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Next section: The digital canvas

Cutting and pasting objects,
filling holes, and blending

Image warping and object
morphing




Today’s Class

* Texture synthesis and hole-filling




Texture

* Texture depicts spatially repeating patterns
* Textures appear naturally and frequently

radishes

Many slides from James Hays



Texture Synthesis

e Goal of Texture Synthesis: create new samples of
a given texture

* Many applications: virtual environments, hole-
filling, texturing surfaces




The Challenge

irregular stochastic

regular near-regular

Need to model the whole spectrum: from
repeated to stochastic texture



One idea: Build Probability Distributions

Basic idea

1. Compute statistics of input texture (e.g., histogram of edge
filter responses)

2. Generate a new texture that keeps those same statistics

 D.J.Heeger andlJ. R. Bergen. Pyramid-based texture analysis/synthesis. In SIGGRAPH
’95.

 E.P.Simoncelli and J. Portilla. Texture characterization via joint statistics of wavelet
coefficient magnitudes. In ICIP 1998.



One idea: Build Probability Distributions

But it (usually) doesn’t work

* Probability distributions are hard to model weII

Input

Synthesized




Another idea: Sample from the image

non-parametric
sampling

Input image

Synthesizing a pixel

* Assuming Markov property, compute P(p|N(p))

— Building explicit probability tables infeasible

— Instead, we search the input image for all similar
neighborhoods — that’s our pdf for p

— To sample from this pdf, just pick one match at random

Efros and Leung 1999 SIGGRAPH



ldea from Shannon (Information Theory)

* Generate English-sounding sentences by
modeling the probability of each word given
the previous words (n-grams)

e Large “n” will give more structured sentences

‘| spent an interesting evening recently
with a grain of salt.”

(example from fake single.net user Mark V Shaney)



http://en.wikipedia.org/wiki/Mark_V_Shaney

Details

* How to match patches?

— Gaussian-weighted SSD (more emphasis on nearby
pixels)

 What order to fill in new pixels?

— “Onion skin” order: pixels with most neighbors are
synthesized first

— To synthesize from scratch, start with a randomly
selected small patch from the source texture

* How big should the patches be?



Size of Neighborhood Window

input




Varying Window Size
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Texture synthesis algorithm

While image not filled

1. Get unfilled pixels with filled neighbors, sorted by
number of filled neighbors

2. For each pixel, get top N matches based on visible
neighbors

- Patch Distance: Gaussian-weighted SSD

3. Randomly select one of the matches and copy
pixel from it



Synthesis Results

french canvas rafia weave
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More Results

white bread brick wall




Homage to Shannon

tthairm, thern . " Winephartfe lartifelintormimen
el ck Clirtioout omaim thartfelinsf alit s anetc
the ry onst wartfe lok Geplntoomimeationl sigak
cHooufrt Clinut Cl riff on, hat's yodn, parat tly
ons yoontonsteht wasked, paim t sahe looriff on |
nskoneploonrtfeas leal & nst Clit, "Wleontongal s
k Clrtioouirtfepe ong proe abegal fartfenstermern

ULl LIL LI WIlse i LU
r Dick Gephardt was fai
rful riff on the looming |
nly asked, "What's your

tions?" A heartfelt sigh Hensteneltorydt telemeplninsverdt was agemer
story about the emergem ff ons artientont Cling perne asrtfe ativh, "Boui =
es against Clinton, "Bay aal s fartfelt sig pedrildt ske abounutie aboutioo

= peaple about continuin Heaonewras yous aboronthardt thatins fain, ped, '

wrdt began, patiently ohs aing, them, pabout wasy arfud cétly d, In & h
;, that the legal system ile emnthrangboorerme agas fa bontingyst Clinit-
& writh this latest tatiser oy about continst Clipeopinst Cloke agatiff out €

stome minemen tly ardt beoraboll n, thenlyas tc
cons faimerne Diontont wat coutlyohgans as fan
ien, phrifaul, "Whaut cout congagal chmininga:
mifmst Clity abon al coounthaemungairt if oun
Yhe looorysta loontieph, intly on, theoplegatick ¢
ml tatiezontly atie Diontiormt wal s { thegie ener
mnthaheat's enenhhlnas fan. "intehthomr ahrma o



T

i
P e i P R

=

Hole Filling



Extrapolation




In-painting natural scenes

Criminisi, Perez, and Toyama. “Object Removal by Exemplar-based Inpainting,” Proc. CVPR, 2003.



http://research.microsoft.com/pubs/67276/criminisi_tip2004.pdf

Key idea: Filling order matters

In-painting Result

M A A

Image with Hole Raster-Scan Order ~ Onion-Peel Gradient-Sensitive
(Concentric Layers) Order

Criminisi, Perez, and Toyama. “Object Removal by Exemplar-based Inpainting,” Proc. CVPR, 2003.



http://research.microsoft.com/pubs/67276/criminisi_tip2004.pdf

Filling order

Fill a pixel that:
1. Is surrounded by other known pixels
2. Is a continuation of a strong gradient or edge

Criminisi, Perez, and Toyama. “Object Removal by Exemplar-based Inpainting,” Proc. CVPR, 2003.



http://research.microsoft.com/pubs/67276/criminisi_tip2004.pdf

Comparison

Original With Hole Onion-Ring Fill  Criminisi

Criminisi, Perez, and Toyama. “Object Removal by Exemplar-based Inpainting,” Proc. CVPR, 2003.



http://research.microsoft.com/pubs/67276/criminisi_tip2004.pdf

Comparison

Concentric Layers Gradient Sensitive



Summary

* The Efros & Leung texture synthesis algorithm
— Very simple
— Surprisingly good results
— Synthesis is easier than analysis!
— ...but very slow



Image Quilting [Efros & Freeman 2001]

| w
non-parametric
sampling .
<) % i

[p=r %]
Input image

Synthesizing a block
* QObservation: neighbor pixels are highly correlated

Idea: unit of synthesis = block
e Exactly the same but now we want P(B|N(B))

e Much faster: synthesize all pixels in a block at once



block

Input texture

B1 B2 B1 | | | B2 B1 | \ | B2

Random placement Neighboring blocks Minimal error
of blocks constrained by overlap boundary cut




Minimal error boundary

overlapping blocks vertical boundary
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overlap error min. error boundary




Solving for Minimum Cut Path

Cost of a cut through this pixel
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Solving for Minimum Cut Path

prev = r1

cost =4
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Solving for Minimum Cut Path
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Solving for Minimum Cut Path
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Solving for Minimum Cut Path

Best Path




Solving for Minimum Cut Path

Region 1

Mask Based on Best Path
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Quilting
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Political Texture Synthesis

Bush campaign digitally altered TV ad

President Bush's campaign acknowledged Thursday that it had

digitally altered a photo that appeared in a national cable telavision
commercial. In the photo, a handful of soldiers wera multipliad

many limes.

duplication | '3’
of soldiers.

Original photograph



Texture Transfer

* Try to explain one object with bits and
pieces of another object:




Texture Transfer

Constraint

Texture sample




Texture Transfer

Take the texture from one
Image and “paint” it onto
another object

Same as texture synthesis, except an additional
constraint:

1. Consistency of texture
2. Patches from texture should correspond to patches from constraint in
some way. Typical example: blur luminance, use SSD for distance



source texture

correspondence maps

4 ﬁ* o
- O

texture transfer result
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Making sacred toast

http://www.nbcnews.com/id/6511148/ns/us_news-weird _news/t/virgin-mary-grilled-cheese-sells/



Project 2: texture synthesis and transfer

* https://courses.engr.illinois.edu
/cs445/fa2019/projects/quiltin wiesssestsmess
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Texture Synthesis and Transfer Recap

1.

2.

3.

4.

- &5
For each overlapping patch in the output image

Compute the cost to each patch in the sample

— Texture synthesis: this cost is the SSD (sum of square difference) of pixel values
in the overlapping portion of the existing output and sample

— Texture transfer: costis & * SSDyperiap + (1 — @) * SSD¢yansfer The latter
term enforces that the source and target correspondence patches should
match.

Select one sample patch that has a small cost (e.g. randomly pick one of
K candidates)

Find a cut through the left/top borders of the patch based on
overlapping region with existing output

— Use this cut to create a mask that specifies which pixels to copy from sample
patch
Copy masked pixels from sample image to corresponding pixel locations
in output image



PatchMatch

More efficient search: 4 y 1

1. Randomly initialize matches [ \ L]
2. See if neighbor’s offsets are better / w / /

J
3. Randomly search a local window for 2 Al E v Th
better matches WAL

4. Repeat 3, 4 across image several i

times (a) Initialization (b) Propagation (c) Search

(a) mput (b) hole and gu1des (c) completion result
I

I I P P P
[

(a) originals (b) random (c) 2} iteration (d) % iteration (e) 1 iteration (f) 2 iterations (g) 5 iterations

Reconstructing top-left image with patches from
bottom-left image

(e) hole (f) completion (close up)
- L |

(d) input
. T

(g) same input (h) hole and guides (i) guided (close up)

Applications to hole-filling, retargeting;

Barnes et al. Siggraph 2009 constraints can guide search
http://gfx.cs.princeton.edu/pubs/Barnes 2009 PAR/index.php



http://gfx.cs.princeton.edu/pubs/Barnes_2009_PAR/index.php

Related idea: Image Analogies

B B’
Image Analogies, Hertzmann et al. SG 2001






Image analogies

* Define a similarity between A and B

* For each patch in B:

— Find a matching patch in A, whose corresponding
A’ also fits in well with existing patches in B’

— Copy the patch in A’ to B’
* Algorithm is done iteratively, coarse-to-fine



Image-to-Image Translation with Conditional Adversarial Networks
https://phillipi.github.io/pix2pix/

Phillip Isola Jun-Yan Zhu Tinghut Zhou Alexei A. Efros

Berkeley Al Research (BAIR) Laboratory
University of California, Berkeley
{isola, junyanz, tinghuiz, efros}feecs.berkeley.edu CVPR 2017

Learn to map from one image representation to another
- Trained from input/output pairs
- Patch memorization is implicit through learned representation

Labels to Street Scene Labels IO Facade _ BW to Color

input output input output

inpt output input output


https://phillipi.github.io/pix2pix/

Learning to synthesize

Positive examples Negative examples

Real or fake pair? Real or fake pair?

Scores NxN patches for
realism T
D D
| |
s

G ¢/ Thereis also an

! objective to produce the
paired image with a L1
loss

G tries to synthesize fake
iImages that fool D

D tries to identify the fakes




Demos

https://affinelayer.com/pixsrv/



https://affinelayer.com/pixsrv/

https://junyanz.github.io/Cycle GAN/

Cycle GAN (ICCV 2017)

Unpaired Image-to-Image Translation
using Cycle-Consistent Adversarial Networks

Jun-Yan Zhu* Taesung Park™ Phillip Isola Alexei A. Efros
Berkeley Al Research (BAIR) laboratory, UC Berkeley

Monet _ Photos Zebras {_ Horses Summer % Winter

Phtoraph ' Van Gogh ' B Cezanne


https://junyanz.github.io/CycleGAN/

Things to remember

e Texture synthesis and hole-filling can be
thought of as a form of probabilistic
hallucination

e Simple, similarity-based matching is a powerful
tool
— Synthesis
— Hole-filling
— Transfer
— Artistic filtering
— Super-resolution
— Recognition, etc.

* Key is how to define similarity and efficiently
find neighbors

* New methods learn patch/image
representations to create more flexible
synthesis, so that similarity function and
“neighbors” are implicit




Next class

e Cutting and seam finding
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