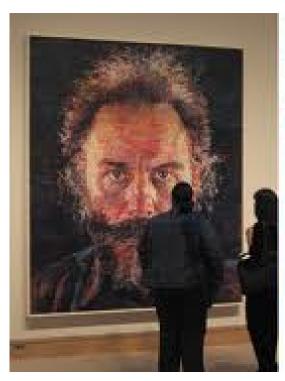
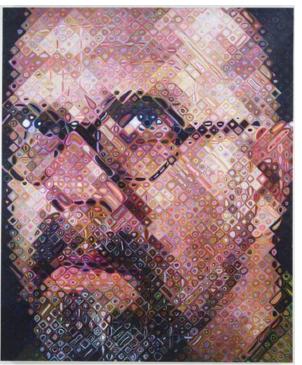
Detection, Recognition, and Transformation of Faces





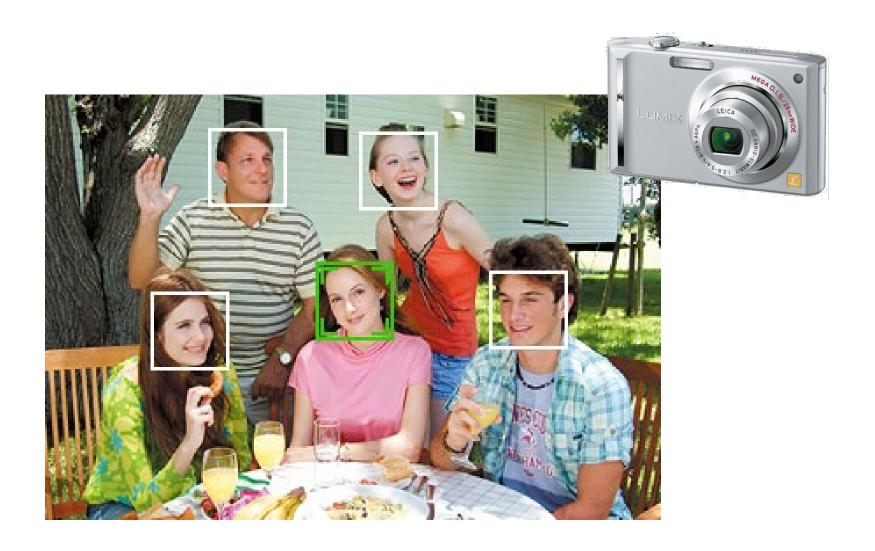
Lucas by Chuck Close

Chuck Close, self portrait

Face detection and recognition

Applications of Face Recognition

Digital photography



Applications of Face Recognition

- Digital photography
- Surveillance

Applications of Face Recognition

- Digital photography
- Surveillance
- Album organization

Face detection

What does a face look like?

What does a face look like?

What makes face detection hard?

Expression

What makes face detection hard?

Viewpoint



What makes face detection hard?

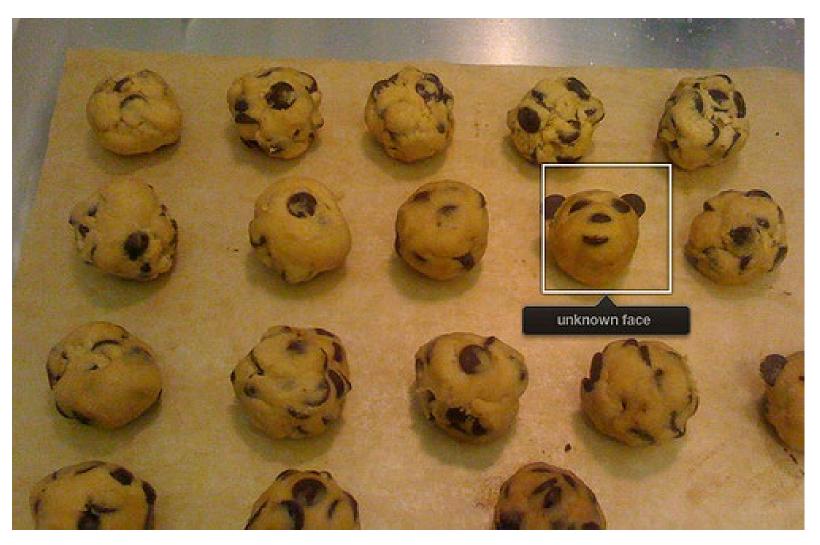
Occlusion

What makes face detection and recognition hard?

Coincidental textures

Consumer application: iPhoto 2009

• Things iPhoto thinks are faces



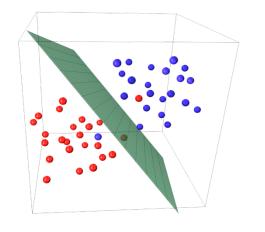
How to find faces anywhere in an image?

Filter Image with a face?

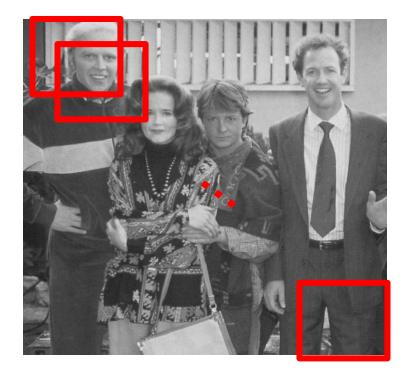
Train a Filter

Positive Training Images

Negative Training Images



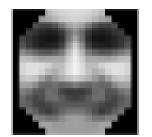
Face detection: sliding windows

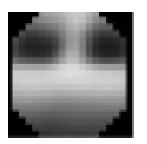


Filter/Template

Multiple scales

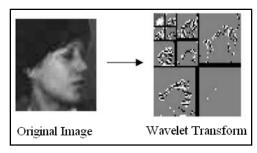
What features?





Exemplars (Sung Poggio 1994)

Intensity Patterns (with NNs) (Rowley Baluja Kanade 1996)



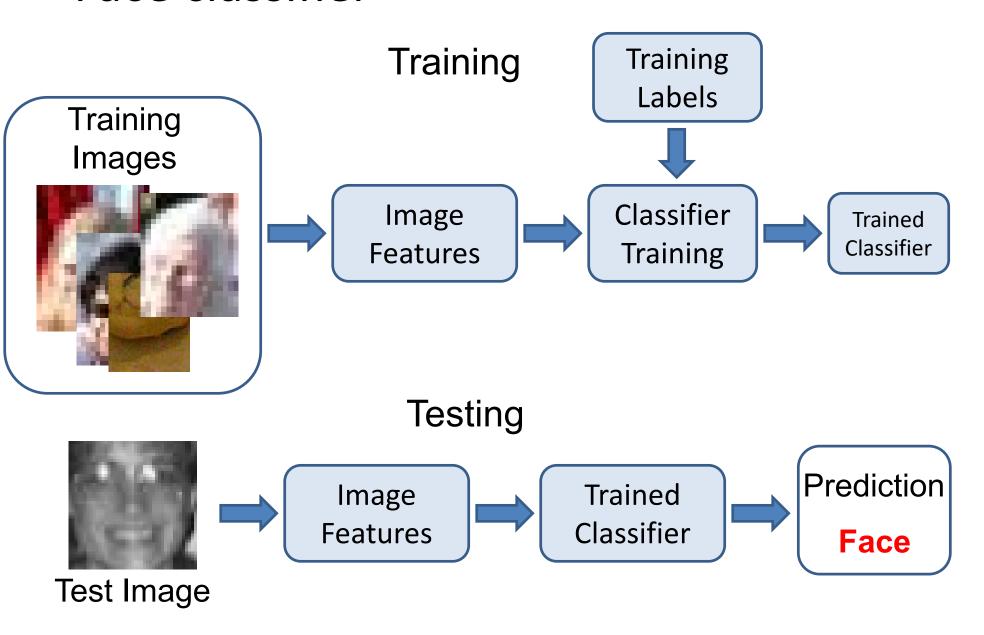
Edge (Wavelet) Pyramids (Schneiderman Kanade 1998)

Haar Filters (Viola Jones 2000)

How to classify?

- Many ways
 - Neural networks
 - Adaboost
 - SVMs
 - Nearest neighbor

Face classifier

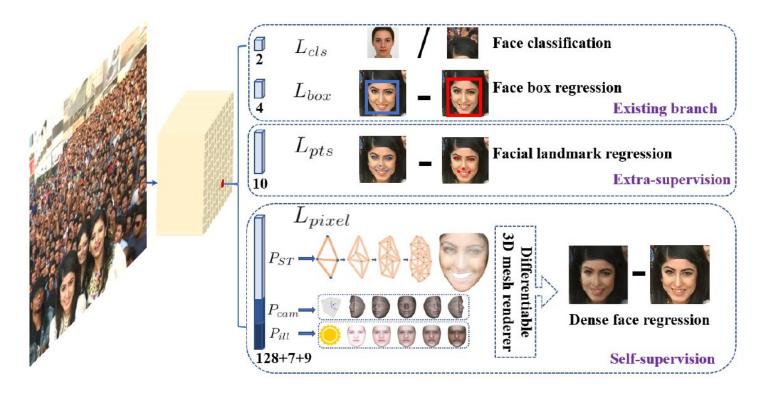


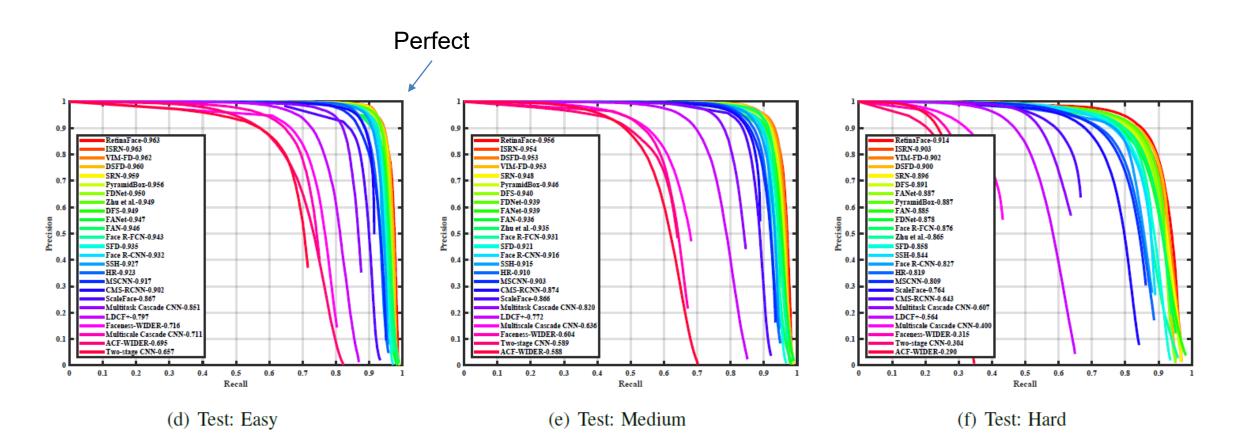
Face Detection: State of the Art

RetinaFace: Single-stage Dense Face Localisation in the Wild

```
Jiankang Deng * 1,2,4 Jia Guo * 2 Yuxiang Zhou <sup>1</sup>
Jinke Yu <sup>2</sup> Irene Kotsia <sup>3</sup> Stefanos Zafeiriou<sup>1,4</sup>

<sup>1</sup>Imperial College London <sup>2</sup>InsightFace <sup>3</sup>Middlesex University London <sup>4</sup>FaceSoft
```





0.9

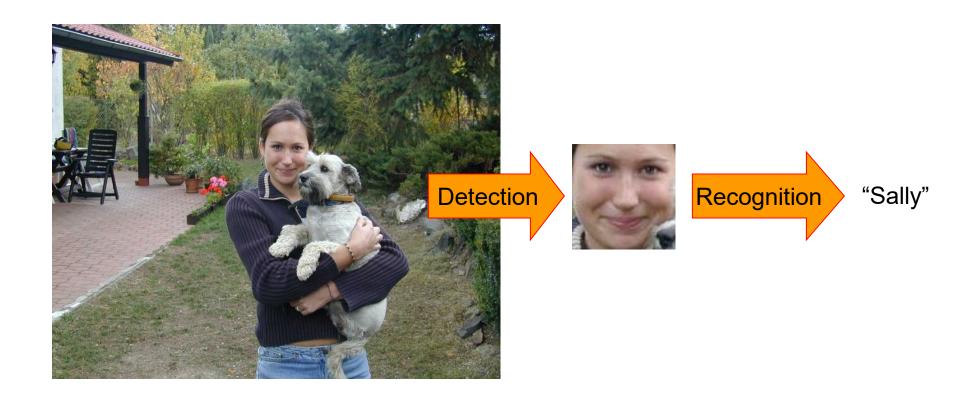
0.8

0.7

0.6

RetinaFace can find around 900 faces (threshold at 0.5) out of the reported 1151 people

Face recognition

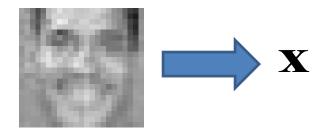


Face recognition

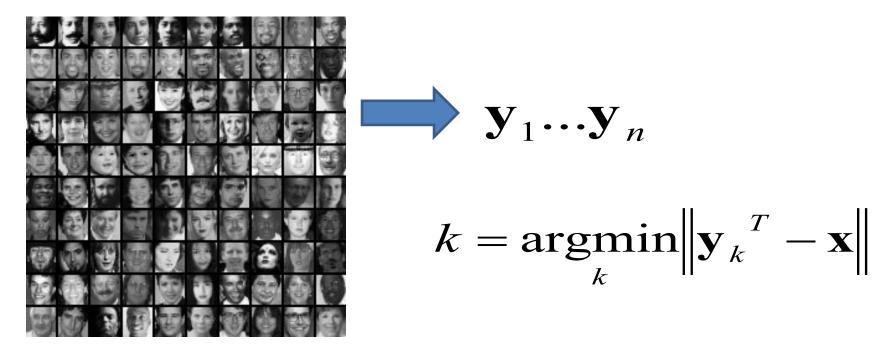
- Typical scenario: few examples per face, identify or verify test example
- What's hard: changes in expression, lighting, age, occlusion, viewpoint
- Basic approaches (all nearest neighbor)
 - Project into a new subspace (or kernel space) (e.g., "Eigenfaces"=PCA)
 - 2. Measure face features
 - 3. Make 3d face model, compare shape+appearance (e.g., AAM)

Simple technique

1. Treat pixels as a vector



2. Recognize face by nearest neighbor



State-of-the-art Face Recognizers

- Most recent research focuses on "faces in the wild", recognizing faces in normal photos
 - Classification: assign identity to face
 - Verification: say whether two people are the same

- Important steps
 - 1. Detect
 - 2. Align
 - 3. Represent
 - 4. Classify

DeepFace: Closing the Gap to Human-Level Performance in Face Verification

Yaniv Taigman

Ming Yang

Marc'Aurelio Ranzato

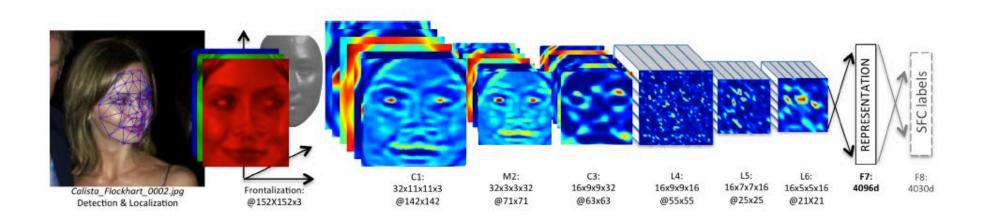
Lior Wolf

Facebook AI Research Menlo Park, CA, USA

{yaniv, mingyang, ranzato}@fb.com

Tel Aviv University Tel Aviv, Israel

wolf@cs.tau.ac.il

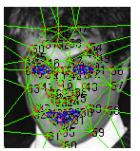


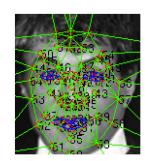
DeepFace: Closing the Gap to Human-Level Performance in Face Verification Taigman, Yang, Ranzato, & Wolf (Facebook, Tel Aviv), CVPR 2014

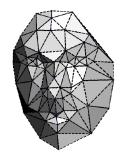
Following slides adapted from Daphne Tsatsoulis

Face Alignment

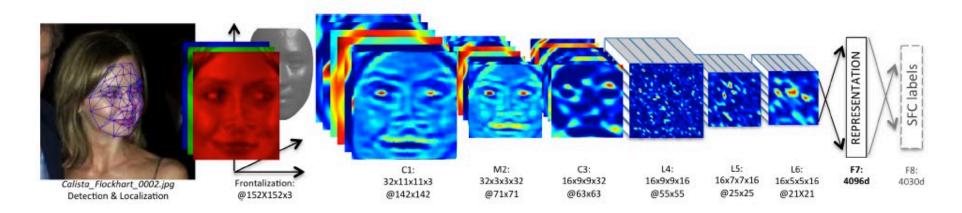
- 1. Detect a face and 6 fiducial markers using a support vector regressor (SVR)
- 2. Iteratively scale, rotate, and translate image until it aligns with a target face
- 3. Localize 67 fiducial points in the 2D aligned crop
- 4. Create a generic 3D shape model by taking the average of 3D scans from the USF Human-ID database and manually annotate the 67 anchor points
- 5.Fit an affine 3D-to-2D projection and use it to frontally warp the face







Train DNN classifier on aligned faces



Architecture (deep neural network classifier)

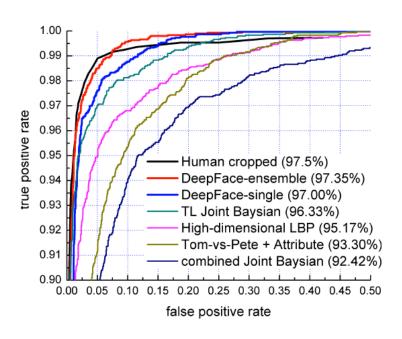
- Two convolutional layers (with one pooling layer)
- 3 locally connected and 2 fully connected layers
- > 120 million parameters

Train on dataset with 4400 individuals, ~1000 images each

Train to identify face among set of possible people

Face matching (verification) is done by comparing features at last layer for two faces

Results: Labeled Faces in the Wild Dataset



Method	Accuracy \pm SE	Protocol
Joint Bayesian [6]	0.9242 ± 0.0108	restricted
Tom-vs-Pete [4]	0.9330 ± 0.0128	restricted
High-dim LBP [7]	0.9517 ± 0.0113	restricted
TL Joint Bayesian [5]	0.9633 ± 0.0108	restricted
DeepFace-single	0.9592 ± 0.0029	unsupervised
DeepFace-single	0.9700 ± 0.0028	restricted
DeepFace-ensemble	0.9715 ± 0.0027	restricted
DeepFace-ensemble	0.9735 ± 0.0025	unrestricted
Human, cropped	0.9753	

Performs similarly to humans!

(note: humans would do better with uncropped faces)

Experiments show that alignment is crucial (0.97 vs 0.88) and that deep features help (0.97 vs. 0.91)

Transforming faces

Figure-centric averages

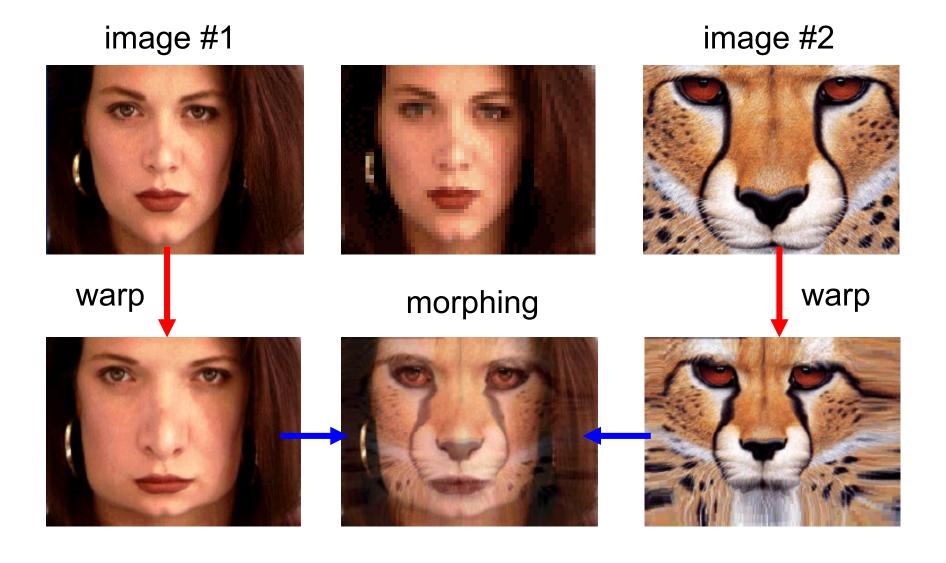
- Need to Align
 - Position
 - Scale
 - Orientation

Antonio Torralba & Aude Oliva (2002) **Averages**: Hundreds of images containing a person are averaged to reveal regularities in the intensity patterns across all the images.

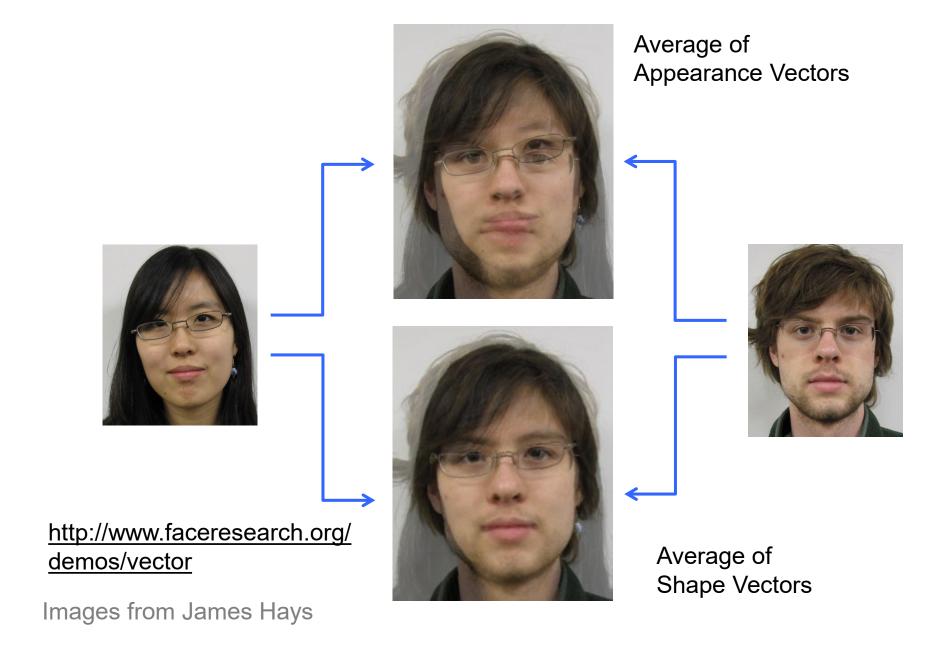
How do we average faces?

http://www2.imm.dtu.dk/~aam/datasets/datasets.html

Morphing

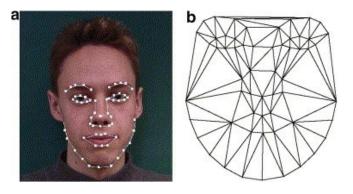


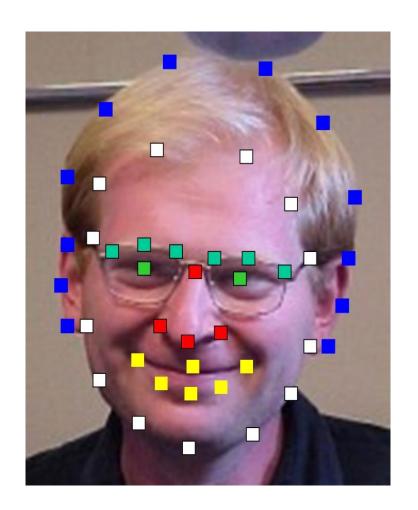
Cross-Dissolve vs. Morphing



Aligning Faces

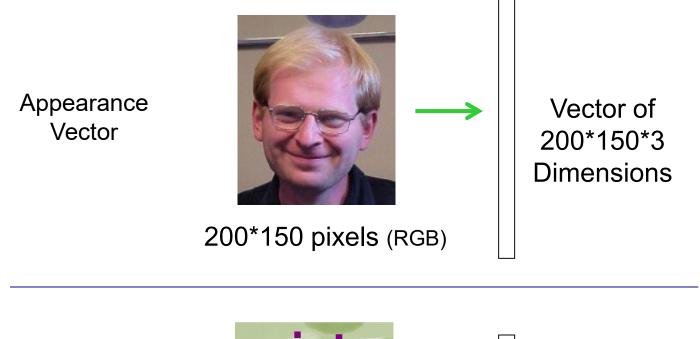
- Need to Align
 - Position
 - Scale
 - Orientation
 - Key-points
- The more key-points, the finer alignment



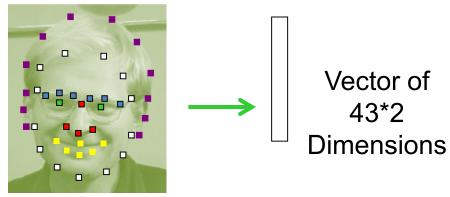


Images from Alyosha Efros

Appearance Vectors vs. Shape Vectors



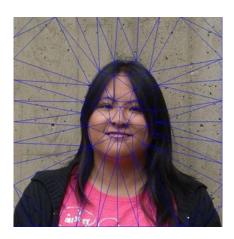
Shape Vector



43 coordinates (x,y)

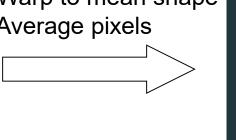
Average of two Faces

- 1.Input face keypoints
- 2. Pairwise average keypoint coordinates
- 3. Triangulate the faces
- 4. Warp: transform every face triangle
- 5. Average the pixels

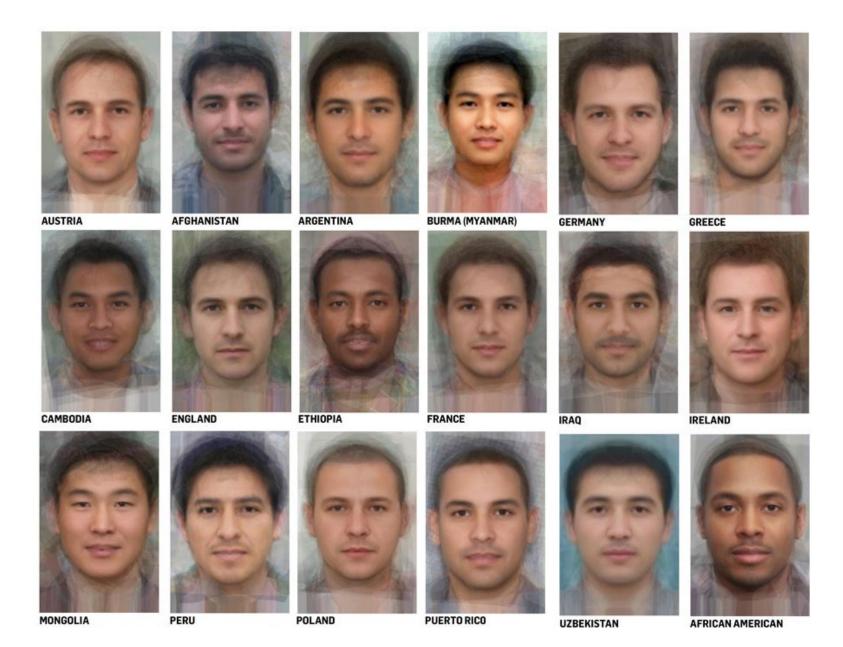


Average of multiple faces

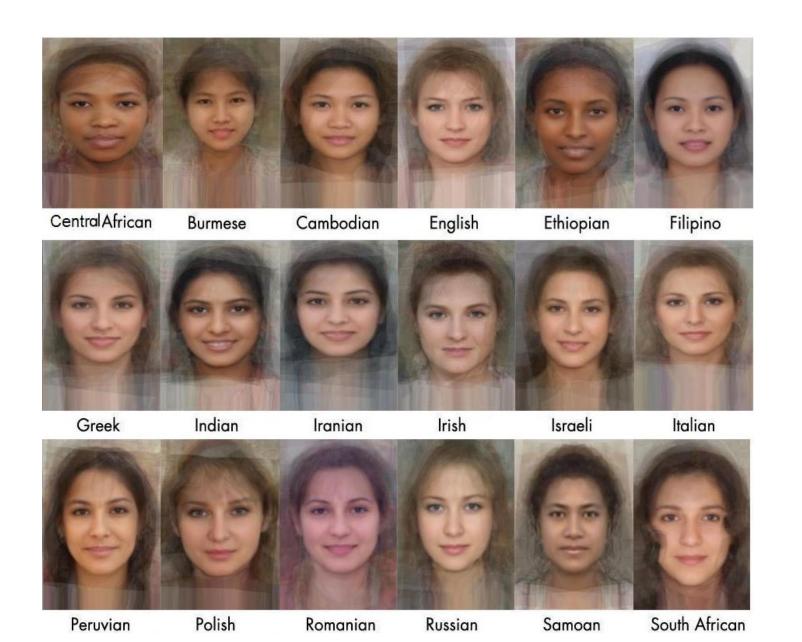
- 1. Warp to mean shape
- 2. Average pixels



Average Men of the world



Average Women of the world



Subpopulation means

Other Examples:

- Average Kids
- Happy Males
- Etc.

Average kid

Average happy male

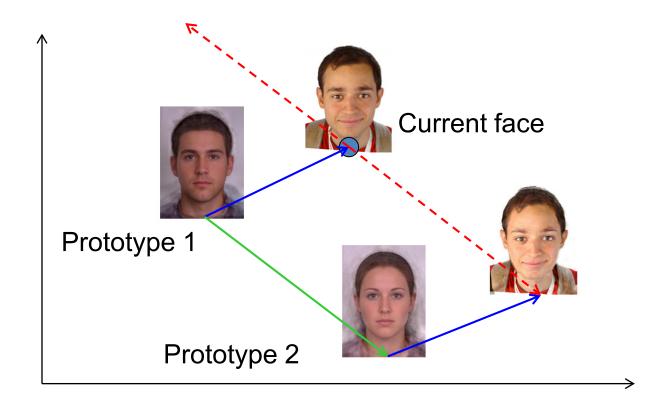
Average female

Average male

Manipulating faces

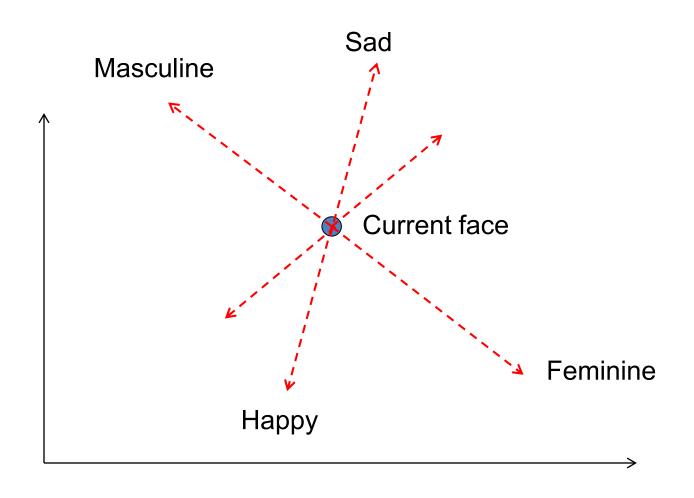
How can we make a face look more female/male, young/old, happy/sad, etc.?

With shape/texture analogies!



Manipulating faces

We can imagine various meaningful directions



Averaging and transformation demos

http://www.faceresearch.org/demos

State-of-the-art in Face Fakery

A Style-Based Generator Architecture for Generative Adversarial Networks

Tero Karras NVIDIA

tkarras@nvidia.com

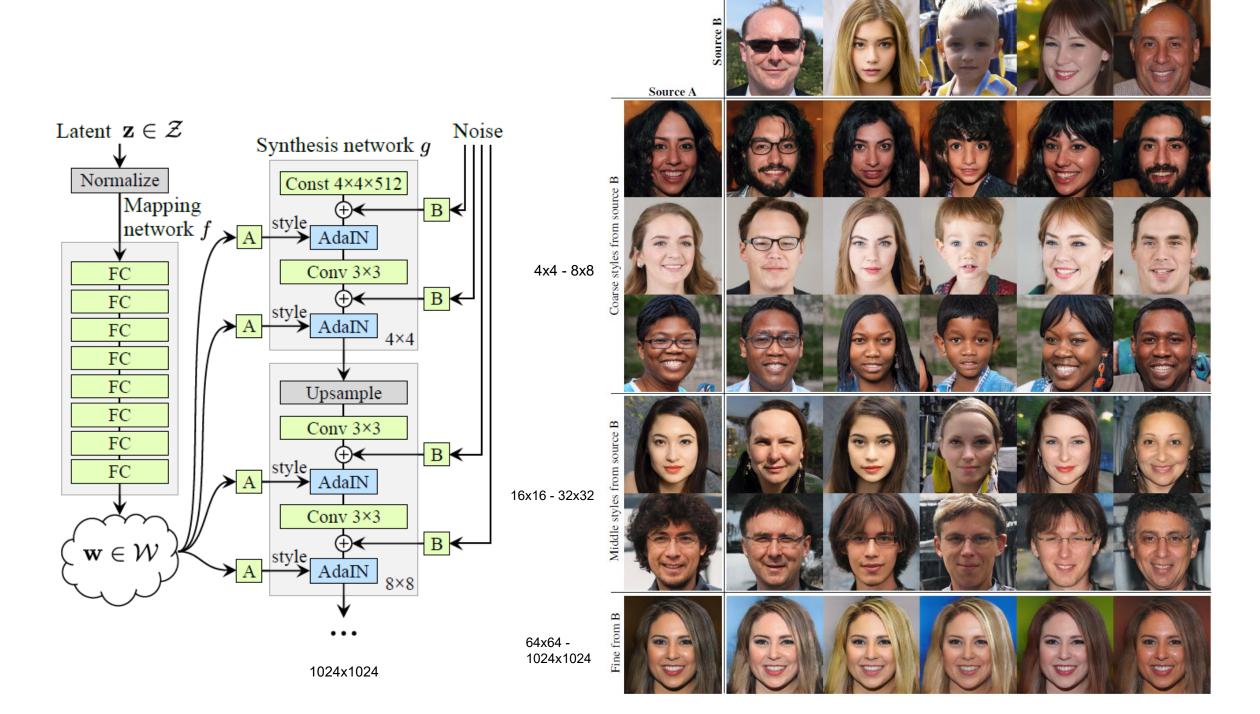
Samuli Laine NVIDIA

slaine@nvidia.com

Timo Aila NVIDIA

taila@nvidia.com

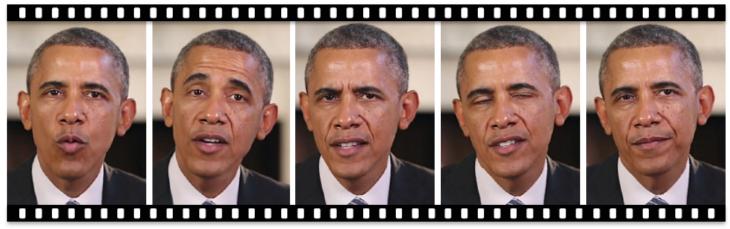
CVPR 2019 (Best Paper Honorable Mention)



Making people say what you want

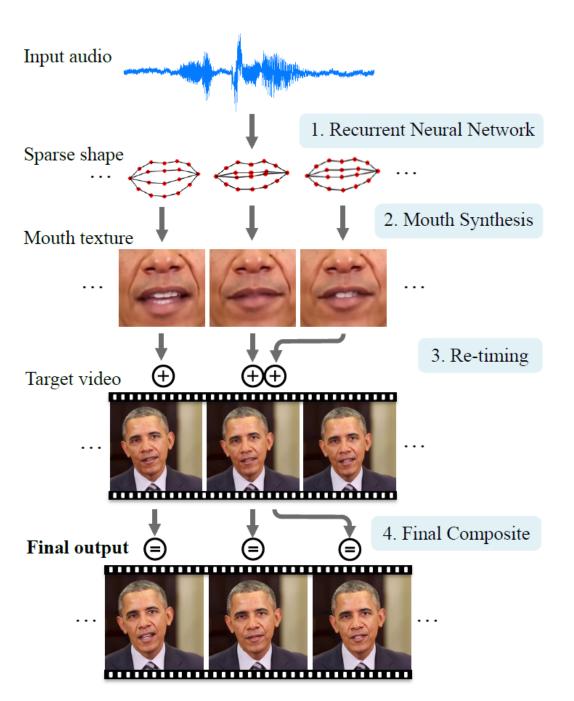
Synthesizing Obama: Learning Lip Sync from Audio

SUPASORN SUWAJANAKORN, STEVEN M. SEITZ, and IRA KEMELMACHER-SHLIZERMAN, University of Washington



Output Obama Video

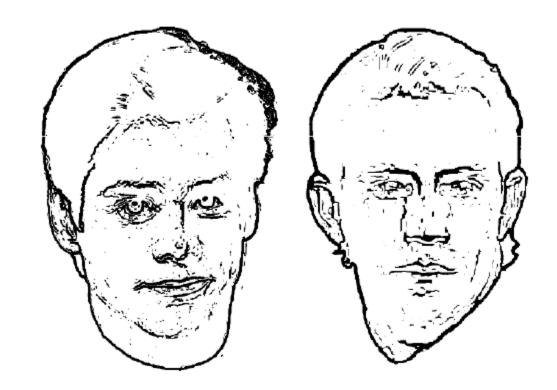
Fig. 1. Given input Obama audio and a reference video, we synthesize photorealistic, lip-synced video of Obama speaking those words.



Human Perception

Humans can recognize faces in extremely low resolution images.

▶ High-frequency information by itself does not lead to good face recognition performance

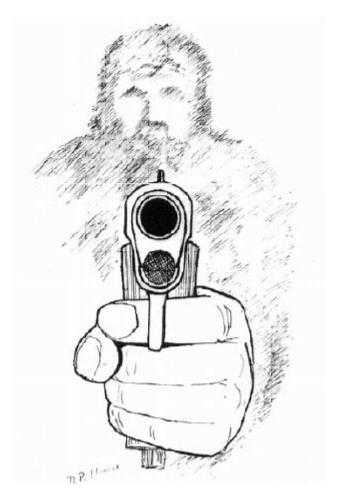


▶ Eyebrows are among the most important for recognition

Vertical inversion dramatically reduces recognition performance

▶ Human memory for briefly seen faces is rather

poor



Things to remember

- Face Detection: train face vs. non-face model and scan over multi-scale image
- Face Recognition: detect, align, compute features, and compute similarity
- Represent faces with an appearance vector and a shape vector
- Can transform faces by moving shape vector in a given direction and warping
- Deep network methods enable more flexible mixing and generation

Next lectures

Motion magnification

Cutting edge and ICES forms

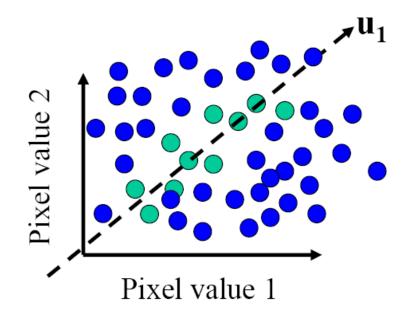
Old slides

How to represent variations?

- Training images
- **x**₁,...,**x**_N

The space of all face images

 Eigenface idea: construct a low-dimensional linear subspace that best explains the variation in the set of face images



- A face image
- A (non-face) image

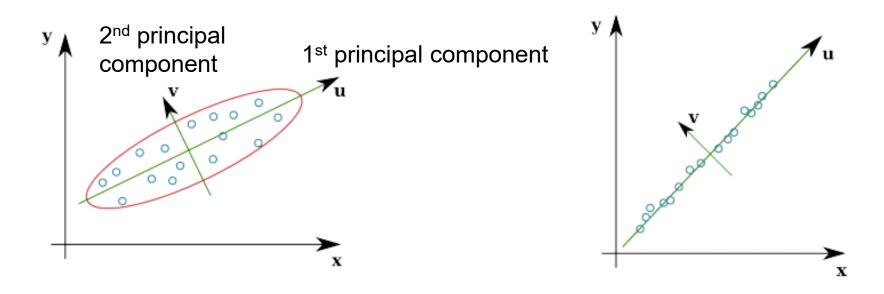
PCA

- General dimensionality reduction technique
 - Finds major directions of variation

- Preserves most of variance with a much more compact representation
 - Lower storage requirements (eigenvectors + a few numbers per face)
 - Faster matching/retrieval

Principal Component Analysis

- Given a point set $\{\vec{\mathbf{p}}_j\}_{j=1...P}$, in an M-dim space, PCA finds a basis such that
 - The most variation is in the first basis vector
 - The second most, in the second vector that is orthogonal to the first vector
 - The third...



Principal Component Analysis (PCA)

- Given: N data points x₁, ..., x_N in R^d
- We want to find a new set of features that are linear combinations of original ones:

$$u(\mathbf{x}_i) = \mathbf{u}^T(\mathbf{x}_i - \mathbf{\mu})$$

(μ: mean of data points)

 Choose unit vector u in R^d that captures the most data variance

Principal Component Analysis

Direction that maximizes the variance of the projected data:

The direction that maximizes the variance is the eigenvector associated with the largest eigenvalue of Σ (can be derived using Raleigh's quotient or Lagrange multiplier)

PCA in MATLAB

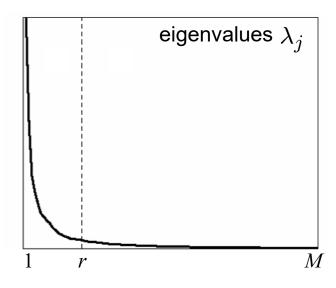
```
x=rand(3,10);%10 3D examples
 mu=mean(x,2);
 x norm = x-repmat(mu,[1 n]);
 x covariance = x norm*x norm';
  [U, E] = eig(x covariance)
[] =
                           0.27 0 0
  0.74 \ 0.07 \ -0.66
  0.65 0.10 0.74
                             0 0.63 0
  -0.12 0.99 -0.02
                             0 0.94
```

Principal Component Analysis

First r < M basis vectors provide an approximate basis that minimizes the mean-squared-error (MSE) of reconstructing the original points

Choosing subspace dimension \mathcal{F} :

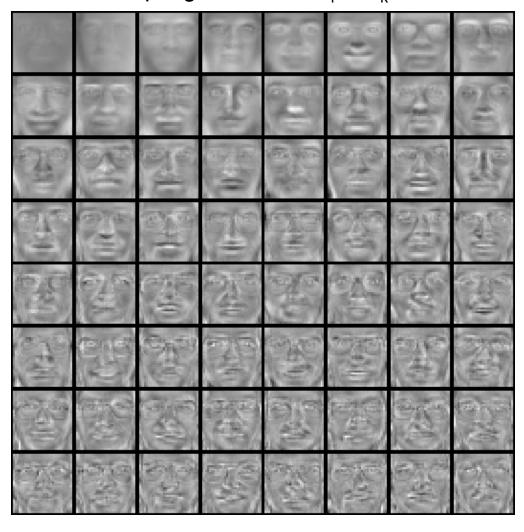
- look at decay of the eigenvalues as a function of r
- Larger r means lower expected error in the subspace data approximation



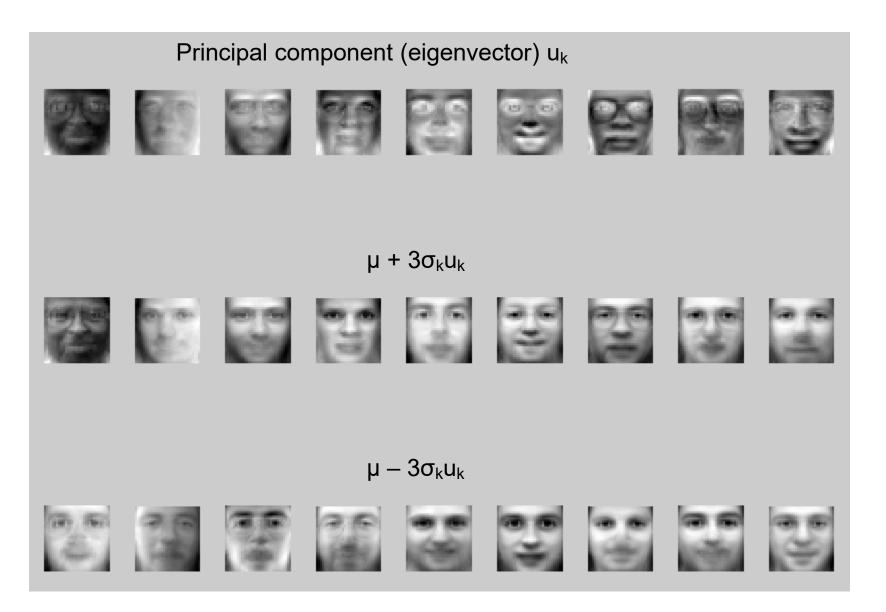
Eigenfaces example (PCA of face images)

Top eigenvectors: $u_1, \dots u_k$

Mean: µ



Visualization of eigenfaces (appearance variation)

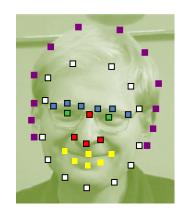


Can represent face in appearance or shape space

Appearance Vector

200*150 pixels (RGB)

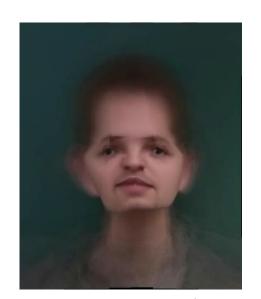
Shape Vector



43 coordinates (x,y)

First 3 Shape Bases with PCA

Mean appearance





http://graphics.cs.cmu.edu/courses/15-463/2004_fall/www/handins/brh/final/