
CS466	Programming
Assignment

1. Overview
This assignment asks you to implement either (your choice) of two algorithms
learned in this class: 1) the core of the BLAST algorithm, or 2) de Bruijn graph
assembly. You can choose to code in any language that you are comfortable with1, but
your submitted �iles should be self-contained (with the exception of third-party
libraries, see below). The grading will largely be based on your implementation
having the correct idea and outputting meaningful results instead of focusing on
accuracy or running-time. With that said, we plan to use an autograder to simplify the
grading process, but the results of the autograder will only serve as a shortcut for us to
determine the quality of your implementation. Your �inal score may very well disagree
with the autograder if we think that good effort has been put into the implementation
and the results are meaningful.

1.1. Directory	Structure
While the autograding platform and concrete submission directions are still being
worked on (update: the submission directions has been posted to Piazza. Also see the
new section 1.4 for more information), you can prepare your submission directory to
have a main entry �ile named either blast (with the appropriate capitalization and
extension determined by your language) or assembly (again, with the appropriate
capitalization and extension) depending on the option you choose. Here are some
examples of how things will be run for some common languages:

For the BLAST option:

assuming the current working directory is inside your source directory
python blast.py <queries> <db> # Python 2.7
python3 blast.py <queries> <db> # Python 3.8
javac *.java && java Blast <queries> <db> # Java 9
g++ -g -O2 -std=gnu++17 *.cpp -o blast && ./blast <queries> <db> # C++

For the de Bruijn graph assembly option:

assuming the current working directory is inside your source directory
python assembly.py <reads> # Python 2.7
python3 assembly.py <reads> # Python 3.8
javac *.java && java Assembly <reads> # Java 9
g++ -g -O2 -std=gnu++17 *.cpp -o assembly && ./assembly <reads> # C++

The exact format and input structure will be outlined in the following sections. If you
use other languages, you can expect analogous commands used.

1.2. Third-Party	Libraries	and	Build	Tools
Third-party libraries can be used for data-processing and data structures, but the core
of the algorithm (for example, �inding the Eulerian path, bridge detection, etc.) should
be entirely implemented by you. If you use third-party libraries, you are encouraged to
use some kind of cross-platform build tool (say, CMake for C++, Gradle for Java, Poetry
for Python), but this will not be an requirement. In general, just be prepared to

document how to compile and run your code during submission (conforming to some
convention makes the autograding easier, but it will not be enforced strictly).

For Python, the latest stable version of networkx can be assumed to be pre-installed
during autograding (this is not an endorsement for networkx. It is not necessary, but
some people might be familiar with it and want to use it).

1.3. Starter	Code
Here is some very minimal starter code for Python3 that will handle reading the
inputs for you: https://git.io/JOGAa. Feel free to use it (and feel free to not use it.)

1.4. Grading	Information
See also the original post on Piazza on submission instructions. Feel free to ask me
questions or drop suggestions on the autograder or the grading of this assignment.

1.4.1. Grading	standards
In the case that the submitted code conforms to the autograder convention, the
autograder's score serves as a lower bound for the �inal score (unless the code is
really abusing this somehow by special casing the autograder inputs). After serving as
this lower bound, the autograder score is no longer directly considered (the failed test
cases might help pinpointing mistakes).

Afterwards the grading is based on reading the code (and blackbox testing the code),
for each major programming mistake that re�lects some misunderstanding of core
parts of the algorithms, 10 pts is deducted. For other types of mistakes not directly
related to the understanding of the algorithm (say due to accidentally introducing UB
in your C++ code), at most 5 pts is deducted.

In the special case that the code is not �inishing on the autograder input simply due to
an inef�icient implementation (since the autograder should have given plenty of time
for an algorithm to �inish), I will try running the code (on my laptop) with a
total 25 minutes allocated on all inputs used by the autograder, if the code �inishes
within 25 minutes, no points will be deducted. Otherwise I am going to check if the
submitted code on whether it is using this much time due to an inef�icient (probably

) but correct algorithm (in which case -7 pts), or it is not implementing the
algorithm right, in which case the previous paragraph applies.

Only in the case that the submitted code does not conform to the autograder
convention that you need to document how to run your code and the format your code
uses. In all cases, the code itself can be unexplained/uncommented.

1.4.2. Constantly	not	passing	some	of	the	test	cases
This applies more for the de Bruijn assembly option. It might help to �irst convince
yourself that the algorithm is correct, but you might not be handling some cases
correctly (for example for the assembly option, the existence of a Eulerian cycle as a
subgraph of the entire de Bruijn graph). Make a Piazza post about it and maybe I can
help.

1.4.3. Timing	out	on	the	autograder
The autograder should have allowed plenty of time (1200s) for a simple algorithm to
�inish. See 1.4.1 for more information on how the grading

https://git.io/JOGAa
https://piazza.com/class/kkck6418r455jx?cid=115

will be handled in this case. For now (before I really have time to implement time-
outs in the autograder), it is necessary to run the tests yourself to pinpoint where the
code is taking too much time. Not having time-outs for individual test cases is not
ideal for an autograder and is something I should work on if I were to be doing this
again.

2. BLAST
The goal here is to implement the core of the BLAST algorithm (using neighborhood
words, extending the seed alignments, etc.) to �ind good local alignments of query
sequences against a single database sequence.

The submitted program should receive two �ilenames from the command line
arguments (ARGV). The �irst �ilename points to a �ile containing the query sequences.
This query �ile contains one sequence per line, and they denote the BLAST queries.
The second �ilename points to the database �ile. This database will only contain one
sequence (the subject sequence), and it will be on the �irst line in the database �ile. All
the sequences here are nucleotide sequences with alphabets ACTG.

Here are some assumptions that will be useful: the subject sequence will always be at
least twice as long as the longest query sequence, and its length will never exceed
10kb. The query sequences will have lengths between 30 and 55. Be prepared for
inputs containing ~500 query sequences.

You are free to select your own parameters for BLAST as long as they make sense (we
do not score by accuracy), but if you are looking for something to aim for, having most
of the queries where the query sequence is at most two edits (insertion, deletion,
mutation) away from some substring of the subject sequence properly aligned can be a
good thing to try.

For the output, the program should for each output local alignment, print (to standard
output) a comma separated line containing the following values (all indices outputted
here are 1-based): the index of the query sequence this search result corresponds to,
the index where the local alignment starts in the query sequence, the index where the
local alignment ends in the query sequence, the index where the local alignment starts
in the subject sequence, and the index where the local alignment ends in the subject
sequence.

For example, suppose that this is the input given to the program (ran by
<your_program> queries.txt db.txt):

queries.txt

TTTGAAGTGTTACTCTCCGTCTACTTAAGGC

db.txt

CGGCCACCGGCAATGATCGCAGTCGTTTGAAGTGTTACTCTCCGTCTACTTAAGGCGAGGTACGCGCCGCTG

The intended output is given below (which means that the �irst sequence is aligned
(from pos 1 to 31) to the subject sequence (from 26 to 56):

output

1,1,31,26,56

https://github.com/RuneBlaze/autograde466_sp21/tree/main/tests_blast
https://github.com/RuneBlaze/autograde466_sp21/tree/main/tests_assembly

This corresponds to the following alignment obtained by blastn:

Query 1 TTTGAAGTGTTACTCTCCGTCTACTTAAGGC 31
 |||||||||||||||||||||||||||||||
Sbjct 26 TTTGAAGTGTTACTCTCCGTCTACTTAAGGC 56

Here is another set of input/output:

queries.txt

TTTGAAGTGTTTCTCTCCGTCTACTTAAGGC
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
TTTGAAGTGTTACTCTCCGTCTACTTAGGC

db.txt

CGGCCACCGGCAATGATCGCAGTCGTTTGAAGTGTTACTCTCCGTCTACTTAAGGCGAGGTACGCGCCGCTG

output

1,1,31,26,56
3,1,30,26,56

We	also	provide	a	set	of	input	that	strongly	resembles	what	the	autograder	will	use:
see	it	here

Note that depending on the parameters chosen, it is entirely possible for a correct
implementation to have outputs different from these example inputs/outputs.

3. De	Bruijn	Graph	Assembly
The goal here is to implement the de Bruijn Graph assembly algorithm for genome
assembly.

The program that is submitted should receive one �ilename from the command line
arguments (ARGV). The �ilename should point to a �ile containing the reads to be
assembled separated by new lines. All the sequences here are assumed to be
nucleotide sequences with alphabets ACTG. Each sequence will always be of the same
length . This implies that your de Bruijn graph should have mers as the
nodes.

The output is simply the assembled genome from the input reads (if there are multiple
equally valid assembled genomes, output any of them.) using the reads, outputted (to
standard output) in one line. If you cannot assemble the genome using the input reads,
output a single line -1 instead.

Be prepared to assemble up to 2000 reads with length no more than 60bp (edit: in
retrospect I think I generated test cases that exceeded this bound of # of reads by a
factor of 5. Unfortunately it seems that this is hard to compensate for at this point, I
upped the Gradescope timeout limit and compute power to compensate for this. If
your code is just slow on those large inputs no penalty will be applied since the input
sizes are large now (~10k reads now, still permitting algorithms to �inish well
within limit)). The �inal assembled genome length will not exceed 10kb. For the
inputs that can be assembled, the reads will be entirely error free (i.e. each read will
be a substring of the assembled genome), and every kmer (the will be �ixed

https://git.io/JOGN2

throughout one set of read, i.e. throughout one execution of your program, but may
vary between different input �iles) at each position will appear in the reads exactly
once (if a kmer appears at exactly two different positions in the genome, then it will be
included exactly twice in the input reads).

Here are some example inputs and outputs (program invoked by <your_program>
reads.txt):

reads.txt

AAA
AAC
ACC
CCC
CCA

output

AAACCCA

Here is another set of input and output:

reads.txt

TGACTG
GACTGG
ACTGGA
CTGGAT
TGGATC
GGATCG
AAACCA
AACCAC
ACCACT
CCACTG
CACTGA
ACTGAC
CTGACT
GATCGA
ATCGAT
TCGATC
CGATCG

output

AAACCACTGACTGGATCGATCG

A set of input/output demonstrating what to do when assembly is not possible:

reads.txt

AAAAAAAAAAAAAAAAAAA
CCCCCCCCCCCCCCCCCCC

output

-1

We	also	provide	a	set	of	inputs	that	strongly	resembles	what	the	autograder	will	use:
see	it	here

https://git.io/JOGN0

Created with Madoko.net.

1. Perhaps just give us a heads up if you plan to use anything that is more obscure than Haskell or
Julia. ↩

https://www.madoko.net/

