{dist}(x_1x_2\cdots x_n,y_1y_2\cdots y_m,(i,j)) \\ & \textbf{if} \ d[i][j] \ \text{initialized} \\ & \textbf{return} \ d[i][j] \\ & \textbf{if} \ i = 0 \\ & d[i][j] = j \\ & \textbf{elif} \ j = 0 \\ & d[i][j] = i \\ & \textbf{else} \\ & d_1 = \textbf{dist}(x,y,(i-1,j-1)) + \mathbb{1}[x_i \neq y_j] \end{aligned}
```

```
 \begin{aligned} &\textbf{global} \ d[\cdot][\cdot] \\ &\textbf{dist}(x_1x_2\cdots x_n,y_1y_2\cdots y_m,(i,j)) \\ &\textbf{if} \ d[i][j] \ &\textbf{initialized} \\ &\textbf{return} \ d[i][j] \\ &\textbf{if} \ i = 0 \\ &d[i][j] = j \\ &\textbf{elif} \ j = 0 \\ &d[i][j] = i \\ &\textbf{else} \\ &d_1 = \textbf{dist}(x,y,(i-1,j-1)) + \mathbb{1}[x_i \neq y_j] \\ &d_2 = \textbf{dist}(x,y,(i-1,j)) + 1 \end{aligned}
```

```
global d[\cdot][\cdot]
dist(x_1x_2\cdots x_n, y_1y_2\cdots y_m, (i, j))
      if d[i][j] initialized
            return d[i][j]
      if i = 0
            d[i][i] = i
      elif i = 0
            d[i][i] = i
      else
             d_1 = \operatorname{dist}(x, y, (i-1, j-1)) + \mathbb{1}[x_i \neq y_i]
             d_2 = \mathbf{dist}(x, y, (i-1, j)) + 1
             d_3 = \mathbf{dist}(x, y, (i, j-1)) + 1
```

```
qlobal d[\cdot][\cdot]
dist(x_1x_2\cdots x_n, y_1y_2\cdots y_m, (i, j))
      if d[i][j] initialized
            return d[i][j]
      if i = 0
            d[i][i] = i
      elif i = 0
            d[i][i] = i
      else
            d_1 = \mathbf{dist}(x, y, (i-1, j-1)) + \mathbb{1}[x_i \neq y_i]
            d_2 = \mathbf{dist}(x, y, (i-1, j)) + 1
            d_3 = \mathbf{dist}(x, y, (i, i-1)) + 1
            d[i][j] = \min(d_1, d_2, d_3)
```

```
qlobal d[\cdot][\cdot]
dist(x_1x_2\cdots x_n, v_1v_2\cdots v_m, (i, j))
      if d[i][j] initialized
            return d[i][j]
      if i = 0
            d[i][i] = i
      elif i = 0
            d[i][i] = i
      else
            d_1 = \mathbf{dist}(x, y, (i-1, j-1)) + \mathbb{1}[x_i \neq y_i]
            d_2 = \mathbf{dist}(x, y, (i-1, j)) + 1
            d_3 = \mathbf{dist}(x, y, (i, i-1)) + 1
            d[i][j] = \min(d_1, d_2, d_3)
      return d[i][j]
```

```
global d[\cdot][\cdot]
dist(x_1x_2\cdots x_n, y_1y_2\cdots y_m, (i, j))
      if d[i][j] initialized
            return d[i][j]
      if i = 0
            d[i][i] = i
      elif i = 0
            d[i][i] = i
      else
            d_1 = \mathbf{dist}(x, y, (i-1, j-1)) + \mathbb{1}[x_i \neq y_i]
            d_2 = \mathbf{dist}(x, y, (i-1, j)) + 1
            d_3 = \mathbf{dist}(x, y, (i, j-1)) + 1
            d[i][j] = \min(d_1, d_2, d_3)
      return d[i][j]
```

dependency graph:

n m

dependency graph:

n m m-1

dependency graph:

 $\begin{array}{ccc}
 n & n-1 \\
 m & m-1 \\
 m-1 & m-1
 \end{array}$

Edit Distance (VIII)

dependency graph:

$$dist(x_1x_2\cdots x_n, y_1y_2\cdots y_m)$$

$$\operatorname{dist}(x_1x_2\cdots x_n,y_1y_2\cdots y_m)$$
 for $0\leq i\leq n$

```
\begin{aligned} \operatorname{dist}(x_1 x_2 \cdots x_n, y_1 y_2 \cdots y_m) \\ \operatorname{for} & 0 \leq i \leq n \\ & d[i][0] = i \end{aligned}
```

```
\begin{aligned} \operatorname{dist}(x_1x_2\cdots x_n,y_1y_2\cdots y_m) \\ & \quad \text{for } 0 \leq i \leq n \\ & \quad d[i][0] = i \\ & \quad \text{for } 0 \leq j \leq m \end{aligned}
```

```
\begin{array}{l} \operatorname{dist}(x_1x_2\cdots x_n,y_1y_2\cdots y_m) \\ \text{for } 0\leq i\leq n \\ d[i][0]=i \\ \text{for } 0\leq j\leq m \\ d[0][j]=j \end{array}
```

```
\begin{aligned} \operatorname{dist}(x_1x_2\cdots x_n,y_1y_2\cdots y_m) \\ & \quad \text{for } 0\leq i\leq n \\ & \quad d[i][0]=i \\ & \quad \text{for } 0\leq j\leq m \\ & \quad d[0][j]=j \\ & \quad \text{for } 0\leq i\leq n \\ & \quad \text{for } 0\leq j\leq m \end{aligned}
```

```
\begin{aligned} \operatorname{dist}(x_1 x_2 \cdots x_n, y_1 y_2 \cdots y_m) \\ & \quad \text{for } 0 \leq i \leq n \\ & \quad d[i][0] = i \\ & \quad \text{for } 0 \leq j \leq m \\ & \quad d[0][j] = j \\ & \quad \text{for } 0 \leq i \leq n \\ & \quad \text{for } 0 \leq j \leq m \end{aligned}
```

```
\begin{aligned} \operatorname{dist}(x_1x_2\cdots x_n,y_1y_2\cdots y_m) \\ & \quad \text{for } 0\leq i\leq n \\ & \quad d[i][0]=i \\ & \quad \text{for } 0\leq j\leq m \\ & \quad d[0][j]=j \\ & \quad \text{for } 0\leq i\leq n \\ & \quad \text{for } 0\leq j\leq m \end{aligned}
```

```
\begin{aligned} \operatorname{dist}(x_1 x_2 \cdots x_n, y_1 y_2 \cdots y_m) \\ & \quad \text{for } 0 \leq i \leq n \\ & \quad d[i][0] = i \\ & \quad \text{for } 0 \leq j \leq m \\ & \quad d[0][j] = j \\ & \quad \text{for } 0 \leq i \leq n \\ & \quad \text{for } 0 \leq j \leq m \end{aligned}
d[i][j] = \min \left\{ d[i-1][j-1] + \mathbb{1}[x_i \neq y_j] \right\}
```

```
\begin{aligned} \operatorname{dist}(x_1 x_2 \cdots x_n, y_1 y_2 \cdots y_m) \\ & \quad \text{for } 0 \leq i \leq n \\ & \quad d[i][0] = i \\ & \quad \text{for } 0 \leq j \leq m \\ & \quad d[0][j] = j \\ & \quad \text{for } 0 \leq i \leq n \\ & \quad \text{for } 0 \leq j \leq m \\ \\ & \quad d[i][j] = \min \left\{ \begin{aligned} d[i-1][j-1] + \mathbb{1}[x_i \neq y_j] \\ d[i-1][j] + 1 \end{aligned} \right. \end{aligned}
```

```
dist(x_1x_2\cdots x_n, V_1V_2\cdots V_m)
       for 0 < i < n
              d[i][0] = i
       for 0 < j < m
              d[0][i] = i
       for 0 < i < n
              for 0 \le j \le m
                    d[i][j] = \min \begin{cases} d[i-1][j-1] + \mathbb{1}[x_i \neq y_j] \\ d[i-1][j] + 1 \\ d[i][j-1] + 1 \end{cases}
       return d[n][m]
```

```
dist(x_1x_2\cdots x_n, V_1V_2\cdots V_m)
       for 0 < i < n
              d[i][0] = i
       for 0 < j < m
              d[0][i] = i
       for 0 < i < n
              for 0 \le j \le m
                   d[i][j] = \min \begin{cases} d[i-1][j-1] + \mathbb{1}[x_i \neq y_j] \\ d[i-1][j] + 1 \\ d[i][j-1] + 1 \end{cases}
       return d[n][m]
```

iterative algorithm:

```
dist(x_1x_2\cdots x_n, V_1V_2\cdots V_m)
       for 0 < i < n
              d[i][0] = i
       for 0 < j < m
              d[0][i] = i
       for 0 < i < n
              for 0 \le j \le m
                    d[i][j] = \min \begin{cases} d[i-1][j-1] + \mathbb{1}[x_i \neq y_j] \\ d[i-1][j] + 1 \\ d[i][j-1] + 1 \end{cases}
       return d[n][m]
```

correctness:

iterative algorithm:

```
dist(x_1x_2\cdots x_n, V_1V_2\cdots V_m)
      for 0 < i < n
             d[i][0] = i
      for 0 < j < m
             d[0][i] = i
      for 0 < i < n
             for 0 \le j \le m
                   d[i][j] = \min \begin{cases} d[i-1][j-1] + 1 [x_i \neq y_j] \\ d[i-1][j] + 1 \\ d[i][j-1] + 1 \end{cases}
       return d[n][m]
```

correctness: clear

iterative algorithm:

```
dist(x_1x_2\cdots x_n, V_1V_2\cdots V_m)
      for 0 < i < n
             d[i][0] = i
      for 0 < j < m
             d[0][i] = i
      for 0 < i < n
             for 0 \le j \le m
                   d[i][j] = \min \begin{cases} d[i-1][j-1] + 1 [x_i \neq y_j] \\ d[i-1][j] + 1 \\ d[i][j-1] + 1 \end{cases}
       return d[n][m]
```

correctness: clear

complexity:

iterative algorithm:

```
dist(x_1x_2\cdots x_n, V_1V_2\cdots V_m)
      for 0 < i < n
             d[i][0] = i
      for 0 < j < m
             d[0][i] = i
      for 0 < i < n
             for 0 \le j \le m
                   d[i][j] = \min \begin{cases} d[i-1][j-1] + 1 [x_i \neq y_j] \\ d[i-1][j] + 1 \\ d[i][j-1] + 1 \end{cases}
       return d[n][m]
```

correctness: clear

complexity: O(nm) time,

iterative algorithm:

```
dist(x_1x_2\cdots x_n, V_1V_2\cdots V_m)
      for 0 < i < n
              d[i][0] = i
      for 0 < j < m
             d[0][i] = i
      for 0 < i < n
             for 0 \le j \le m
                   d[i][j] = \min \begin{cases} d[i-1][j-1] + 1 [x_i \neq y_j] \\ d[i-1][j] + 1 \\ d[i][j-1] + 1 \end{cases}
       return d[n][m]
```

correctness: clear

complexity: O(nm) time, O(nm) space

Corollary

Corollary

Given two strings $x,y\in \Sigma^\star$ can compute the minimum cost alignment

Corollary

Given two strings $x, y \in \Sigma^*$ can compute the minimum cost alignment in O(nm)-time and O(nm)-space.

Corollary

Given two strings $x, y \in \Sigma^*$ can compute the minimum cost alignment in O(nm)-time and O(nm)-space.

Proof.

Corollary

Given two strings $x, y \in \Sigma^*$ can compute the minimum cost alignment in O(nm)-time and O(nm)-space.

Proof.

Exercise.

Corollary

Given two strings $x, y \in \Sigma^*$ can compute the minimum cost alignment in O(nm)-time and O(nm)-space.

Proof.

Exercise. Hint:

Corollary

Given two strings $x, y \in \Sigma^*$ can compute the minimum cost alignment in O(nm)-time and O(nm)-space.

Proof.

Exercise. Hint: follow how each subproblem was solved.

Corollary

Given two strings $x, y \in \Sigma^*$ can compute the minimum cost alignment in O(nm)-time and O(nm)-space.

Proof.

Exercise. *Hint:* follow *how* each subproblem was solved.

template:

develop recursive algorithm

- develop recursive algorithm
- understand structure of subproblems

- develop recursive algorithm
- understand structure of subproblems
- memoize

- develop recursive algorithm
- understand structure of subproblems
- memoize
 - implicitly,

- develop recursive algorithm
- understand structure of subproblems
- memoize
 - implicitly, via data structure

- develop recursive algorithm
- understand structure of subproblems
- memoize
 - implicitly, via data structure
 - explicitly,

- develop recursive algorithm
- understand structure of subproblems
- memoize
 - implicitly, via data structure
 - explicitly, converting to iterative algorithm

- develop recursive algorithm
- understand structure of subproblems
- memoize
 - implicitly, via data structure
 - explicitly, converting to iterative algorithm to traverse dependency graph

- develop recursive algorithm
- understand structure of subproblems
- memoize
 - implicitly, via data structure
 - explicitly, converting to iterative algorithm to traverse dependency graph via topological sort

- develop recursive algorithm
- understand structure of subproblems
- memoize
 - implicitly, via data structure
 - explicitly, converting to iterative algorithm to traverse dependency graph via topological sort
- analysis

- develop recursive algorithm
- understand structure of subproblems
- memoize
 - implicitly, via data structure
 - explicitly, converting to iterative algorithm to traverse dependency graph via topological sort
- analysis (time,

- develop recursive algorithm
- understand structure of subproblems
- memoize
 - implicitly, via data structure
 - explicitly, converting to iterative algorithm to traverse dependency graph via topological sort
- analysis (time, space)

- develop recursive algorithm
- understand structure of subproblems
- memoize
 - implicitly, via data structure
 - explicitly, converting to iterative algorithm to traverse dependency graph via topological sort
- analysis (time, space)
- further optimization

the knapsack problem:

the knapsack problem:

input: knapsack capacity $W \in \mathbb{N}$

the knapsack problem:

input: knapsack capacity $W \in \mathbb{N}$ (in pounds).

the knapsack problem:

input: knapsack capacity $W \in \mathbb{N}$ (in pounds). n items with weights $w_1, \ldots, w_n \in \mathbb{N}$,

the knapsack problem:

input: knapsack capacity $W \in \mathbb{N}$ (in pounds). n items with weights $w_1, \ldots, w_n \in \mathbb{N}$, and values $v_1, \ldots, v_n \in \mathbb{N}$.

the knapsack problem:

input: knapsack capacity $W \in \mathbb{N}$ (in pounds). n items with weights $w_1, \ldots, w_n \in \mathbb{N}$, and values $v_1, \ldots, v_n \in \mathbb{N}$.

goal: a subset $S \subseteq [n]$ of items

the knapsack problem:

input: knapsack capacity $W \in \mathbb{N}$ (in pounds). n items with weights $w_1, \ldots, w_n \in \mathbb{N}$, and values $v_1, \ldots, v_n \in \mathbb{N}$.

goal: a subset $S \subseteq [n]$ of items that fit in the knapsack,

the knapsack problem:

input: knapsack capacity $W \in \mathbb{N}$ (in pounds). n items with weights $w_1, \ldots, w_n \in \mathbb{N}$, and values $v_1, \ldots, v_n \in \mathbb{N}$.

goal: a subset $S \subseteq [n]$ of items that fit in the knapsack, with maximum value

the knapsack problem:

input: knapsack capacity $W \in \mathbb{N}$ (in pounds). n items with weights $w_1, \ldots, w_n \in \mathbb{N}$, and values $v_1, \ldots, v_n \in \mathbb{N}$.

goal: a subset $S \subseteq [n]$ of items that fit in the knapsack, with maximum value

$$\max_{S\subseteq[n]} \quad \sum_{i\in S} v_i$$

the knapsack problem:

input: knapsack capacity $W \in \mathbb{N}$ (in pounds). n items with weights $w_1, \ldots, w_n \in \mathbb{N}$, and values $v_1, \ldots, v_n \in \mathbb{N}$.

goal: a subset $S \subseteq [n]$ of items that fit in the knapsack, with maximum value

$$\max_{S \subseteq [n]} \sum_{i \in S} v_i$$
$$\sum_{i \in S} w_i \le W$$

the knapsack problem:

input: knapsack capacity $W \in \mathbb{N}$ (in pounds). n items with weights $w_1, \ldots, w_n \in \mathbb{N}$, and values $v_1, \ldots, v_n \in \mathbb{N}$.

goal: a subset $S \subseteq [n]$ of items that fit in the knapsack, with maximum value

$$\max_{S \subseteq [n]} \sum_{i \in S} v_i$$
$$\sum_{i \in S} w_i \le W$$

remarks:

the knapsack problem:

input: knapsack capacity $W \in \mathbb{N}$ (in pounds). n items with weights $w_1, \ldots, w_n \in \mathbb{N}$, and values $v_1, \ldots, v_n \in \mathbb{N}$.

goal: a subset $S \subseteq [n]$ of items that fit in the knapsack, with maximum value

$$\max_{S \subseteq [n]} \sum_{i \in S} v_i$$
$$\sum_{i \in S} w_i \le W$$

remarks:

■ prototypical problem in *combinatorial optimization*,

the knapsack problem:

input: knapsack capacity $W \in \mathbb{N}$ (in pounds). n items with weights $w_1, \ldots, w_n \in \mathbb{N}$, and values $v_1, \ldots, v_n \in \mathbb{N}$.

goal: a subset $S \subseteq [n]$ of items that fit in the knapsack, with maximum value

$$\max_{S \subseteq [n]} \sum_{i \in S} v_i$$

$$\sum_{i \in S} w_i \le W$$

remarks:

 prototypical problem in combinatorial optimization, can be generalized in numerous ways

the knapsack problem:

input: knapsack capacity $W \in \mathbb{N}$ (in pounds). n items with weights $w_1, \ldots, w_n \in \mathbb{N}$, and values $v_1, \ldots, v_n \in \mathbb{N}$.

goal: a subset $S \subseteq [n]$ of items that fit in the knapsack, with maximum value

$$\max_{S \subseteq [n]} \sum_{i \in S} v_i$$

$$\sum_{i \in S} w_i \le W$$

remarks:

- prototypical problem in combinatorial optimization, can be generalized in numerous ways
- needs to be solved in practice

Example

item	1	2	3	4	5
weight	1	2	5	6	7
value	1	6	18	22	28

Example

item	1	2	3	4	5
weight	1	2	5	6	7
value	1	6	18	22	28

For W=11,

Example

item	1	2	3	4	5
weight	1	2	5	6	7
value	1	6	18	22	28

For W=11, the best is $\{3,4\}$ giving value 40.

Example

item	1	2	3	4	5
weight	1	2	5	6	7
value	1	6	18	22	28

For W = 11, the best is $\{3,4\}$ giving value 40.

Definition

Example

item	1	2	3	4	5
weight	1	2	5	6	7
value	1	6	18	22	28

For W = 11, the best is $\{3,4\}$ giving value 40.

Definition

In the special case of when $v_i = w_i$ for all i,

Example

item	1	2	3	4	5
weight	1	2	5	6	7
value	1	6	18	22	28

For W = 11, the best is $\{3,4\}$ giving value 40.

Definition

In the special case of when $v_i = w_i$ for all i, the knapsack problem is called the **subset sum** problem.

item	1	2	3	4	5
value	1	6	16	22	28
weight	1	2	5	6	7

item	1	2	3	4	5
value	1	6	16	22	28
weight	1	2	5	6	7

and weight limit W = 15.

item	1	2	3	4	5
value	1	6	16	22	28
weight	1	2	5	6	7

and weight limit W = 15. What is the best solution value?

Knapsack (III)

item	1	2	3	4	5
value	1	6	16	22	28
weight	1	2	5	6	7

and weight limit W = 15. What is the best solution value?

- (a) 22
- (b) 28
- (c) 38
- (d) 50
- (e) 56

greedy approaches:

greedy approaches:

■ greedily select by maximum value:

greedy approaches:

■ greedily select by maximum value:

item	1	2	3
value	2	2	3
weight	1	1	2

greedy approaches:

greedily select by maximum value:

item	1	2	3
value	2	2	3
weight	1	1	2

For W = 2,

greedy approaches:

greedily select by maximum value:

item	1	2	3
value	2	2	3
weight	1	1	2

For W=2, greedy-value will pick $\{3\}$,

greedy approaches:

greedily select by maximum value:

item	1	2	3
value	2	2	3
weight	1	1	2

For W=2, greedy-value will pick $\{3\}$, but optimal is $\{1,2\}$.

greedy approaches:

greedily select by maximum value:

item	1	2	3
value	2	2	3
weight	1	1	2

For W=2, greedy-value will pick $\{3\}$, but optimal is $\{1,2\}$.

■ greedily select by minimum weight:

greedy approaches:

greedily select by maximum value:

item	1	2	3
value	2	2	3
weight	1	1	2

For W=2, greedy-value will pick $\{3\}$, but optimal is $\{1,2\}$.

■ greedily select by minimum weight:

item	1	2
value	1	3
weight	1	2

greedy approaches:

greedily select by maximum value:

item	1	2	3
value	2	2	3
weight	1	1	2

For W=2, greedy-value will pick $\{3\}$, but optimal is $\{1,2\}$.

■ greedily select by minimum weight:

item	1	2
value	1	3
weight	1	2

For W = 2,

greedy approaches:

greedily select by maximum value:

item	1	2	3
value	2	2	3
weight	1	1	2

For W = 2, greedy-value will pick $\{3\}$, but optimal is $\{1, 2\}$.

■ greedily select by minimum weight:

item	1	2
value	1	3
weight	1	2

For W = 2, greedy-weight will pick $\{1\}$,

greedy approaches:

greedily select by maximum value:

item	1	2	3
value	2	2	3
weight	1	1	2

For W=2, greedy-value will pick $\{3\}$, but optimal is $\{1,2\}$.

greedily select by minimum weight:

item	1	2
value	1	3
weight	1	2

For W=2, greedy-weight will pick $\{1\}$, but optimal is $\{2\}$.

greedy approaches:

greedily select by maximum value:

item	1	2	3
value	2	2	3
weight	1	1	2

For W = 2, greedy-value will pick $\{3\}$, but optimal is $\{1, 2\}$.

greedily select by minimum weight:

item	1	2
value	1	3
weight	1	2

For W = 2, greedy-weight will pick $\{1\}$, but optimal is $\{2\}$.

greedily select by maximum value/weight ratio:

greedy approaches:

greedily select by maximum value:

item	1	2	3
value	2	2	3
weight	1	1	2

For W = 2, greedy-value will pick $\{3\}$, but optimal is $\{1,2\}$.

greedily select by minimum weight:

item	1	2
value	1	3
weight	1	2

For W = 2, greedy-weight will pick $\{1\}$, but optimal is $\{2\}$.

greedily select by maximum value/weight ratio:

item	1	2	3
value	3	3	5
weight	2	2	3

greedy approaches:

greedily select by maximum value:

item	1	2	3
value	2	2	3
weight	1	1	2

For W = 2, greedy-value will pick $\{3\}$, but optimal is $\{1,2\}$.

greedily select by minimum weight:

item	1	2
value	1	3
weight	1	2

For W = 2, greedy-weight will pick $\{1\}$, but optimal is $\{2\}$.

greedily select by maximum value/weight ratio:

item	1	2	3
value	3	3	5
weight	2	2	3

For
$$W = 4$$
,

greedy approaches:

greedily select by maximum value:

item	1	2	3
value	2	2	3
weight	1	1	2

For W=2, greedy-value will pick $\{3\}$, but optimal is $\{1,2\}$.

greedily select by minimum weight:

item	1	2
value	1	3
weight	1	2

For W = 2, greedy-weight will pick $\{1\}$, but optimal is $\{2\}$.

greedily select by maximum value/weight ratio:

item	1	2	3
value	3	3	5
weight	2	2	3

For W = 4, greedy-value will pick $\{3\}$,

greedy approaches:

greedily select by maximum value:

item	1	2	3
value	2	2	3
weight	1	1	2

For W=2, greedy-value will pick $\{3\}$, but optimal is $\{1,2\}$.

greedily select by minimum weight:

item	1	2
value	1	3
weight	1	2

For W = 2, greedy-weight will pick $\{1\}$, but optimal is $\{2\}$.

greedily select by maximum value/weight ratio:

item	1	2	3
value	3	3	5
weight	2	2	3

For W = 4, greedy-value will pick $\{3\}$, but optimal is $\{1, 2\}$.

greedy approaches:

greedily select by maximum value:

item	1	2	3
value	2	2	3
weight	1	1	2

For W=2, greedy-value will pick $\{3\}$, but optimal is $\{1,2\}$.

greedily select by minimum weight:

item	1	2
value	1	3
weight	1	2

For W = 2, greedy-weight will pick $\{1\}$, but optimal is $\{2\}$.

greedily select by maximum value/weight ratio:

item	1	2	3
value	3	3	5
weight	2	2	3

For W=4, greedy-value will pick $\{3\}$, but optimal is $\{1,2\}$.

remark:

greedy approaches:

greedily select by maximum value:

item	1	2	3
value	2	2	3
weight	1	1	2

For W = 2, greedy-value will pick $\{3\}$, but optimal is $\{1,2\}$.

greedily select by minimum weight:

item	1	2
value	1	3
weight	1	2

For W = 2, greedy-weight will pick $\{1\}$, but optimal is $\{2\}$.

greedily select by maximum value/weight ratio:

item	1	2	3
value	3	3	5
weight	2	2	3

For W = 4, greedy-value will pick $\{3\}$, but optimal is $\{1, 2\}$.

remark: while greedy algorithms fail to get the *best* result,

greedy approaches:

greedily select by maximum value:

item	1	2	3
value	2	2	3
weight	1	1	2

For W = 2, greedy-value will pick $\{3\}$, but optimal is $\{1,2\}$.

greedily select by minimum weight:

item	1	2
value	1	3
weight	1	2

For W = 2, greedy-weight will pick $\{1\}$, but optimal is $\{2\}$.

greedily select by maximum value/weight ratio:

item	1	2	3
value	3	3	5
weight	2	2	3

For W = 4, greedy-value will pick $\{3\}$, but optimal is $\{1, 2\}$.

remark: while greedy algorithms fail to get the *best* result, they can still be useful for getting solutions that are *approximately* the best

Lemma

Consider the instance W, $(v_i)_{i=1}^n$, and $(w_i)_{i=1}^n$,

Lemma

Lemma

Lemma

Consider the instance W, $(v_i)_{i=1}^n$, and $(w_i)_{i=1}^n$, with optimal solution $S \subseteq [n]$. Then,

1 if $n \notin S$,

Lemma

Consider the instance W, $(v_i)_{i=1}^n$, and $(w_i)_{i=1}^n$, with optimal solution $S \subseteq [n]$. Then,

1 *if* $n \notin S$, then $S \subseteq [n-1]$

Lemma

Consider the instance W, $(v_i)_{i=1}^n$, and $(w_i)_{i=1}^n$, with optimal solution $S \subseteq [n]$. Then,

I if $n \notin S$, then $S \subseteq [n-1]$ is an optimal solution for the knapsack instance $(W, (v_i)_{i < n}, (w_i)_{i < n})$.

Lemma

- If $n \notin S$, then $S \subseteq [n-1]$ is an optimal solution for the knapsack instance $(W, (v_i)_{i < n}, (w_i)_{i < n})$.
- $2 \text{ if } n \in S,$

Lemma

- I if $n \notin S$, then $S \subseteq [n-1]$ is an optimal solution for the knapsack instance $(W, (v_i)_{i < n}, (w_i)_{i < n})$.
- $\mathbf{2}$ if $n \in S$, then $S \setminus \{n\} \subseteq [n-1]$

Lemma

- I if $n \notin S$, then $S \subseteq [n-1]$ is an optimal solution for the knapsack instance $(W, (v_i)_{i < n}, (w_i)_{i < n})$.
- 2 if $n \in S$, then $S \setminus \{n\} \subseteq [n-1]$ is an optimal solution for the knapsack instance $(W w_n, (v_i)_{i < n}, (w_i)_{i < n})$.

Lemma

Consider the instance W, $(v_i)_{i=1}^n$, and $(w_i)_{i=1}^n$, with optimal solution $S \subseteq [n]$. Then,

- I if $n \notin S$, then $S \subseteq [n-1]$ is an optimal solution for the knapsack instance $(W, (v_i)_{i < n}, (w_i)_{i < n})$.
- if $n \in S$, then $S \setminus \{n\} \subseteq [n-1]$ is an optimal solution for the knapsack instance $(W w_n, (v_i)_{i < n}, (w_i)_{i < n})$.

Proof.

Lemma

Consider the instance W, $(v_i)_{i=1}^n$, and $(w_i)_{i=1}^n$, with optimal solution $S \subseteq [n]$. Then,

- I if $n \notin S$, then $S \subseteq [n-1]$ is an optimal solution for the knapsack instance $(W, (v_i)_{i < n}, (w_i)_{i < n})$.
- if $n \in S$, then $S \setminus \{n\} \subseteq [n-1]$ is an optimal solution for the knapsack instance $(W w_n, (v_i)_{i < n}, (w_i)_{i < n})$.

Proof.

1 Any $S \subseteq [n-1]$ feasible for $(W, (v_i)_{i < n}, (w_i)_{i < n})$,

Lemma

Consider the instance W, $(v_i)_{i=1}^n$, and $(w_i)_{i=1}^n$, with optimal solution $S \subseteq [n]$. Then,

- I if $n \notin S$, then $S \subseteq [n-1]$ is an optimal solution for the knapsack instance $(W, (v_i)_{i < n}, (w_i)_{i < n})$.
- if $n \in S$, then $S \setminus \{n\} \subseteq [n-1]$ is an optimal solution for the knapsack instance $(W w_n, (v_i)_{i < n}, (w_i)_{i < n})$.

Proof.

■ Any $S \subseteq [n-1]$ feasible for $(W, (v_i)_{i < n}, (w_i)_{i < n})$, will also satisfy the original weight constraint

Lemma

Consider the instance W, $(v_i)_{i=1}^n$, and $(w_i)_{i=1}^n$, with optimal solution $S \subseteq [n]$. Then,

- I if $n \notin S$, then $S \subseteq [n-1]$ is an optimal solution for the knapsack instance $(W, (v_i)_{i < n}, (w_i)_{i < n})$.
- if $n \in S$, then $S \setminus \{n\} \subseteq [n-1]$ is an optimal solution for the knapsack instance $(W w_n, (v_i)_{i < n}, (w_i)_{i < n})$.

Proof.

- Any $S \subseteq [n-1]$ feasible for $(W, (v_i)_{i < n}, (w_i)_{i < n})$, will also satisfy the original weight constraint
- 2 Any $S \subseteq [n-1]$ feasible for $(W w_n, (v_i)_{i < n}, (w_i)_{i < n})$,

Lemma

Consider the instance W, $(v_i)_{i=1}^n$, and $(w_i)_{i=1}^n$, with optimal solution $S \subseteq [n]$. Then,

- I if $n \notin S$, then $S \subseteq [n-1]$ is an optimal solution for the knapsack instance $(W, (v_i)_{i < n}, (w_i)_{i < n})$.
- if $n \in S$, then $S \setminus \{n\} \subseteq [n-1]$ is an optimal solution for the knapsack instance $(W w_n, (v_i)_{i < n}, (w_i)_{i < n})$.

Proof.

- **1** Any $S \subseteq [n-1]$ feasible for $(W, (v_i)_{i < n}, (w_i)_{i < n})$, will also satisfy the original weight constraint
- 2 Any $S \subseteq [n-1]$ feasible for $(W w_n, (v_i)_{i < n}, (w_i)_{i < n})$, will have that $S \cup \{n\}$ will also satisfy the original weight constraint

Lemma

Consider the instance W, $(v_i)_{i=1}^n$, and $(w_i)_{i=1}^n$, with optimal solution $S \subseteq [n]$. Then,

- I if $n \notin S$, then $S \subseteq [n-1]$ is an optimal solution for the knapsack instance $(W, (v_i)_{i < n}, (w_i)_{i < n})$.
- if $n \in S$, then $S \setminus \{n\} \subseteq [n-1]$ is an optimal solution for the knapsack instance $(W w_n, (v_i)_{i < n}, (w_i)_{i < n})$.

Proof.

- Any $S \subseteq [n-1]$ feasible for $(W, (v_i)_{i < n}, (w_i)_{i < n})$, will also satisfy the original weight constraint
- 2 Any $S \subseteq [n-1]$ feasible for $(W w_n, (v_i)_{i < n}, (w_i)_{i < n})$, will have that $S \cup \{n\}$ will also satisfy the original weight constraint

Corollary

Fix an instance W, v_1, \ldots, v_n , and w_1, \ldots, w_n .

Corollary

Corollary

$$OPT(i, w) =$$

Corollary

$$\mathsf{OPT}(i,w) = \begin{cases} 0 \\ \end{cases}$$

Corollary

$$\mathsf{OPT}(i,w) = \begin{cases} 0 & i = 0 \\ & \end{cases}$$

Corollary

$$\mathsf{OPT}(i, w) = \begin{cases} 0 & i = 0 \\ \mathsf{OPT}(i - 1, w) \end{cases}$$

Corollary

$$\mathsf{OPT}(i, w) = \begin{cases} 0 & i = 0 \\ \mathsf{OPT}(i-1, w) & w_i > w \end{cases}$$

Corollary

$$OPT(i, w) = \begin{cases} 0 & i = 0 \\ OPT(i - 1, w) & w_i > w \end{cases}$$

$$\max \begin{cases} \begin{cases} i = 0 \\ w_i > w \end{cases} \end{cases}$$

Corollary

$$OPT(i, w) = \begin{cases} 0 & i = 0 \\ OPT(i-1, w) & w_i > w \end{cases}$$

$$\max \begin{cases} OPT(i-1, w) & \text{otherwise} \end{cases}$$

Corollary

$$OPT(i, w) = \begin{cases} 0 & i = 0 \\ OPT(i-1, w) & w_i > w \end{cases}$$

$$\max \begin{cases} OPT(i-1, w) & OPT(i-1, w) + v_i \end{cases}$$

Corollary

$$OPT(i, w) = \begin{cases} 0 & i = 0 \\ OPT(i-1, w) & w_i > w \end{cases}$$

$$\max \begin{cases} OPT(i-1, w) & else \end{cases}$$

Corollary

Fix an instance W, v_1, \ldots, v_n , and w_1, \ldots, w_n . Define $\mathsf{OPT}(i, w)$ to be the maximum value of the knapsack instance w, v_1, \ldots, v_i and w_1, \ldots, w_i . Then,

$$\mathsf{OPT}(i, w) = \begin{cases} 0 & i = 0 \\ \mathsf{OPT}(i-1, w) & w_i > w \\ \max \left\{ \begin{aligned} \mathsf{OPT}(i-1, w) & else \end{aligned} \right. \end{cases}$$

 \implies from instance W, v_1, \ldots, v_n , and w_1, \ldots, w_n

Corollary

Fix an instance W, v_1, \ldots, v_n , and w_1, \ldots, w_n . Define $\mathsf{OPT}(i, w)$ to be the maximum value of the knapsack instance w, v_1, \ldots, v_i and w_1, \ldots, w_i . Then,

$$\mathsf{OPT}(i, w) = \begin{cases} 0 & i = 0 \\ \mathsf{OPT}(i-1, w) & w_i > w \\ \max \begin{cases} \mathsf{OPT}(i-1, w) & else \end{cases} \end{cases}$$

 \implies from instance W, v_1, \ldots, v_n , and w_1, \ldots, w_n we generate $O(n \cdot W)$ -many subproblems

Corollary

Fix an instance W, v_1, \ldots, v_n , and w_1, \ldots, w_n . Define $\mathsf{OPT}(i, w)$ to be the maximum value of the knapsack instance w, v_1, \ldots, v_i and w_1, \ldots, w_i . Then,

$$OPT(i, w) = \begin{cases} 0 & i = 0 \\ OPT(i-1, w) & w_i > w \end{cases}$$

$$\max \begin{cases} OPT(i-1, w) & else \end{cases}$$

 \implies from instance W, v_1, \ldots, v_n , and w_1, \ldots, w_n we generate $O(n \cdot W)$ -many subproblems $(i, w)_{i \in [n], w < W}$.

an iterative algorithm:

an iterative algorithm: M[i, w] will compute OPT(i, w)

```
an iterative algorithm: M[i, w] will compute \mathsf{OPT}(i, w) for 0 \le w \le W
M[0, w] = 0
```

```
an iterative algorithm: M[i, w] will compute \mathsf{OPT}(i, w) for 0 \le w \le W M[0, w] = 0 for 1 \le i \le n
```

```
an iterative algorithm: M[i, w] will compute \mathsf{OPT}(i, w) for 0 \le w \le W M[0, w] = 0 for 1 \le i \le n for 1 \le w \le W
```

```
an iterative algorithm: M[i, w] will compute \mathsf{OPT}(i, w) for 0 \le w \le W M[0, w] = 0 for 1 \le i \le n for 1 \le w \le W if w_i > w
```

```
an iterative algorithm: M[i, w] will compute \mathsf{OPT}(i, w) for 0 \le w \le W M[0, w] = 0 for 1 \le i \le n for 1 \le w \le W if w_i > w M[i, w] = M[i-1, w]
```

```
an iterative algorithm: M[i, w] will compute \mathsf{OPT}(i, w) for 0 \le w \le W M[0, w] = 0 for 1 \le i \le n for 1 \le w \le W if w_i > w M[i, w] = M[i-1, w] else
```

```
an iterative algorithm: M[i, w] will compute \mathsf{OPT}(i, w) for 0 \le w \le W M[0, w] = 0 for 1 \le i \le n for 1 \le w \le W if w_i > w M[i, w] = M[i - 1, w] else M[i, w] = \mathsf{max}(
```

```
an iterative algorithm: M[i, w] will compute \mathsf{OPT}(i, w) for 0 \le w \le W M[0, w] = 0 for 1 \le i \le n for 1 \le w \le W if w_i > w M[i, w] = M[i - 1, w] else M[i, w] = \max(M[i - 1, w],
```

```
an iterative algorithm: M[i, w] will
 compute OPT(i, w)
for 0 < w < W
    M[0, w] = 0
for 1 < i < n
   for 1 < w < W
        if w_i > w
            M[i, w] = M[i-1, w]
        else
            M[i, w] = \max(M[i-1, w],
                          M[i-1, w-w_i]+v_i
```

an iterative algorithm: M[i, w] will compute OPT(i, w)

```
\begin{aligned} & \text{for } 0 \leq w \leq W \\ & M[0,w] = 0 \\ & \text{for } 1 \leq i \leq n \\ & \text{for } 1 \leq w \leq W \\ & \text{if } w_i > w \\ & M[i,w] = M[i-1,w] \\ & \text{else} \\ & M[i,w] = \max(M[i-1,w], \\ & M[i-1,w-w_i] + v_i) \end{aligned}
```

```
an iterative algorithm: M[i, w] will compute OPT(i, w)
```

```
\begin{aligned} & \text{for } 0 \leq w \leq W \\ & M[0,w] = 0 \\ & \text{for } 1 \leq i \leq n \\ & \text{for } 1 \leq w \leq W \\ & \text{if } w_i > w \\ & M[i,w] = M[i-1,w] \\ & \text{else} \\ & M[i,w] = \max(M[i-1,w], \\ & M[i-1,w-w_i] + v_i) \end{aligned}
```

correctness:

an iterative algorithm: M[i, w] will compute OPT(i, w)

```
for 0 \le w \le W

M[0, w] = 0

for 1 \le i \le n

for 1 \le w \le W

if w_i > w

M[i, w] = M[i - 1, w]

else

M[i, w] = \max(M[i - 1, w], M[i - 1, w - w_i] + v_i)
```

correctness: clear

an iterative algorithm: M[i, w] will compute OPT(i, w)

```
\begin{aligned} & \text{for } 0 \leq w \leq W \\ & M[0,w] = 0 \\ & \text{for } 1 \leq i \leq n \\ & \text{for } 1 \leq w \leq W \\ & \text{if } w_i > w \\ & M[i,w] = M[i-1,w] \\ & \text{else} \\ & M[i,w] = \max(M[i-1,w], \\ & M[i-1,w-w_i] + v_i) \end{aligned}
```

correctness: clear

complexity:

an iterative algorithm: M[i, w] will compute OPT(i, w)

```
\begin{aligned} & \text{for } 0 \leq w \leq W \\ & M[0,w] = 0 \\ & \text{for } 1 \leq i \leq n \\ & \text{for } 1 \leq w \leq W \\ & \text{if } w_i > w \\ & M[i,w] = M[i-1,w] \\ & \text{else} \\ & M[i,w] = \max(M[i-1,w], \\ & M[i-1,w-w_i] + v_i) \end{aligned}
```

correctness: clear
complexity:

O(nW) time,

an iterative algorithm: M[i, w] will compute OPT(i, w)

```
\begin{aligned} & \text{for } & 0 \leq w \leq W \\ & & M[0,w] = 0 \\ & \text{for } & 1 \leq i \leq n \\ & \text{for } & 1 \leq w \leq W \\ & & \text{if } & w_i > w \\ & & M[i,w] = M[i-1,w] \\ & & \text{else} \\ & & M[i,w] = \max(M[i-1,w], \\ & & M[i-1,w-w_i] + v_i) \end{aligned}
```

correctness: clear

complexity:

• O(nW) time, but *input size* is O(n

an iterative algorithm: M[i, w] will compute OPT(i, w)

```
\begin{aligned} & \text{for } & 0 \leq w \leq W \\ & & M[0,w] = 0 \\ & \text{for } & 1 \leq i \leq n \\ & \text{for } & 1 \leq w \leq W \\ & & \text{if } & w_i > w \\ & & M[i,w] = M[i-1,w] \\ & & \text{else} \\ & & M[i,w] = \max(M[i-1,w], \\ & & M[i-1,w-w_i] + v_i) \end{aligned}
```

correctness: clear

complexity:

• O(nW) time, but *input size* is $O(n + \log W)$

an iterative algorithm: M[i, w] will compute OPT(i, w)

```
for 0 \le w \le W

M[0, w] = 0

for 1 \le i \le n

for 1 \le w \le W

if w_i > w

M[i, w] = M[i - 1, w]

else

M[i, w] = \max(M[i - 1, w], M[i - 1, w - w_i] + v_i)
```

correctness: clear

complexity:

an iterative algorithm: M[i, w] will compute OPT(i, w)

```
for 0 \le w \le W

M[0, w] = 0

for 1 \le i \le n

for 1 \le w \le W

if w_i > w

M[i, w] = M[i - 1, w]

else

M[i, w] = \max(M[i - 1, w], M[i - 1, w - w_i] + v_i)
```

correctness: clear

complexity:

an iterative algorithm: M[i, w] will compute OPT(i, w)

```
\begin{aligned} & \text{for } & 0 \leq w \leq W \\ & & M[0,w] = 0 \\ & \text{for } & 1 \leq i \leq n \\ & \text{for } & 1 \leq w \leq W \\ & & \text{if } & w_i > w \\ & & M[i,w] = M[i-1,w] \\ & & \text{else} \\ & & M[i,w] = \max(M[i-1,w], \\ & & M[i-1,w-w_i] + v_i) \end{aligned}
```

correctness: clear

complexity:

■ O(nW) time, but input size is $O(n + \log W + \sum_{i=1}^{n} (\log v_i + \log w_i))$

■ e.g., $W = 2^n$ has O(n) bits but requires $\Omega(2^n)$ runtime

an iterative algorithm: M[i, w] will compute OPT(i, w)

```
\begin{aligned} & \text{for } 0 \leq w \leq W \\ & M[0,w] = 0 \\ & \text{for } 1 \leq i \leq n \\ & \text{for } 1 \leq w \leq W \\ & \text{if } w_i > w \\ & M[i,w] = M[i-1,w] \\ & \text{else} \\ & M[i,w] = \max(M[i-1,w], \\ & M[i-1,w-w_i] + v_i) \end{aligned}
```

correctness: clear

complexity:

■ O(nW) time, but input size is $O(n + \log W + \sum_{i=1}^{n} (\log v_i + \log w_i))$

■ e.g., $W = 2^n$ has O(n) bits but requires $\Omega(2^n)$ runtime \implies running time is **not** polynomial in the input

an iterative algorithm: M[i, w] will compute OPT(i, w)

```
\begin{aligned} & \text{for } 0 \leq w \leq W \\ & M[0,w] = 0 \\ & \text{for } 1 \leq i \leq n \\ & \text{for } 1 \leq w \leq W \\ & \text{if } w_i > w \\ & M[i,w] = M[i-1,w] \\ & \text{else} \\ & M[i,w] = \max(M[i-1,w], \\ & M[i-1,w-w_i] + v_i) \end{aligned}
```

correctness: clear

complexity:

- e.g., $W = 2^n$ has O(n) bits but requires $\Omega(2^n)$ runtime \implies running time is **not** polynomial in the input
- Algorithm is pseudo-polynomial:

an iterative algorithm: M[i, w] will compute OPT(i, w)

```
\begin{aligned} & \text{for } 0 \leq w \leq W \\ & M[0,w] = 0 \\ & \text{for } 1 \leq i \leq n \\ & \text{for } 1 \leq w \leq W \\ & \text{if } w_i > w \\ & M[i,w] = M[i-1,w] \\ & \text{else} \\ & M[i,w] = \max(M[i-1,w], \\ & M[i-1,w-w_i] + v_i) \end{aligned}
```

correctness: clear

complexity:

- e.g., $W = 2^n$ has O(n) bits but requires $\Omega(2^n)$ runtime \implies running time is **not** polynomial in the input
- Algorithm is pseudo-polynomial: running time is polynomial in magnitude of the input numbers

an iterative algorithm: M[i, w] will compute OPT(i, w)

```
\begin{aligned} & \text{for } 0 \leq w \leq W \\ & M[0,w] = 0 \\ & \text{for } 1 \leq i \leq n \\ & \text{for } 1 \leq w \leq W \\ & \text{if } w_i > w \\ & M[i,w] = M[i-1,w] \\ & \text{else} \\ & M[i,w] = \max(M[i-1,w], \\ & M[i-1,w-w_i] + v_i) \end{aligned}
```

correctness: clear

complexity:

- e.g., $W = 2^n$ has O(n) bits but requires $\Omega(2^n)$ runtime \implies running time is **not** polynomial in the input
- Algorithm is pseudo-polynomial: running time is polynomial in magnitude of the input numbers
- Knapsack is NP-hard in general

an iterative algorithm: M[i, w] will compute OPT(i, w)

```
 \begin{aligned} & \text{for } 0 \leq w \leq W \\ & M[0,w] = 0 \\ & \text{for } 1 \leq i \leq n \\ & \text{for } 1 \leq w \leq W \\ & \text{if } w_i > w \\ & M[i,w] = M[i-1,w] \\ & \text{else} \\ & M[i,w] = \max(M[i-1,w], \\ & M[i-1,w-w_i] + v_i) \end{aligned}
```

correctness: clear

complexity:

- e.g., $W = 2^n$ has O(n) bits but requires $\Omega(2^n)$ runtime \implies running time is **not** polynomial in the input
- Algorithm is pseudo-polynomial: running time is polynomial in magnitude of the input numbers
- Knapsack is NP-hard in general ⇒ no efficient algorithm is expected to compute the exact optimum

an iterative algorithm: M[i, w] will compute OPT(i, w)

```
\begin{array}{l} \text{for} \ \ 0 \leq w \leq W \\  \ \ \ M[0,w] = 0 \\ \text{for} \ \ 1 \leq i \leq n \\ \text{for} \ \ 1 \leq w \leq W \\ \text{if} \ \ w_i > w \\ M[i,w] = M[i-1,w] \\ \text{else} \\ M[i,w] = \max(M[i-1,w], \\ M[i-1,w-w_i] + v_i) \end{array}
```

correctness: clear

complexity:

■ O(nW) time, but input size is $O(n + \log W + \sum_{i=1}^{n} (\log v_i + \log w_i))$

- e.g., $W = 2^n$ has O(n) bits but requires $\Omega(2^n)$ runtime \implies running time is **not** polynomial in the input
- Algorithm is pseudo-polynomial: running time is polynomial in magnitude of the input numbers
- Knapsack is NP-hard in general ⇒ no efficient algorithm is expected to compute the exact optimum

punchline:

an iterative algorithm: M[i, w] will compute OPT(i, w)

```
\begin{aligned} & \text{for } 0 \leq w \leq W \\ & & M[0,w] = 0 \\ & \text{for } 1 \leq i \leq n \\ & \text{for } 1 \leq w \leq W \\ & & \text{if } w_i > w \\ & & M[i,w] = M[i-1,w] \\ & & \text{else} \\ & & M[i,w] = \max(M[i-1,w], \\ & & M[i-1,w-w_i] + v_i) \end{aligned}
```

correctness: clear complexity:

■ O(nW) time, but *input size* is $O(n + \log W + \sum_{i=1}^{n} (\log v_i + \log w_i))$

- e.g., $W = 2^n$ has O(n) bits but requires $\Omega(2^n)$ runtime \implies running time is **not** polynomial in the input
- Algorithm is pseudo-polynomial: running time is polynomial in magnitude of the input numbers
- Knapsack is NP-hard in general ⇒ no efficient algorithm is expected to compute the exact optimum

punchline: had to correctly *parameterize* knapsack sub-problems $(v_j)_{j \le i}, (w_j)_{j \le i}$ by *also* considering arbitrary w.

an iterative algorithm: M[i, w] will compute OPT(i, w)

```
\begin{aligned} & \text{for } & 0 \leq w \leq W \\ & & M[0,w] = 0 \\ & \text{for } & 1 \leq i \leq n \\ & \text{for } & 1 \leq w \leq W \\ & & \text{if } & w_i > w \\ & & & M[i,w] = M[i-1,w] \\ & & \text{else} \\ & & M[i,w] = \max(M[i-1,w], \\ & & & M[i-1,w-w_i] + v_i) \end{aligned}
```

correctness: clear
complexity:

■ O(nW) time, but input size is $O(n + \log W + \sum_{i=1}^{n} (\log v_i + \log w_i))$

- e.g., $W = 2^n$ has O(n) bits but requires $\Omega(2^n)$ runtime \implies running time is **not** polynomial in the input
- Algorithm is pseudo-polynomial: running time is polynomial in magnitude of the input numbers
- Knapsack is NP-hard in general ⇒ no efficient algorithm is expected to compute the exact optimum

punchline: had to correctly *parameterize* knapsack sub-problems $(v_j)_{j \le i}, (w_j)_{j \le i}$ by *also* considering arbitrary w. This is a common theme in dynamic programming problems.

Today

today:

- recursion
- dynamic programming
 - fibonacci numbers
 - edit distance
 - knapsack

next time: more dynamic programming logistics:

- pset0 due R5, (aka, tomorrow) submit *individually*!
- pset1 out tomorrow, due R5 (next week)
- piazza signup

TOC

- 1 Title
- 2 Today
- 3 Recursion
- 4 Recursion (II)
- 5 Recursion (II)
- 6 Fibonacci Numbers
- 7 Fibonacci Numbers (II)
- 8 Fibonacci Numbers (III)
- 9 Fibonacci Numbers (IV)
- 10 Memoization
- 11 Memoization (II)
- 12 Memoization (III)
- 13 Fibonacci Numbers (V)
- 14 Memoization (IV)
- 15 Edit Distance
- 16 Edit Distance (II)

- 17 Edit Distance (III)
- 18 Edit Distance (IV)
- 9 Edit Distance (V)
- Edit Distance (VI)
- Edit Distance (VII)
- 22 Edit Distance (VIII)
- 23 Edit Distance (IX)
- 24 Edit Distance (X)
- 25 Dynamic Programming
- 6 Knapsack
- 27 Knapsack (II)
- 28 Knapsack (III)
- 29 Knapsack (IV)
- 30 Knapsack (V)
- 31 Knapsack (VI)
- 32 Knapsack (VII)
- 33 Today