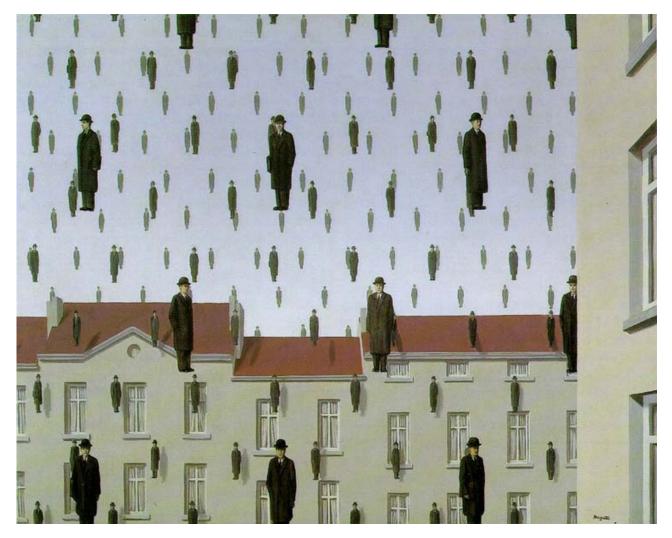
Templates and Image Pyramids

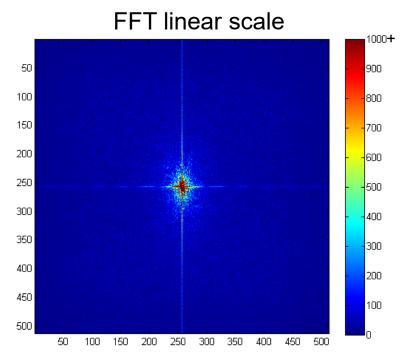


Computational Photography
Derek Hoiem, University of Illinois

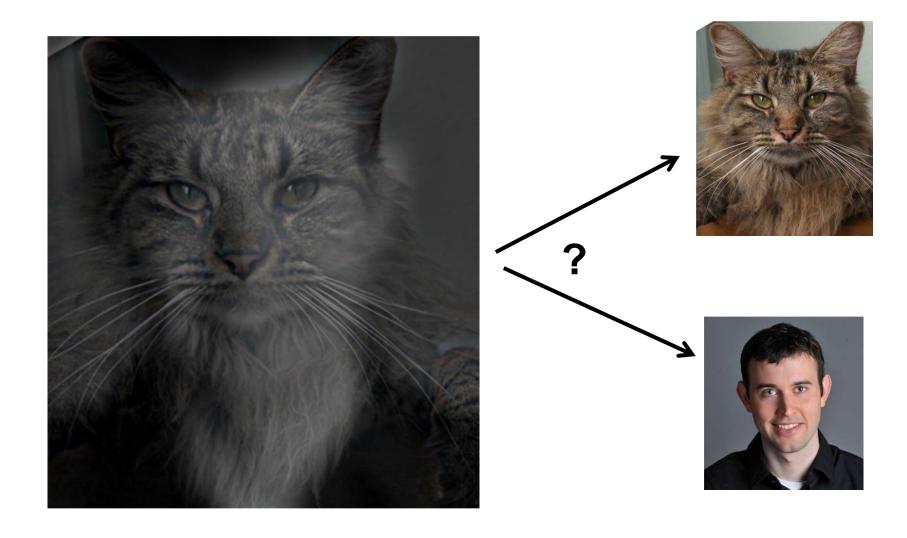
Why does a lower resolution image still make sense to us? What do we lose?

Image: http://www.flickr.com/photos/igorms/136916757/

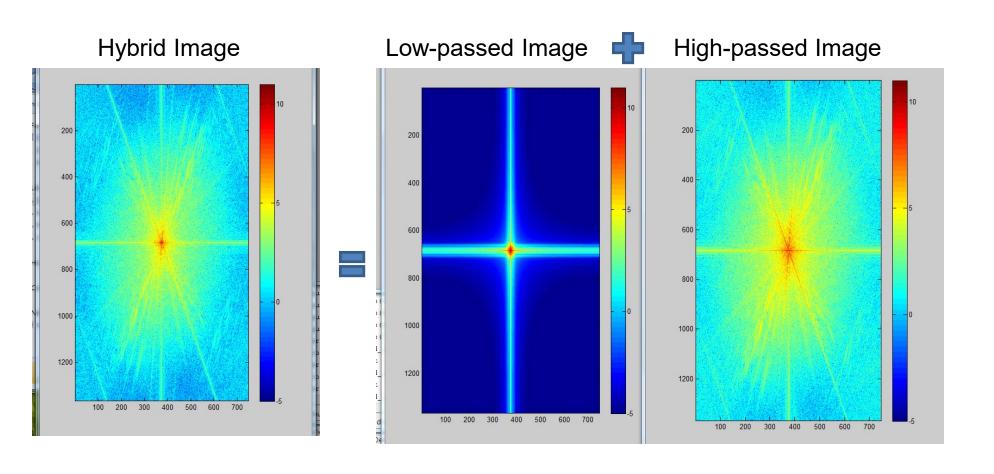
Why does a lower resolution image still make sense to us? What do we lose?



Why do we get different, distance-dependent interpretations of hybrid images?

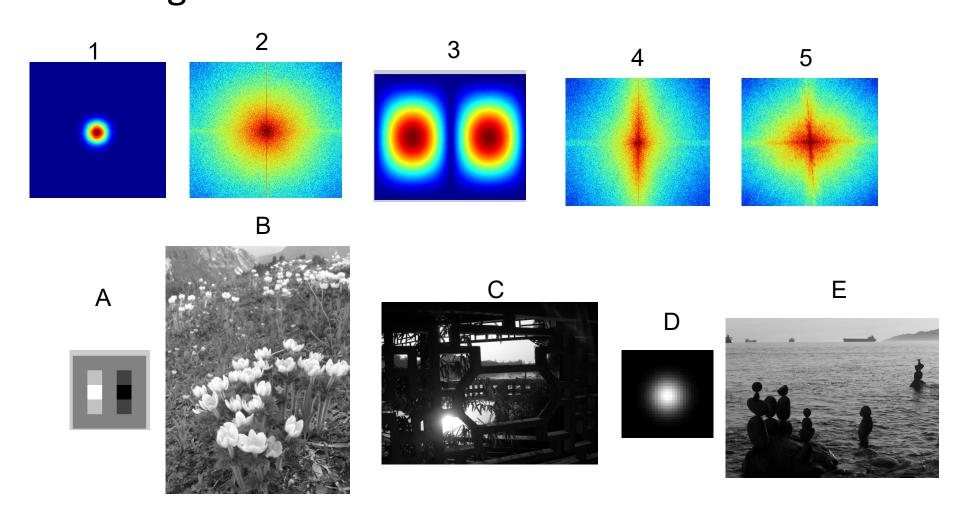


Hybrid Image in FFT



Review

1. Match the spatial domain image to the Fourier magnitude image



Today's class: applications of filtering

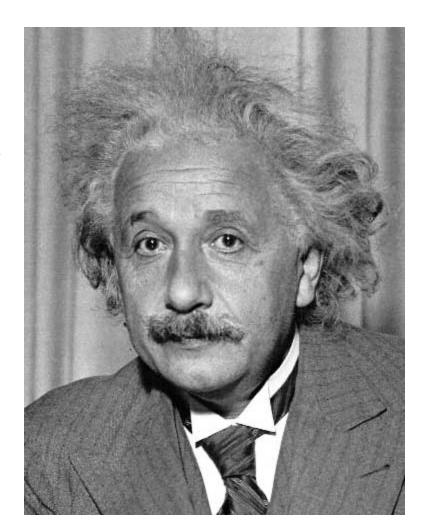
Template matching

Coarse-to-fine alignment

• Denoising, Compression

Template matching

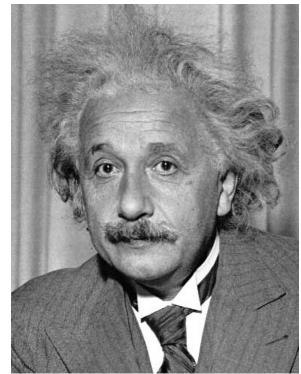
- Goal: find in image
- Main challenge: What is a good similarity or distance measure between two patches?
 - Correlation
 - Zero-mean correlation
 - Sum Square Difference
 - Normalized CrossCorrelation



Goal: find mage

Method 0: filter the image with eye patch

$$h[m,n] = \sum_{k} g[k,l] f[m+k,n+l]$$

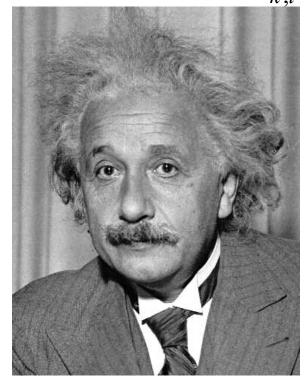


Input Filtered Image

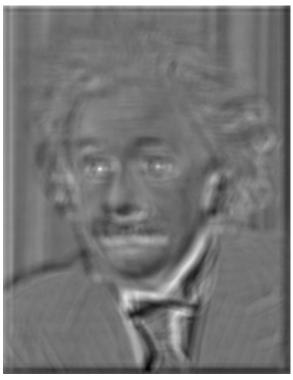
What went wrong?

- Goal: find in image
- Method 1: filter the image with zero-mean eye

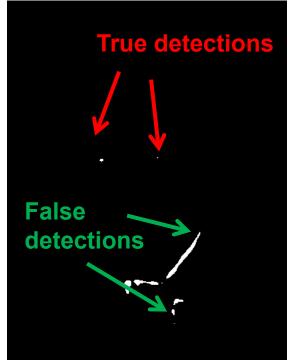
$$h[m,n] = \sum_{k,l} (f[k,l] - \bar{f}) \underbrace{(g[m+k,n+l])}_{\text{mean of f}}$$



Input



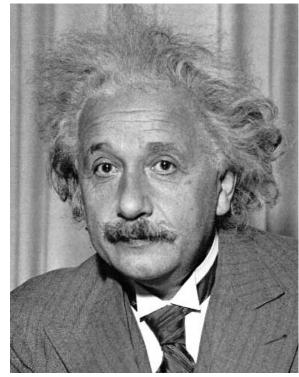
Filtered Image (scaled)

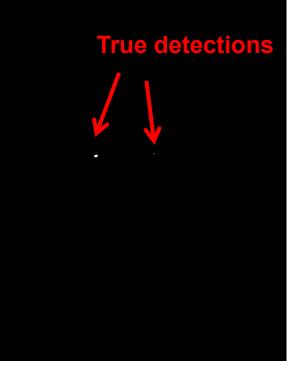


Thresholded Image

- Goal: find in image
- Method 2: SSD

$$h[m,n] = \sum_{k,l} (g[k,l] - f[m+k,n+l])^2$$





Input 1- sqrt(SSD)

Thresholded Image

Can SSD be implemented with linear filters?

$$h[m,n] = \sum_{k,l} (g[k,l] - f[m+k,n+l])^2$$

$$h[m,n] = \sum_{k,l} (g[k,l]^2 - 2f[m+k,n+l] \cdot g[k,l] + f[m+k,n+l]^2)$$

$$h[m,n] = \sum_{k,l} g[k,l]^2 - 2\sum_{k,l} f[m+k,n+l] \cdot g[k,l] + \sum_{k,l} f[m+k,n+l]^2$$

$$h = \sum_{k,l} g[k,l]^2 - 2 \operatorname{filter}(f,g) + \operatorname{filter}(f.^2, \operatorname{ones}(g.\operatorname{shape}))$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

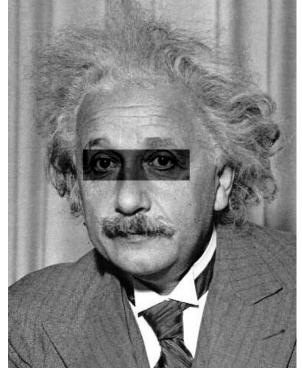
$$\operatorname{constant} \qquad \operatorname{linear filter} \qquad \operatorname{Element-wise square f, then sum with ones kernel of size g}$$

Goal: find in image

What's the potential downside of SSD?

Method 2: SSD

$$h[m,n] = \sum_{k,l} (g[k,l] - f[m+k,n+l])^{2}$$



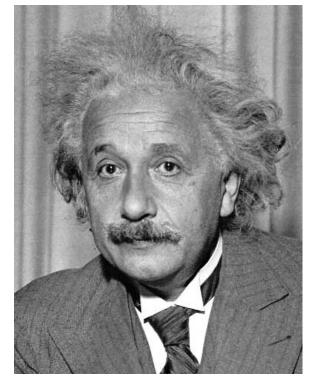
Input

1- sqrt(SSD)

- Goal: find in image
- Method 3: Normalized cross-correlation

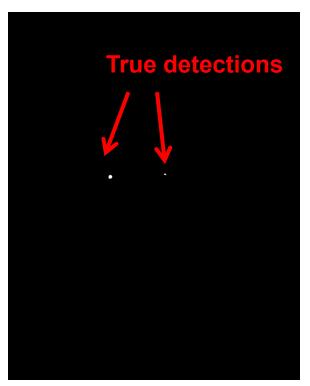
$$h[m,n] = \frac{\sum\limits_{k,l} (g[k,l] - \overline{g})(f[m+k,n+l] - \overline{f}_{m,n})}{\left(\sum\limits_{k,l} (g[k,l] - \overline{g})^2 \sum\limits_{k,l} (f[m+k,n+l] - \overline{f}_{m,n})^2\right)^{0.5}}$$

- Goal: find **m** in image
- Method 3: Normalized cross-correlation



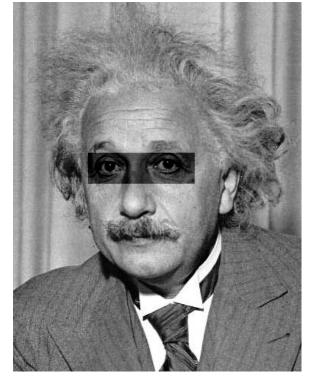
Input

Normalized X-Correlation



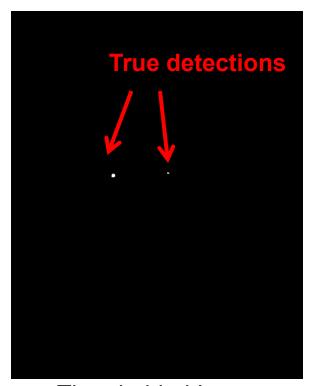
Thresholded Image

- Goal: find **m** in image
- Method 3: Normalized cross-correlation



Input

Normalized X-Correlation



Thresholded Image

Q: What is the best method to use?

A: Depends

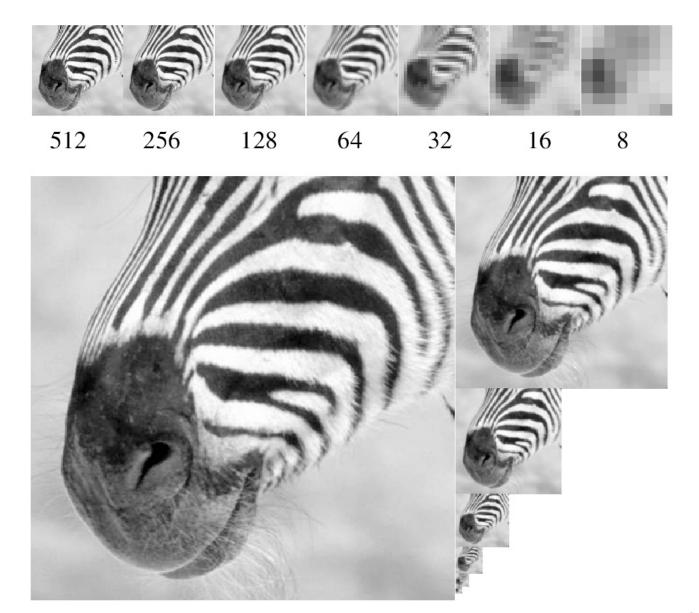
- Zero-mean filter: fastest but not a great matcher
- SSD: next fastest, sensitive to overall intensity
- Normalized cross-correlation: slowest, invariant to local average intensity and contrast

Q: What if we want to find larger or smaller eyes?

A: Image Pyramid

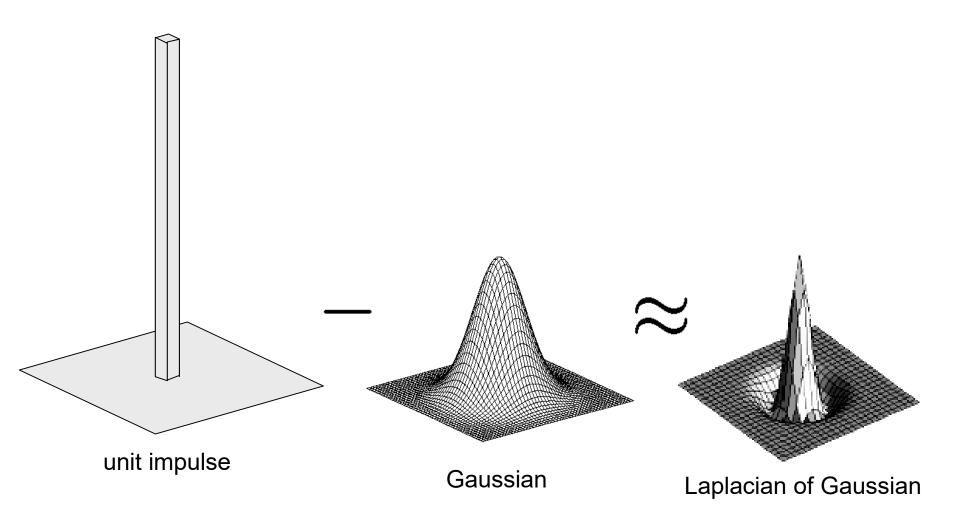
Review of Sampling

Gaussian pyramid



Source: Forsyth

Laplacian filter



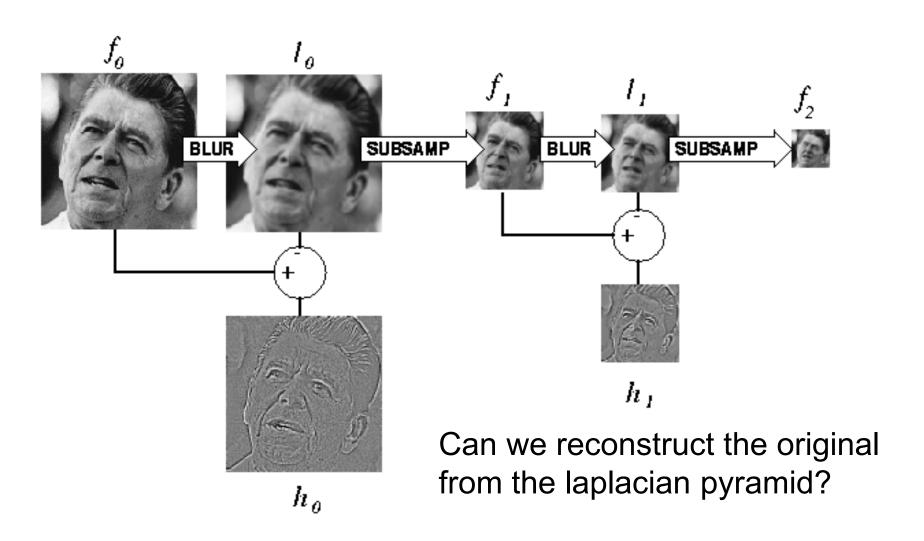
Source: Lazebnik

Laplacian pyramid

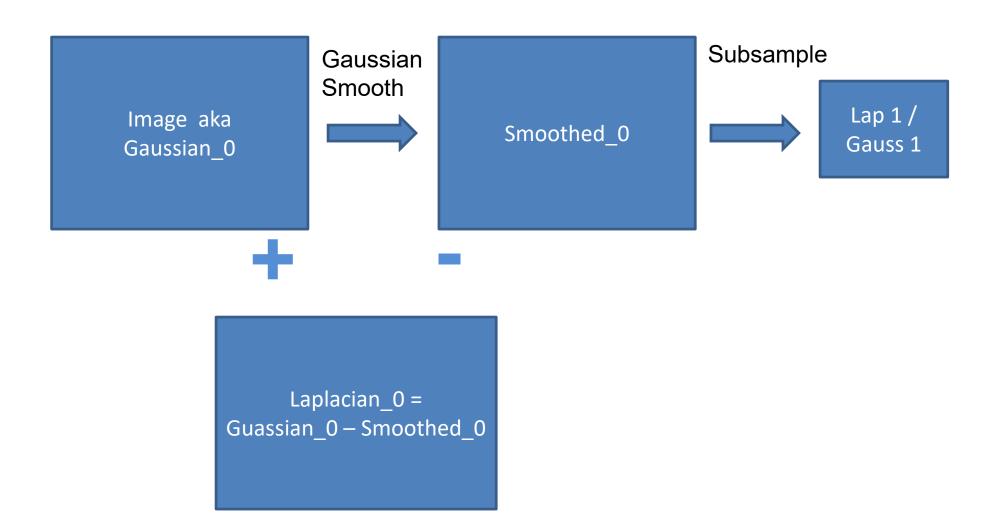


Source: Forsyth

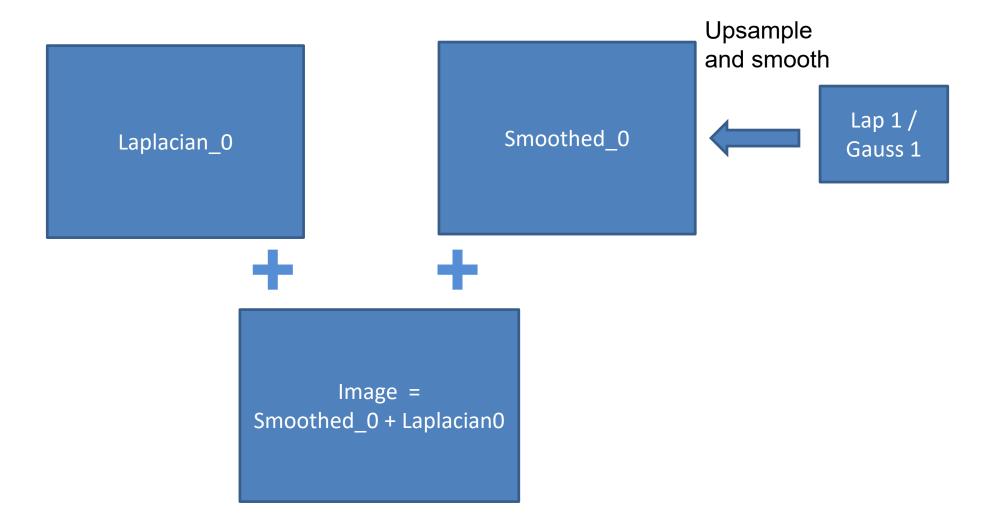
Computing Gaussian/Laplacian Pyramid



Creating a 2-level Laplacian pyramid



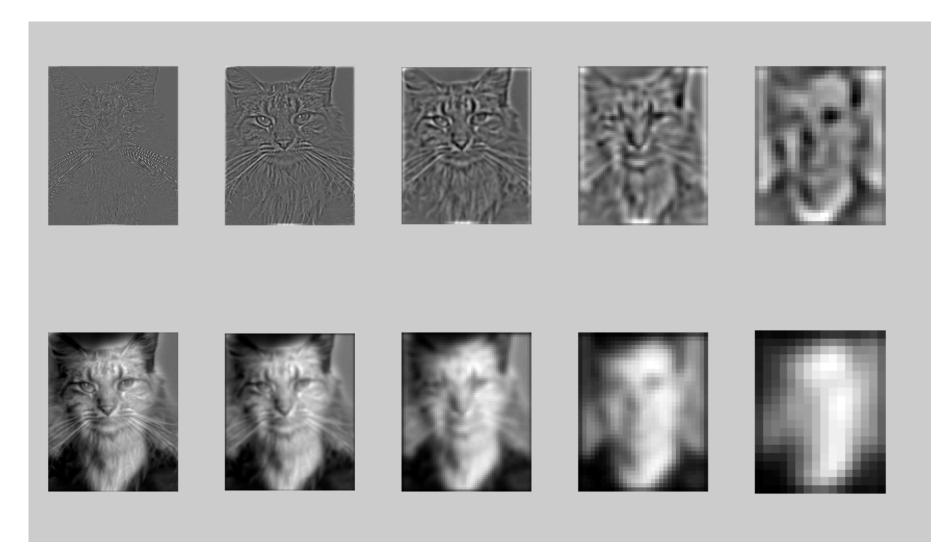
Reconstructing the image from Laplacian pyramid



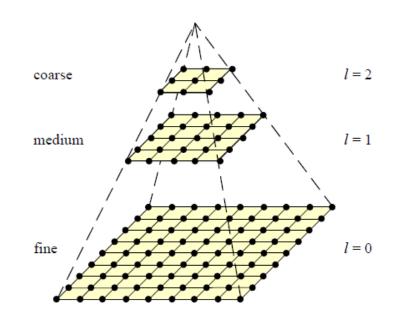
Hybrid Image in Laplacian Pyramid

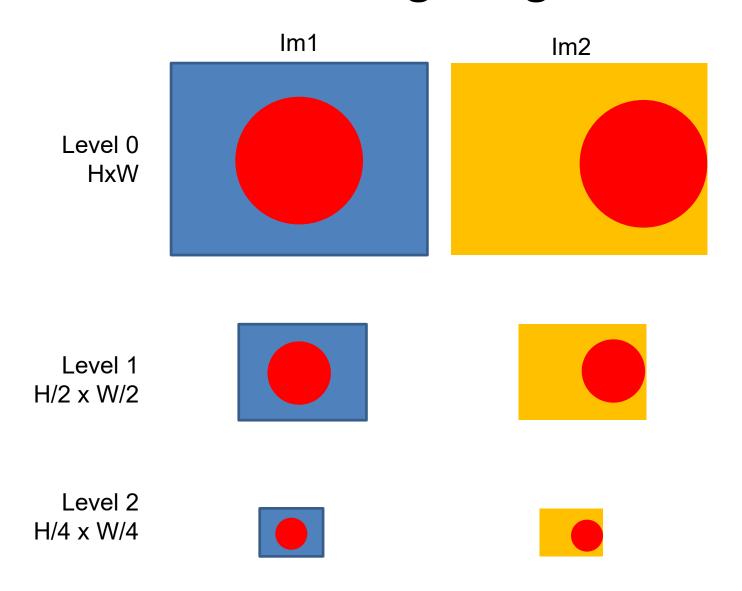
Extra points for project 1

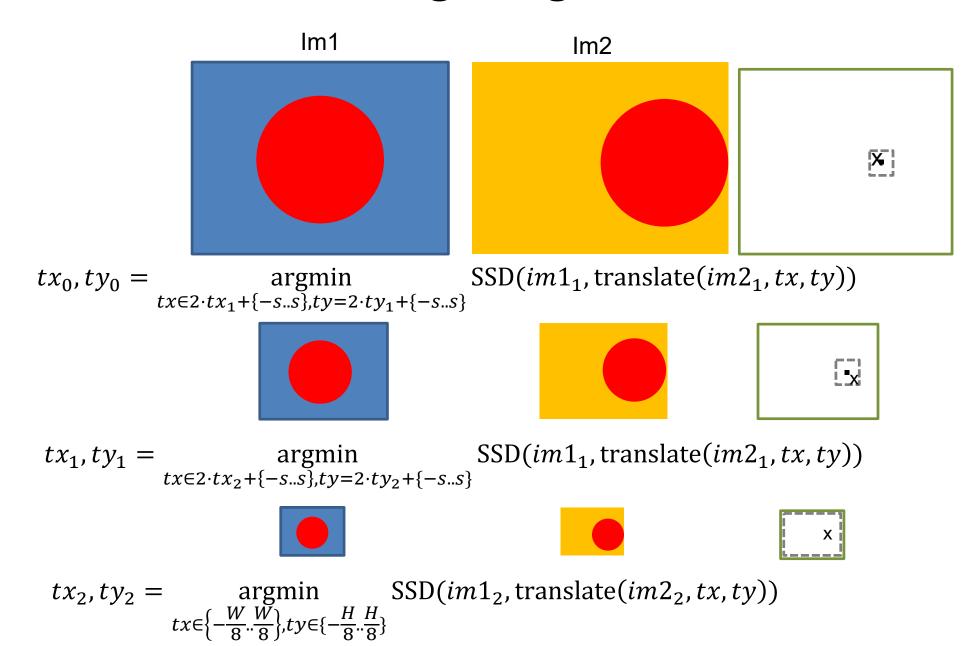
High frequency → Low frequency



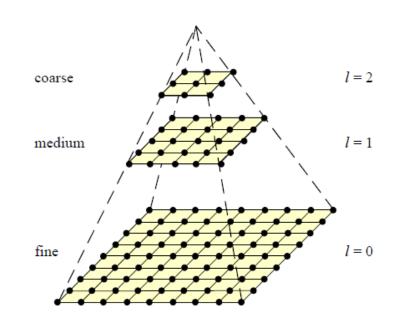
- 1. Compute Gaussian pyramid
- 2. Align with coarse pyramid
 - Find minimum SSD position
- Successively align with finer pyramids
 - Search small range (e.g., 5x5)
 centered around position
 determined at coarser scale







- 1. Compute Gaussian pyramid
- 2. Align with coarse pyramid
 - Find minimum SSD position
- 3. Successively align with finer pyramids
 - Search small range (e.g., 5x5)
 centered around position
 determined at coarser scale



Why is this faster?

Are we guaranteed to get the same result?

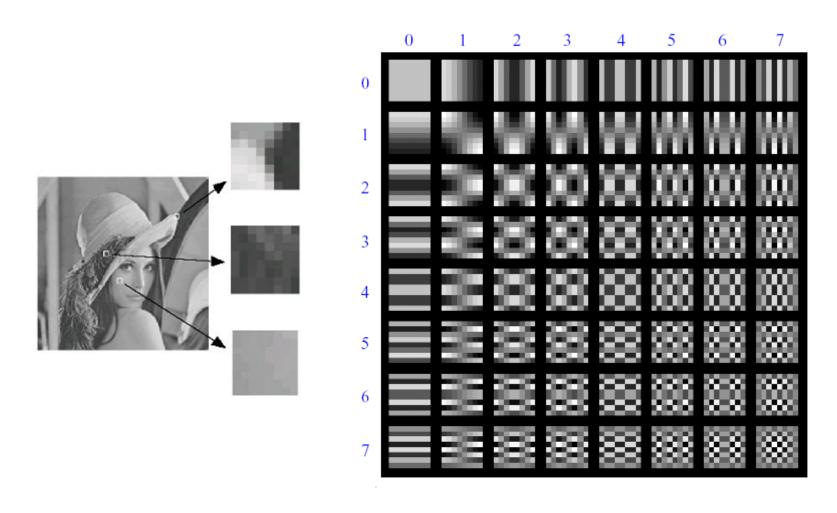
Question

Can you align the images using the FFT?

Compression

How is it that a 4MP image can be compressed to a few hundred KB without a noticeable change?

Lossy Image Compression (JPEG)

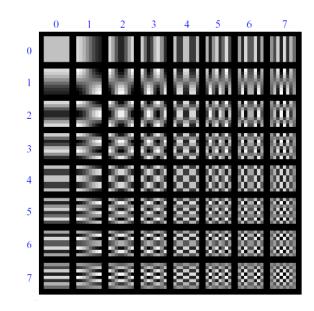


Block-based Discrete Cosine Transform (DCT)

Slides: Efros

Using DCT in JPEG

- The first coefficient B(0,0) is the DC component, the average intensity
- The top-left coeffs represent low frequencies,
 the bottom right high frequencies



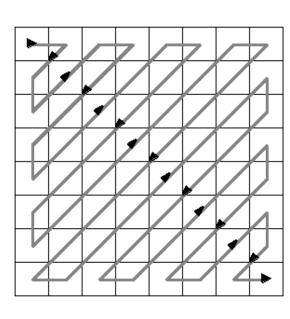


Image compression using DCT

Quantize

- More coarsely for high frequencies (which also tend to have smaller values)
- Many quantized high frequency values will be zero

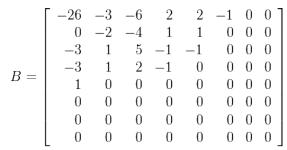
Encode

Can decode with inverse dct

Filter responses

$$G = \begin{bmatrix} -415.38 & -30.19 & -61.20 & 27.24 & 56.13 & -20.10 & -2.39 & 0.46 \\ 4.47 & -21.86 & -60.76 & 10.25 & 13.15 & -7.09 & -8.54 & 4.88 \\ -46.83 & 7.37 & 77.13 & -24.56 & -28.91 & 9.93 & 5.42 & -5.65 \\ -48.53 & 12.07 & 34.10 & -14.76 & -10.24 & 6.30 & 1.83 & 1.95 \\ 12.12 & -6.55 & -13.20 & -3.95 & -1.88 & 1.75 & -2.79 & 3.14 \\ -7.73 & 2.91 & 2.38 & -5.94 & -2.38 & 0.94 & 4.30 & 1.85 \\ -1.03 & 0.18 & 0.42 & -2.42 & -0.88 & -3.02 & 4.12 & -0.66 \\ -0.17 & 0.14 & -1.07 & -4.19 & -1.17 & -0.10 & 0.50 & 1.68 \end{bmatrix}$$

Quantized values



Quantization table

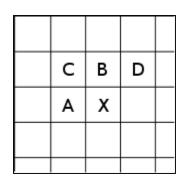
$$Q = \begin{bmatrix} 16 & 11 & 10 & 16 & 24 & 40 & 51 & 61 \\ 12 & 12 & 14 & 19 & 26 & 58 & 60 & 55 \\ 14 & 13 & 16 & 24 & 40 & 57 & 69 & 56 \\ 14 & 17 & 22 & 29 & 51 & 87 & 80 & 62 \\ 18 & 22 & 37 & 56 & 68 & 109 & 103 & 77 \\ 24 & 35 & 55 & 64 & 81 & 104 & 113 & 92 \\ 49 & 64 & 78 & 87 & 103 & 121 & 120 & 101 \\ 72 & 92 & 95 & 98 & 112 & 100 & 103 & 99 \end{bmatrix}$$

JPEG Compression Summary

- 1. Convert image to YCrCb
- 2. Subsample color by factor of 2
 - People have bad resolution for color
- 3. Split into blocks (8x8, typically), subtract 128
- 4. For each block
 - a. Compute DCT coefficients
 - b. Coarsely quantize
 - Many high frequency components will become zero
 - c. Encode (e.g., with Huffman coding)

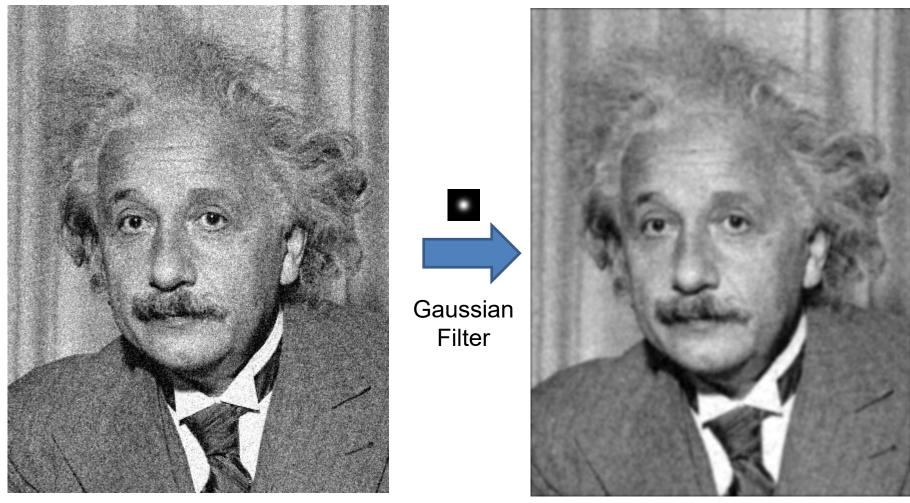
Lossless compression (PNG)

1. Predict that a pixel's value based on its upper-left neighborhood



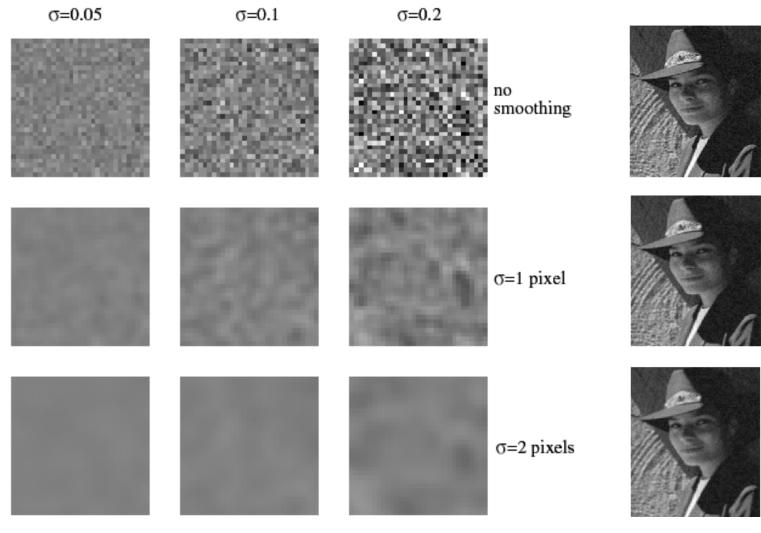
- 2. Store difference of predicted and actual value
- 3. Pkzip it (DEFLATE algorithm)

Denoising



Additive Gaussian Noise

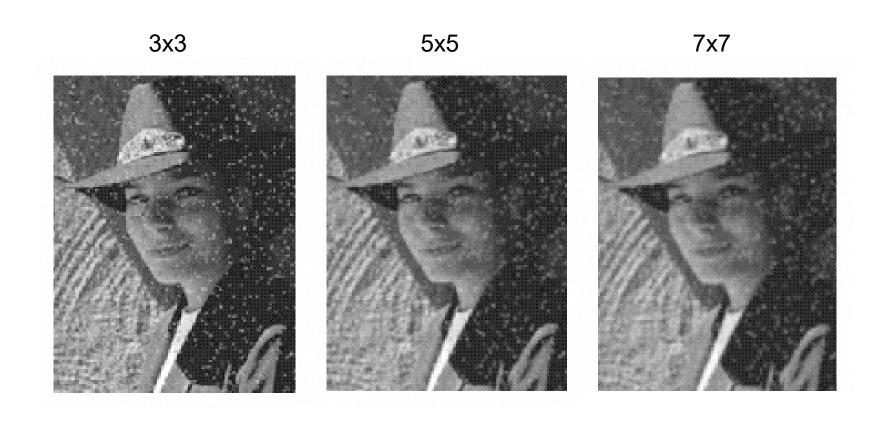
Reducing Gaussian noise



Smoothing with larger standard deviations suppresses noise, but also blurs the image

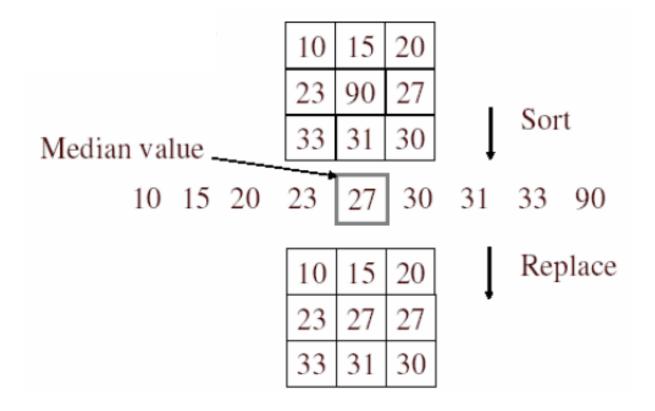
Source: S. Lazebnik

Reducing salt-and-pepper noise by Gaussian smoothing



Alternative idea: Median filtering

 A median filter operates over a window by selecting the median intensity in the window

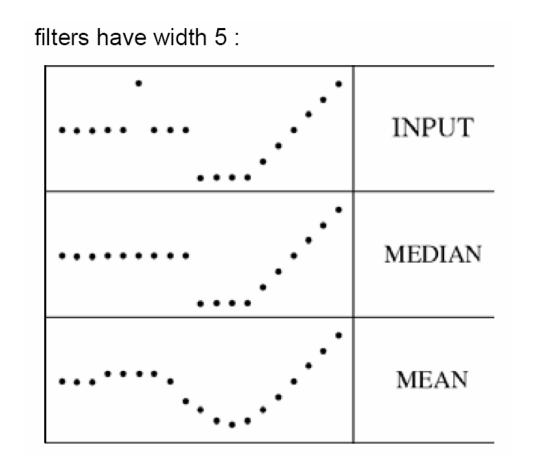


Is median filtering linear?

Source: K. Grauman

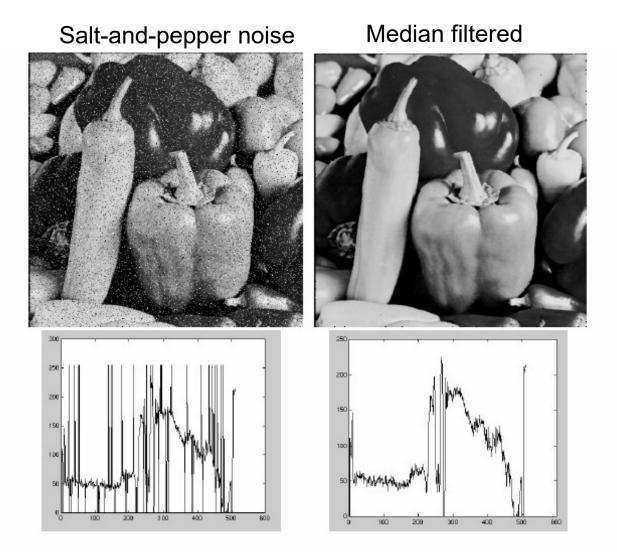
Median filter

- What advantage does median filtering have over Gaussian filtering?
 - Robustness to outliers



Source: K. Grauman

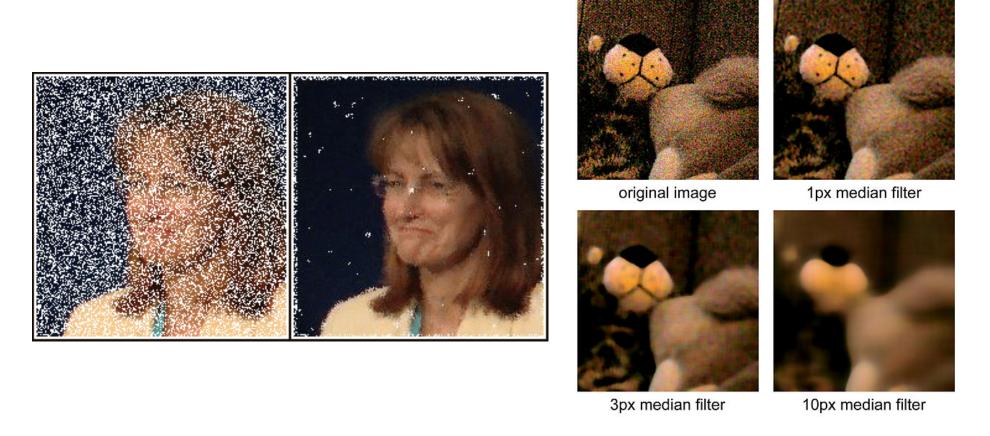
Median filter



Python: scipy.ndimage.median_filter (image, size)

Source: M. Hebert

Median Filtered Examples



http://en.wikipedia.org/wiki/File:Medianfilterp.png http://en.wikipedia.org/wiki/File:Median_filter_example.jpg

Median vs. Gaussian filtering

3x3 5x5 7x7 Gaussian Median

Other filter choices

- Weighted median (pixels further from center count less)
- Clipped mean (average, ignoring few brightest and darkest pixels)
- Bilateral filtering (weight by spatial distance and intensity difference)

cv2.bilateralFilter(size, sigma color, signal spatial)

Bilateral filtering

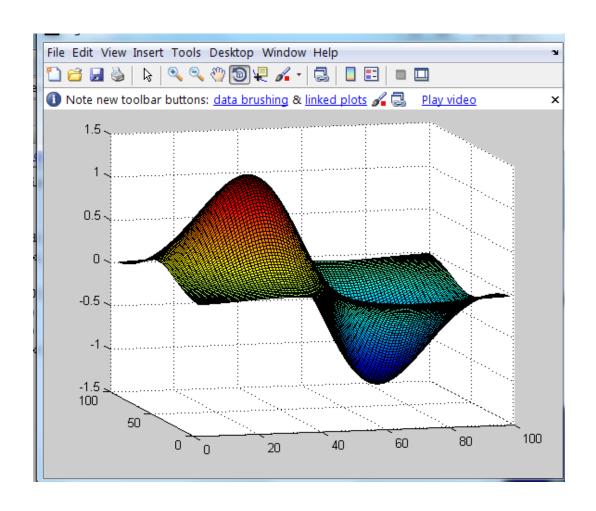
Image: http://vision.ai.uiuc.edu/?p=1455

- Filtering in spatial domain
 - Slide filter over image and take dot product at each position
 - Remember linearity (for linear filters)

- Linear filters for basic processing
 - Edge filter (high-pass)
 - Gaussian filter (low-pass)

[-1 1] Gaussian FFT of Gradient Filter FFT of Gaussian

• Derivative of Gaussian



- Filtering in frequency domain
 - Can be faster than filtering in spatial domain (for large filters)
 - Can help understand effect of filter
 - Algorithm:
 - 1. Convert image and filter to FFT
 - 2. Pointwise-multiply FFTs
 - 3. Convert result to spatial domain with inverse FFT

- Applications of filters
 - Template matching (SSD or normalized x-corr)
 - SSD can be done with linear filters, is sensitive to overall intensity
 - Gaussian pyramid
 - Coarse-to-fine search, multi-scale detection
 - Laplacian pyramid
 - Can be used for blending (later)
 - More compact image representation

- Applications of filters
 - Downsampling
 - Need to sufficiently low-pass before downsampling
 - Compression
 - In JPEG, coarsely quantize high frequencies
 - Reducing noise (important for aesthetics and for later processing such as edge detection)
 - Gaussian filter, median filter, bilateral filter

Next lecture

• Light and color

