Templates and Image Pyramids

Bl (eeraesl 4]
':.,L | 'i T T = Sy |
B B ¢
L

b BT =g i
RIS S G
] T Lt .1_' .‘* f.p .. ! "II J.- :_. g L
s ol R e TS L
NIRE I
5 , I: : :' 1’:':'

Computational Photography

Derek Hoiem, University of lllinois

Why does a lower resolution image still make
sense to us? What do we lose?

st R

Image: http://www.flickr.com/photos/igorms/136916757/

http://www.flickr.com/photos/igorms/136916757/

Why does a lower resolution image still make
sense to us? What do we lose?

FFT linear scale

a0

100

150 700

200 4600

=00 400

350

400

450

500

50 100 150 200 250 300 350 400 450 500

Image: http://www.flickr.com/photos/igorms/136916757/

http://www.flickr.com/photos/igorms/136916757/

Why do we get different, distance-dependent
interpretations of hybrid images?

s

.

Hybrid Image in FFT

Hybrid Image

p—

= [

Low-passed Image

200
400
600
800
1000

1200

+ High-passed Image

Review

1. Match the spatial domain image to the Fourier magnitude
Image

Today’s class: applications of filtering

 Template matching
* Coarse-to-fine alignment

* Denoising, Compression

Template matching
e Goal: find @ inimage

 Main challenge: What is a
good similarity or distance
measure between two
patches?

— Correlation
— Zero-mean correlation
— Sum Square Difference

— Normalized Cross
Correlation

Matching with filters

* Goal: find @ inimage

* Method O: filter the image with eye patch
him,n] =Y glk,l] flm+k,n+I]
) kI

Tt f =image
e k| g = filter

What went wrong?

Input Filtered Image

Matching with filters

* Goal: find @ inimage
* Method 1: filter the image with zero-mean eye

h[m n|= Z(f[k [-1)(glm+k,n+1])

S —— meanoff

|npt Filtered Image (scaled) Thresholded Image

Matching with filters

* Goal: find @ in image
* Method 2: SSD
h{m,n]=> (glk,11- flm+k,n+I1])
. | k.l

1- sqrt(SSD) Thresholded Image

Matching with filters

Can SSD be implemented with linear filters?

him,n] =Y (glk,l]- flm+k,n+1])’

Wm,n] =Y (glk, 1] = 2fIm+k,n+1]- glk, 0]+ flm+k,n+1T)

k,l

hlm,n]

N ek, 1] =23 flm+k,n+1]-glk, 1+ Y flm+k,n+1]

k.l

h= Z glk,l]2 — 2 filter(f, g) + filter(£.”2, ones(g.shape))

N I I

constant linear filter Element-wise square f, then
sum with ones kernel of size g

Matching with filters

. — . What'’s the potential
e Goal: find in image downside of SSD?

e Method 2: SSD

Input 1- sqrt(SSD)

Matching with filters

* Goal: find @ inimage
e Method 3: Normalized cross-correlation

mean template mean image patch

l _
Z(g[kal]_g)(f[m_l_k:n+I]_fm,n)
hlm,n]= o

(Z(g[k,l]—g)zZ(f[M+k,n +l]—fm,n)2j

Python: cv2.matchTemplate (im, template, cv2.TM CCOEFF NORMED)

Matching with filters

* Goal: find ® in image
e Method 3: Normalized cross-correlation

Normalized X-Correlation Thresholded Image

Matching with filters

* Goal: find @ in image
e Method 3: Normalized cross-correlation

Normalized X-Correlation Thresholded Image

Q: What is the best method to use?

A: Depends
e Zero-mean filter: fastest but not a great matcher
e SSD: next fastest, sensitive to overall intensity

* Normalized cross-correlation: slowest, invariant
to local average intensity and contrast

Q: What if we want to find larger or smaller eyes?

A: Image Pyramid

Review of Sampling

Gaussian

Filter Sample
Low-Pass P Low-Res
Image | mmmm) —>

Filtered Image Image

Gaussian pvramid
y/Q“ f/ﬁ\‘ //FQ\\

>12 256 128 :

// \ ///‘
\ @

-ﬁ‘_
="
g

Source: Forsyth

Laplacian filter

unit impulse

fﬁ‘%\\
A
JI
FHT
g
AT
%g#"’ itk

AR
LI,

Gaussian Laplacian of Gaussian

Source: Lazebnik

Laplacian pyramid

Source: Forsyth

Computing Gaussian/Laplacian Pyramid

J /q

f !
! ! 5
SUBSAMP_ SIS BLUR 3 SUBSAMP_j 5
‘ |

r

f ~ y
3 BLIR > o

I

h;

Can we reconstruct the original
from the laplacian pyramid?

Creating a 2-level Laplacian pyramid

Subsample

Lap 1/
‘ Gauss 1

Gaussian
Smooth

Image aka
Gaussian_0

Smoothed 0

Laplacian_0 =

Guassian_0 —Smoothed 0

Reconstructing the image from Laplacian
pyramid

Upsample
and smooth

Lap 1/
Laplacian_0 Smoothed 0 _

+ +

Image =

Smoothed 0 + LaplacianO

Hybrid Image in Laplacian Pyramid

Extra points for project 1

High frequency - Low frequency

1.

Coarse-to-fine Image Registration

Compute Gaussian pyramid

2. Align with coarse pyramid

3.

Find minimum SSD position

Successively align with finer

pyramids

Search small range (e.g., 5x5)
centered around position
determined at coarser scale

AN
coarse Y [=2
N
/
medmum / N \ =1
N
/o \ \

(o
/ & o o o o o o &

Coarse-to-fine Image Registration

Im1 Im2
Level O
HxW

Level 1
H/2 x W/2

Level 2
H/4 x W/4

Coarse-to-fine Image Registration

ol

txg, tyo = argmin SSD(im1;, translate(im24, tx, ty))

txe2-tx,+{-s. s} ty=2-ty,+{—s..s}
L

txy,ty; = argmin SSD(im1,, translate(im2,, tx, ty))
tx€2-tx,+{—s.s},ty=2-ty, +{—s.s}

tx,, ty, = Mﬁn&lgmin . SSD(im1,, translate(im2,, tx, ty))
txe|—g-g JtyE(-5-5)

Coarse-to-fine Image Registration

1. Compute Gaussian pyramid
2. Align with coarse pyramid
— Find minimum SSD position

3. Successively align with finer
pyramids

— Search small range (e.g., 5x5)
centered around position
determined at coarser scale

Why is this faster?

Are we guaranteed to get the same
result?

coarse Y [=2

/
medmm / N \ =1
N\

/o \ \

(o
/ & o o o o o o &

Question

Can you align the images using the FFT?

Compression

How is it that a 4MP image can be compressed
to a few hundred KB without a noticeable
change?

Lossy Image Compression (JPEG)

() I 2 3

h i)

e
-
#
-
#
!
"
-
#
!
|

(&
111
1l

| 2
|
| =
| |
4] 2

[L] il N H_ BN §
B
- i i ﬁ
> Ll LE
........... & - | -
- Hm . - Ha O
H [B N N H_ I _u
i e e H_
. i
4 | B _|i L
' m ' = |
i £
[] m ®u HE B B
H [| mm B & u_mm N
- EEE I- |] _-W_“-_#
E e e
. .. = b]
- E =)
- . .]
[L i u | B
6 Il i m_ 1
[im n | B
. T T]
=) E)
........... [H N i} .
oo [L] -.
- .
i [uccss] e m _.
i [= m N
B H]

Block-based Discrete Cosine Transform (DCT)
Slides: Efros

Using DCT Iin JPEG

* The first coefficient B(0,0) is the DC
component, the average intensity

* The top-left coeffs represent low frequencies,
the bottom right — high frequencies

0 1 2 3 5 6 7
U 001 01 00 .
EALE LRI ILL LU /
" . llii ILI IlI III

5
—

Image compression using DCT

* Quantize
— More coarsely for high frequencies (which also tend to have smaller values)
— Many quantized high frequency values will be zero

e Encode
— Can decode with inverse dct

Filter responses -
[—41538 —30.19 —61.20 2724 56.13 —20.10 —239 046]
447 —21.86 —60.76 1025 13.15 —7.09 —854 488
—46.83 737 7713 —24.56 2891 993 542 —565 (> At
G= | _4853 1207 3410 —1476 —1024 630 183 195 l” Quantization table
1212 —6.55 —1320 -395 —18% 175 -279 3.4 - -
~773 291 238 594 -238 094 430 185 16111016 24 40 51 61
103 018 042 -242 —088 -302 412 —0.66 1212 14 19 26 58 60 55
~017 014 -107 —4.19 -117 -010 050 1.68 14 13 16 24 40 57 69 56

14 17 22 29 51 &7 80 62

. | l @=118 22 37 56 63 109 103 77
Quantized values _ 24 35 55 64 81 104 113 92

[26 -3 -6 2 2 -1 0 0

0 4 11 000 49 64 78 87 103 121 120 101

3 1 5 -1 -1 000 72 92 95 98 112 100 103 99 |
_ -3 1 2 -1 0 0 00
B= 1 0 0 0 0 0 00
0 0 0 0 0 000
0 0 0 0 0 000
0 0 0 0 0 0 00

JPEG Compression Summary

1. Convert image to YCrCb
2. Subsample color by factor of 2

— People have bad resolution for color

3. Split into blocks (8x8, typically), subtract 128
4. For each block

a. Compute DCT coefficients
b. Coarsely quantize
 Many high frequency components will become zero

c. Encode (e.g., with Huffman coding)

http://en.wikipedia.org/wiki/YCbCr
http://en.wikipedia.org/wiki/JPEG

http://en.wikipedia.org/wiki/YCbCr
http://en.wikipedia.org/wiki/JPEG

Lossless compression (PNG)

1. Predict that a pixel’s value based on
its upper-left neighborhood

2. Store difference of predicted and
actual value

3. Pkzip it (DEFLATE algorithm)

ising

Deno

Additive Gaussian Noise

Reducing Gaussian noise

0=0.05 g=0.1

u
o

| = smoothing

o=1 pixel

a=2 pixels

Smoothing with larger standard deviations suppresses noise, but also blurs the
image

Source: S. Lazebnik

Reducing salt-and-pepper noise by Gaussian smoothing

X7

Alternative idea: Median filtering

A median filter operates over a window by
selecting the median intensity in the window

10]15]20
2319027
3313130

-—-.-____-_—‘_-h_
10 15 20 23 {27|30 31 33 90

l Sort

Median value

1011520 l Replace
2312727
3313130

* |s median filtering linear?

Source: K. Grauman

Median filter

e What advantage does median filtering have
over Gaussian filtering?

— Robustness to outliers

filters have width 5 :

INPUT

MEDIAN

MEAN

Source: K. Grauman

Median filter

Salt-and-pepper noise Median filtered

(=i Er =
——

Python: scipy.ndimage.median_filter (image, size)

Source: M. Hebert

Median Filtered Examples

L

1px median filter

3px median filter 10px median filter

http://en.wikipedia.org/wiki/File:Medianfilterp.png
http://en.wikipedia.org/wiki/File:Median_filter_example.jpg

Median vs. Gaussian filtering

Gaussian

Median

Other filter choices

 Weighted median (pixels further from center count less)

* Clipped mean (average, ignoring few brightest and darkest
pixels)

» Bilateral filtering (weight by spatial distance and intensity
difference)

cvZ.bilateralFilter(size, sigma color, signal spatial)

Bilateral filtering

Image: http://vision.ai.uiuc.edu/?p=1455

http://vision.ai.uiuc.edu/?p=1455

Review of Last 3 Days

* Filtering in spatial domain

— Slide filter over image and take dot product at each
position

— Remember linearity (for linear filters)

Review of Last 3 Days

* Linear filters for basic processing
— Edge filter (high-pass)

— Gaussian filter (low-pass)
[-1 1]

Gaussian

FFT of Gradient Filter FFT of Gaussian

Review of Last 3 Days

 Derivative of Gaussian

File Edit View Insert Tools Desktop Window Help
j_;d,_;j [:3 +_\€.r?lq'=_£v@.l DE E

@ Note new toolbar buttons: data brushing & linked plots g% [Play video

100

Review of Last 3 Days

* Filtering in frequency domain

— Can
(for

— Can

oe faster than filtering in spatial domain
arge filters)

nelp understand effect of filter

— Algorithm:

1.
2.
3.

Convert image and filter to FFT
Pointwise-multiply FFTs
Convert result to spatial domain with inverse FFT

Review of Last 3 Days

* Applications of filters

— Template matching (SSD or normalized x-corr)

* SSD can be done with linear filters, is sensitive to
overall intensity

— Gaussian pyramid

e Coarse-to-fine search, multi-scale detection
— Laplacian pyramid

e Can be used for blending (later)

* More compact image representation

Review of Last 3 Days

* Applications of filters

— Downsampling

* Need to sufficiently low-pass before downsampling

— Compression

* In JPEG, coarsely quantize high frequencies

— Reducing noise (important for aesthetics and for
later processing such as edge detection)

* Gaussian filter, median filter, bilateral filter

Next lecture

* Light and color

	Templates and Image Pyramids
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Hybrid Image in FFT
	Review
	Today’s class: applications of filtering
	Template matching
	Matching with filters
	Matching with filters
	Matching with filters
	Matching with filters
	Matching with filters
	Matching with filters
	Matching with filters
	Matching with filters
	Q: What is the best method to use?
	Q: What if we want to find larger or smaller eyes?
	Review of Sampling
	Gaussian pyramid
	Laplacian filter
	Laplacian pyramid
	Computing Gaussian/Laplacian Pyramid
	Creating a 2-level Laplacian pyramid
	Reconstructing the image from Laplacian pyramid
	Hybrid Image in Laplacian Pyramid
	Coarse-to-fine Image Registration
	Coarse-to-fine Image Registration
	Coarse-to-fine Image Registration
	Coarse-to-fine Image Registration
	Question
	Slide Number 32
	Lossy Image Compression (JPEG)
	Using DCT in JPEG
	Image compression using DCT
	JPEG Compression Summary
	Lossless compression (PNG)
	Denoising
	Reducing Gaussian noise
	Reducing salt-and-pepper noise by Gaussian smoothing
	Alternative idea: Median filtering
	Median filter
	Median filter
	Median Filtered Examples
	Median vs. Gaussian filtering
	Other filter choices
	Review of Last 3 Days
	Review of Last 3 Days
	Review of Last 3 Days
	Review of Last 3 Days
	Review of Last 3 Days
	Review of Last 3 Days
	Next lecture

