Moving Forward

Computational Photography

Derek Hoiem, University of Illinois

Today

- Requested topics
 - iPhone LiDAR
 - -VR
 - Holographic displays
 - Transformers
- Other topics
 - Light transport
 - Event cameras

• Beyond this class...

This course has provided fundamentals

- How photographs are captured from and relate to the 3D scene
- How to think of an image as: a signal to be processed, a graph to be searched, an equation to be solved
- How to manipulate photographs: cutting, growing, compositing, morphing, stitching
- Basic principles of computer vision: filtering, correspondence, alignment

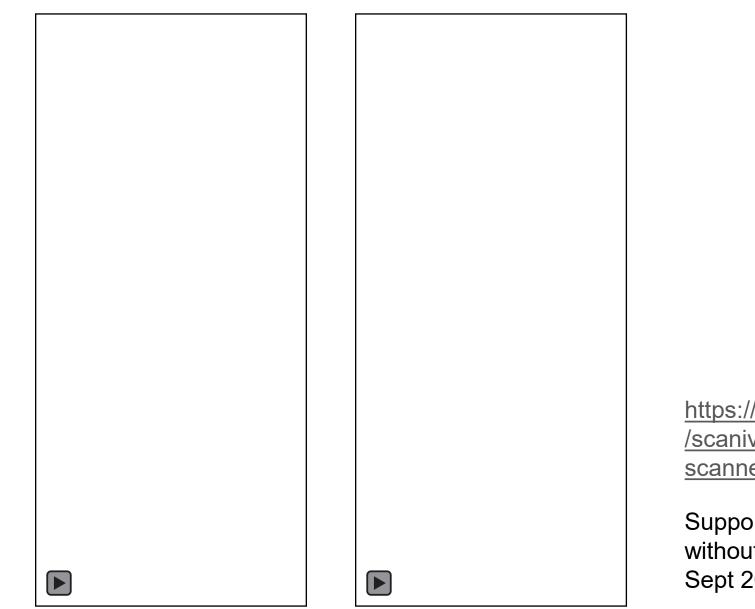
What else is out there?

Lots!

- Machine learning
- Videos and motion
- 3D reconstruction
- Scene understanding
- Better/cheaper devices
- •

iPhone/iPad LiDAR

Collection using Scaniverse by Asher Mai



https://apps.apple.com/us/app /scaniverse-3dscanner/id1541433223

Support for iPhone/iPad without LiDAR added in Sept 2022

iPhone/iPad LiDAR

- Works by "time of flight" the time it takes for a laser to bounce back
 - Sends out light using an array of vertical cavity surface-emitting lasers (VCSELs) made by Lumentum
 - Detects the return flash using an array of sensors called single-photon avalanche diodes (SPADs) supplied by Sony
- Hardware advances
 - Vertical cavity surface emitting laser (VCSEL)
 - Recently made more powerful, catching up to more expensive edge-emitting lasers
 - One chip can hold thousands of lasers and be produced for a few dollars at scale
 - Single photon avalanche diode (SPAD)
 - Can detect single photons but noisy, so requires complex post-processing
 - Thousands can be packed on a chip
 - Result: cheap devices, no moving parts

Creating 3D models

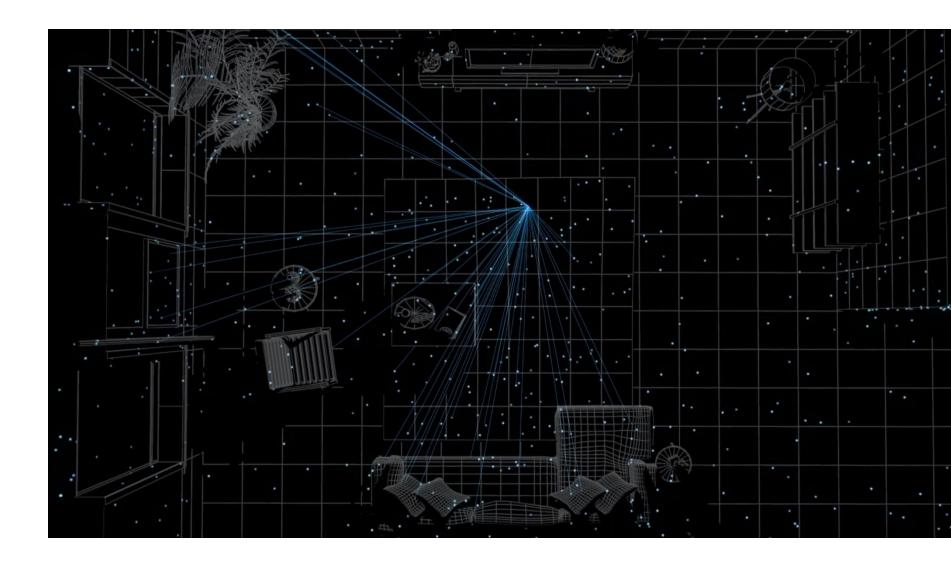
- 1. LiDAR provides a depth map per image
 - May need to refine and increase resolution based on image cues, e.g. iPad Pro 2020 gets only 24x24 depth values per frame
- 2. Device also tracks its pose in the scene using SLAM
- 3. Depth maps can be fused together based on pose information, and pose can be refined to improve alignment
- 4. Dense point cloud can be converted into a mesh that is textured from images, e.g. with Poisson surface reconstruction and texrecon texturing

VR – Oculus Quest 2

- Hardware
 - Two 1823x1920 screens
 w/ 72Hz refresh
 - Four front-facing cameras
 - IMUs, microphone
- Software
 - Track head position using SLAM
 - Track controllers using IR LEDs
 - Track fingers using deep networks (computer vision)

VR: SLAM-based pose estimation of the head

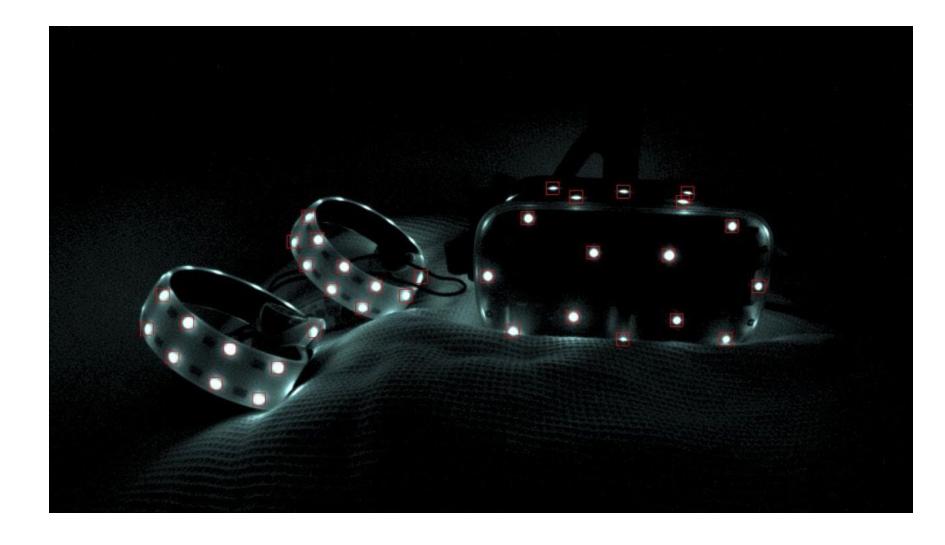
- 1. IMU at 1000Hz
- Track points (visual)
- 3. Map and update pose



https://techcrunch.com/2019/08/22/how-oculus-squeezed-sophisticated-tracking-into-pipsqueak-hardware/

Tracking controllers

- Controllers have infra-red LEDs
- 2. Oculus has 4 cameras that can see the LEDs
- Estimate controller pose relative to headset based on LED positions



https://www.mechatech.co.uk/journal/how-do-common-virtual-reality-tracking-systems-work

Tracking hands

- Deep networks for hand pose estimation
 - Likely related to existing algorithms such as open pose but taking advantage of multiple cameras and making it extremely efficient

https://www.youtube.com/watch?v=uztFcEA6Rf0

Holographic displays

https://www.youtube.com/watc h?v=f7fffZ_k9ow

Key idea

• Generate a light field (i.e. different pictures are sent in different directions, simulating the light that would be cast from a 3D object)

Some versions

- Project light onto a glass surface
- Screen that scatters light in controlled ways
- Laser plasma: powerful lasers excite molecules to create images in thin air without any screen
 - Bright, opaque but low-res and limited quality
- Micromagnetic (MEMs) piston
 - Tiny fast-changing mirrors control light reflections to create view-dependent images; still in prototype

https://www.realfiction.com/how-it-works https://en.wikipedia.org/wiki/Holographic_display

Example patent from The Looking Glass Factory

image 120 distorted intermediate image ana. lens source image FIGURE 2A scattering elements 121 120

scattering substrates 122

proj

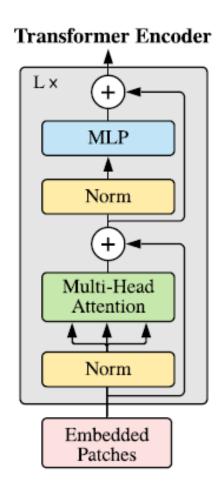
https://www.youtube.com/watch?v=EMUdmE0IKIU

<u>\$400-\$20K+</u>

https://patentimages.storage.googleapis.com/70/97/72/a6 0d4163a0a784/US20170078655A1.pdf

Transformers: multimodal data processors

- Input tokens can represent anything: image patches, text tokens, audio, controls, etc.
- Transformer encoder: self-attention + MLP
- **Self-attention**: linear project + soft cluster + linear project
 - Input: tokens z w/ D dimensions
 - Linear projections into query, key, value: [q, k, v] = z*U
 - Aggregate values according to key/query similarity
 - A = softmax(qk/sqrt(D)) SA(z) = Av
 - Multihead attention: project into several lower-dim vectors, aggregate on each set, concatenate and apply linear projection
- Invariant to order of tokens: positional embeddings and type embeddings are used to distinguish pos/type of input



GPT-3: large scale <text>-to-<text>, prompting

- Process up to 2048 tokens (text to text)
- Network of standard (mostly) transformer blocks with 96 layers, 175 billion parameters
- Trained on web corpora (400B, 19B tokens), books (12B, 55B tokens), and Wikipedia (3B tokens) to predict the next word
 - run
- Zero-shot: task description + test input \rightarrow test output
- Few shot task: task description + multiple input/output examples + test input \rightarrow test output
- Used in many applications, e.g. code generation, search, summarization, writing aids

- Estimated cost to train: \$12M for one training

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

One-shot

Zero-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

	Translate English to French:	\longleftarrow task description
	sea otter => loutre de mer	←— example
	cheese =>	←— prompt

	SuperGLUE
	Average
Fine-tuned SOTA	89.0
Fine-tuned BERT-Large	69.0
GPT-3 Few-Shot	71.8

Key papers: "Language Models are Few-Shot Learners" (2020)

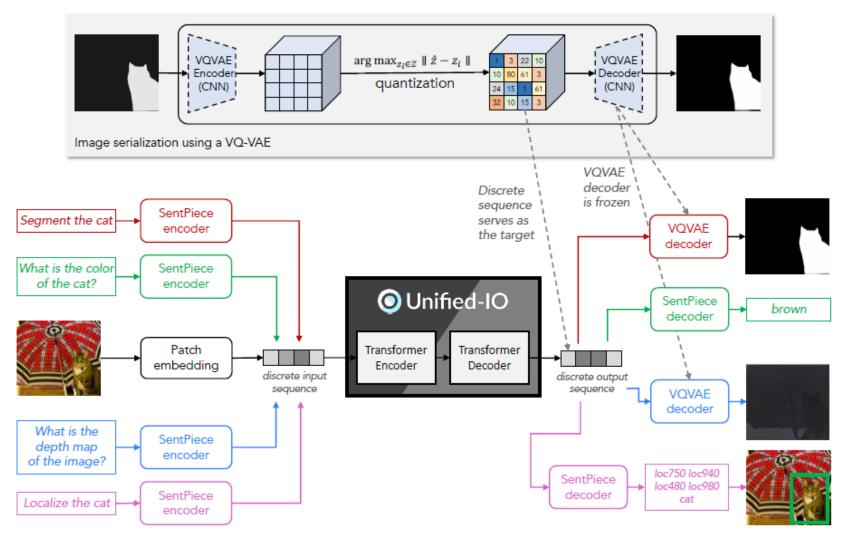
Unified-IO: <text, image> to <text, image>

3B parameters

Pre-train on masked text and image completion for text, images, and image/caption pairs

Multitask training on 80 datasets

Unified-IO (June 2022)



Vision tasks

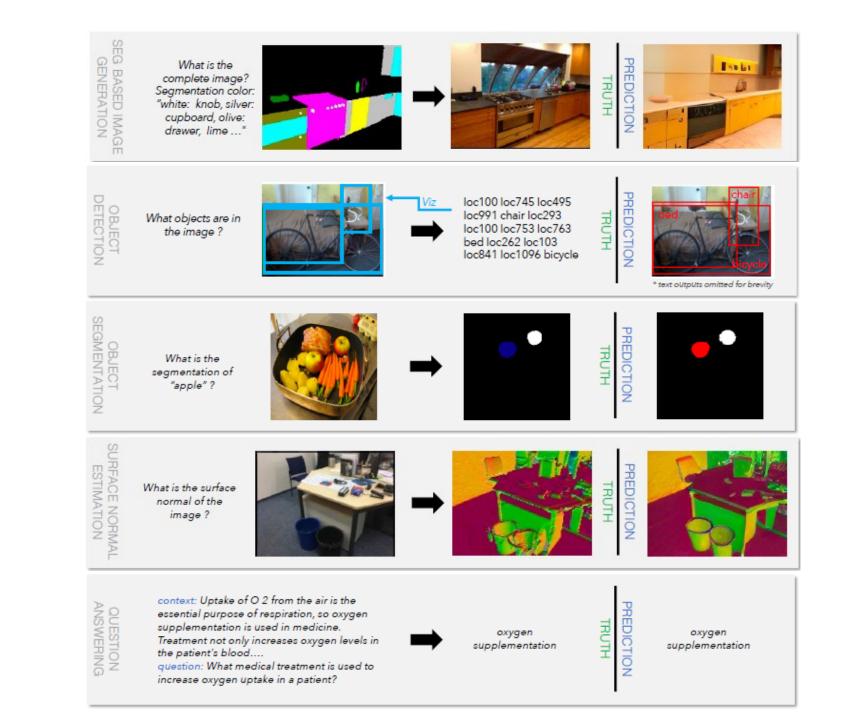
- Image synthesis from text / inpainting / segmentation
- Image/object classification
- Object detection, segmentation, keypoint estimation
- Depth/normal estimation

Vision-language tasks

 VQA, image/region captioning, referring expressions comprehension, relationship detection

NLP tasks

- Question answering
- Text classification



Blind Inverse Light Transport Problem

Predict the light pattern by factorizing observed scene into lighting (projected image) and scene reflectance



Observed

Recovered image

True image projected on screen (out of view)

Deep Image Prior

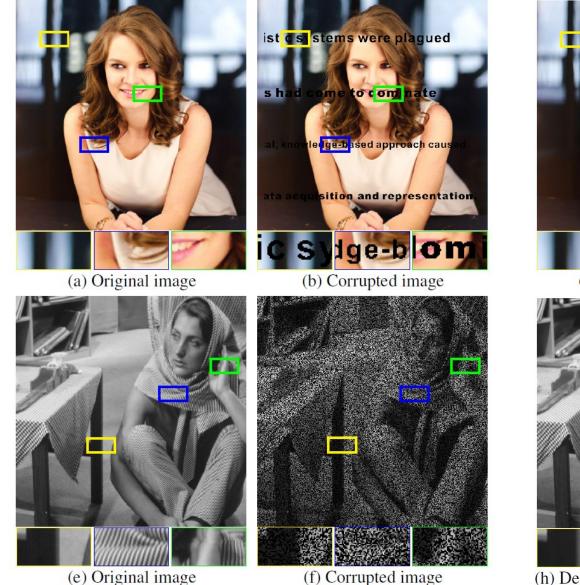
CVPR 2018

Dmitry Ulyanov Skolkovo Institute of Science and Technology, Yandex dmitry.ulyanov@skoltech.ru Andrea Vedaldi University of Oxford vedaldi@robots.ox.ac.uk Victor Lempitsky Skolkovo Institute of Science and Technology (Skoltech) lempitsky@skoltech.ru

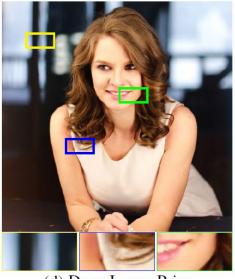
Surprising result: A randomly initialized decoder network, when trained to reproduce a corrupted image, fixes the noise, holes, etc.

The network structure acts as a prior!

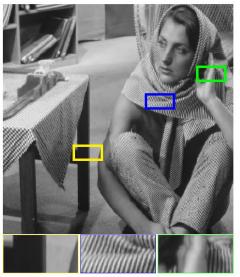
Magic or math? Gradient descent on encoder network to reproduce Original produces a cleaner image. Even better than recent methods designed to solve this problem.



(f) Corrupted image



(d) Deep Image Prior



(h) Deep Img. Prior, PSNR = 32.22

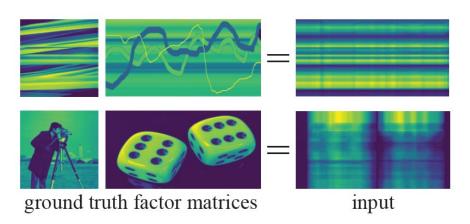
Computational Mirrors: Blind Inverse Light Transport by Deep Matrix Factorization

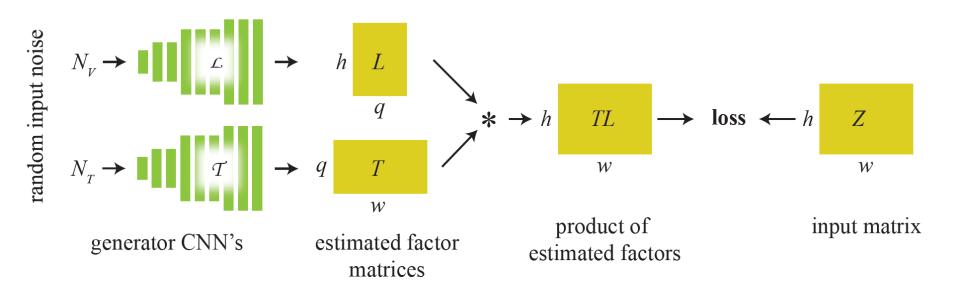
NIPS 2019

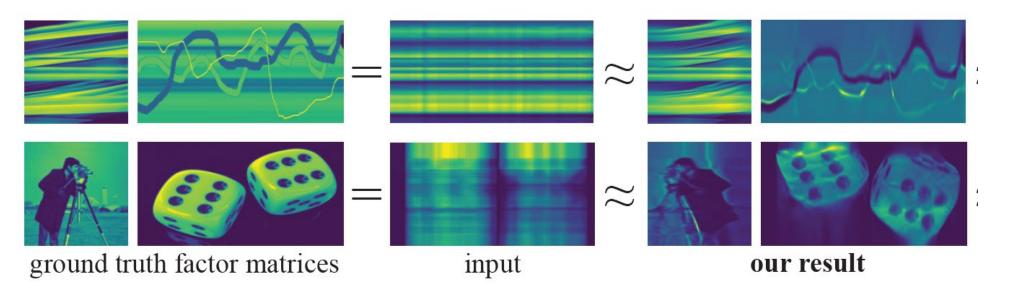
Miika Aittala	Prafull Sharma	Lukas Murmann	Adam B. Yedidia
MIT	MIT	MIT	MIT
miika@csail.mit.edu	prafull@mit.edu	lmurmann@mit.edu	adamy@mit.edu
Gregory W. Wornel	l William T.	e Research	rédo Durand
MIT	MIT, Googl		MIT
gww@mit.edu	billf@m		edo@mit.edu

Now take it a step further. If you have the matrix product of two images, you can recover the factors.

Note: there are practically infinitely many useless solutions to this problem.







- Each "pixel" of light on the projector lights the scene, producing an image
- The total image is the sum of images from each pixel
- Observed image can be factorized into surface colors and projected image (assuming no ambient light)

https://www.youtube.com/watch?v=bzsfREU2dDM

Event cameras

- First commercially produced in 2008
- Respond only when individual pixels change intensity
 - Corresponds to camera or scene motion
- 1 micro-second latency
- High dynamic range
- 100x less power than standard camera

Overview: https://www.youtube.com/watch?v=fA4MiSzYHWA 3D Reconstruction: https://www.youtube.com/watch?v=fA4MiSzYHWA

Trends and Future of Computational Photography

- Camera phones continue to serve as a platform for latest advances in hardware and software
 - E.g. multiple cameras and depth is often available
- VR / AR blend graphics with tracking and understanding of environment
 - Killer app outside of games and teleconferencing?
- Photorealistic content creation from prompts
 - Impact outside wow factor still unclear
- Design smart programs that work together with people
 - This is #1 from Harry Shum, Exec VP of AI and Research at Microsoft

How can you learn more?

- Relevant courses
 - Production graphics (CS 419)
 - Machine learning (CS 446 and others)
 - Deep learning (CS 444)
 - Computer vision (CS 543)
 - Optimization methods (CS 544)
 - Parallel processing / GPU
 - HCI, data mining, NLP, robotics

How can you learn more?

- Conference proceedings
 - Vision: CVPR, ICCV, ECCV, NIPS
 - Computational photography: <u>ICCP</u>
 - Graphics: SIGGRAPH, SIGGRAPH Asia

Computer Vision (CS 543)

Similar stuff to CP

• Camera models, filtering, single-view geometry, light and capture

New stuff

- Mid-level vision
 - Edge detection, clustering, segmentation
- Machine learning
- Recognition
 - Image features and classifiers
 - Object category recognition
 - Action/activity recognition
- Videos
 - Tracking, optical flow
 - Structure from motion
- Multi-view geometry

Deep Learning for Vision (CS 444)

- Linear classifiers
- Neural networks
- Convolutional networks
- Object detection
- Dense labeling
- Self-supervised learning
- GANs
- Recurrent networks
- Transformers
- Reinforcement learning

How do you learn more?

Explore and fiddle!

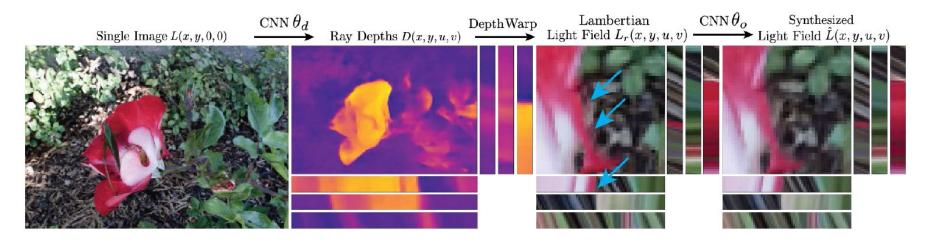
Thank you for a great semester!

Don't forget to complete your ICES forms

Image \rightarrow Light Field

Learning to Synthesize a 4D RGBD Light Field from a Single Image

Pratul P. Srinivasan¹, Tongzhou Wang¹, Ashwin Sreelal¹, Ravi Ramamoorthi², Ren Ng¹ ¹University of California, Berkeley ²University of California, San Diego



https://www.youtube.com/watch?v=yLCvWoQLnms

Superresolution

EnhanceNet: Single Image Super-Resolution Through Automated Texture Synthesis

Mehdi S. M. Sajjadi Bernhard Schölkopf Michael Hirsch

Bicubic

ENet-E

ENet-PAT

Ground Truth

E: Optimize least squares objective with upsampling network PAT: Optimize "perceptual" (VGG features) loss, adversarial loss, texture corr loss

Learning to Super-Resolve Blurry Face and Text Images

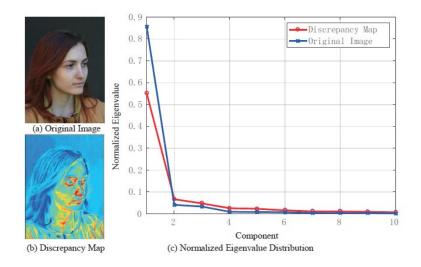
Pretty similar to above, more limited domain

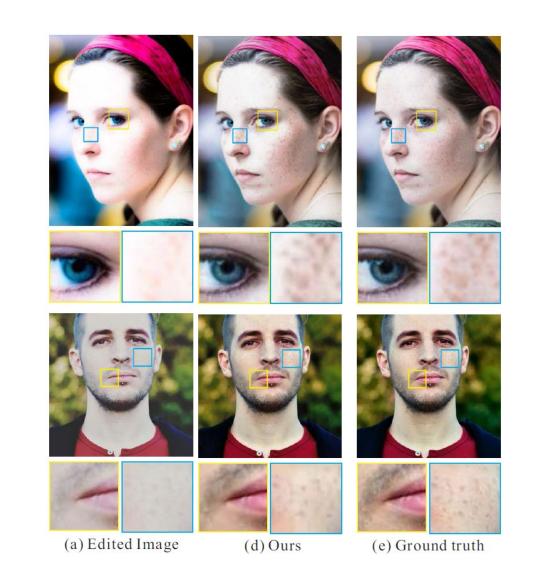
Xiangyu Xu^{1,2,3} Deqing Sun^{3,4} Jinshan Pan⁵ Yujin Zhang¹ Hanspeter Pfister³ Ming-Hsuan Yang² ¹Tsinghua University ²University of California, Merced ³Harvard University ⁴Nvidia ⁵Nanjing University of Science & Technology

De-beautification

Makeup-Go: Blind Reversion of Portrait Edit*

Ying-Cong Chen¹ Xiaoyong Shen² Jiaya Jia^{1,2} ¹The Chinese University of Hong Kong ²Tencent Youtu Lab ycchen@cse.cuhk.edu.hk dylanshen@tencent.com leojia9@gmail.com





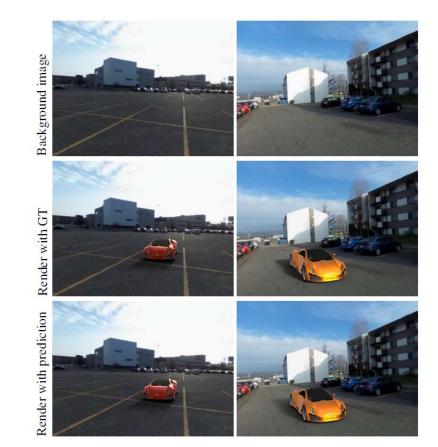
Network regresses principal components of discrepancy map

Learning High Dynamic Range from Outdoor Panoramas

Jinsong Zhang Jean-François Lalonde Université Laval, Québec, Canada jinsong.zhang.l@ulaval.ca, jflalonde@gel.ulaval.ca http://www.jflalonde.ca/projects/learningHDR

- Regress HDR from
 one LDR image
- Train on synthetic data

 Limited to outdoor scenes, rotated so that sun is on top



LDR --> HDR

Smarter user assistance

• <u>Handwriting beautification</u> (Zitnick SG'13)

• <u>3D object modeling</u> (Chen et al. SGA'13)

• <u>3D object modeling</u> (Kholgade et al. SG'14)

Video and motion

- Video = sequence of images
 - Track points \rightarrow optical flow, tracked objects, 3D reconstruction
 - Find coherent space-time regions \rightarrow segmentation
 - Recognizing actions and events
- Examples:
 - Point tracking for structure-from-motion
 - <u>Boujou 1</u>
 - Facial transfer: Xu et al. SG2014

Scene understanding

Interpret image in terms of scene categories, objects, surfaces, interactions, goals, etc.

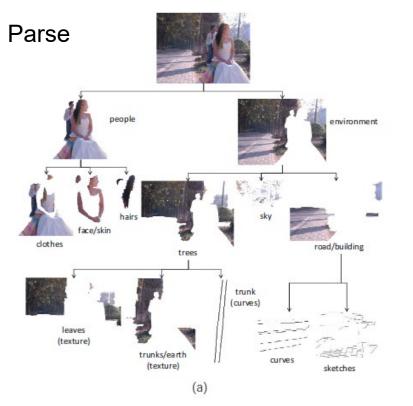
• Find me images with only Alyosha and Piotro

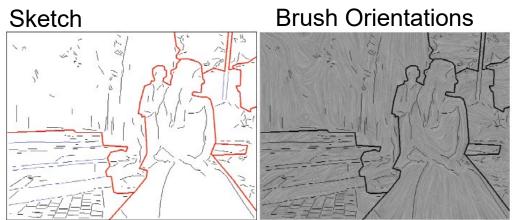
Scene understanding

- Mostly unsolved, but we're getting there (especially for graphics purposes)
- Examples
 - "From Image Parsing to Painterly Rendering" (Zeng et al. 2010)
 - "<u>Sketch2Photo: Internet Image Montage</u>" (Chen et al. 2009)
 - Editing via scene attributes (Laffont et al. 2014)



Zeng et al. SIGGRAPH 2010





Zeng et al. SIGGRAPH 2010

Zeng et al. SIGGRAPH 2010

More examples

- Sketch2photo: <u>http://www.youtube.com/watch?v=dW1Epl2LdFM</u>
- Animating still photographs

Chen et al. 2009

Modeling humans

- Estimating pose and shape
 - <u>http://clothingparsing.com/</u>
 - Parselets (Dong et al., ICCV 2013)

• Motion capture

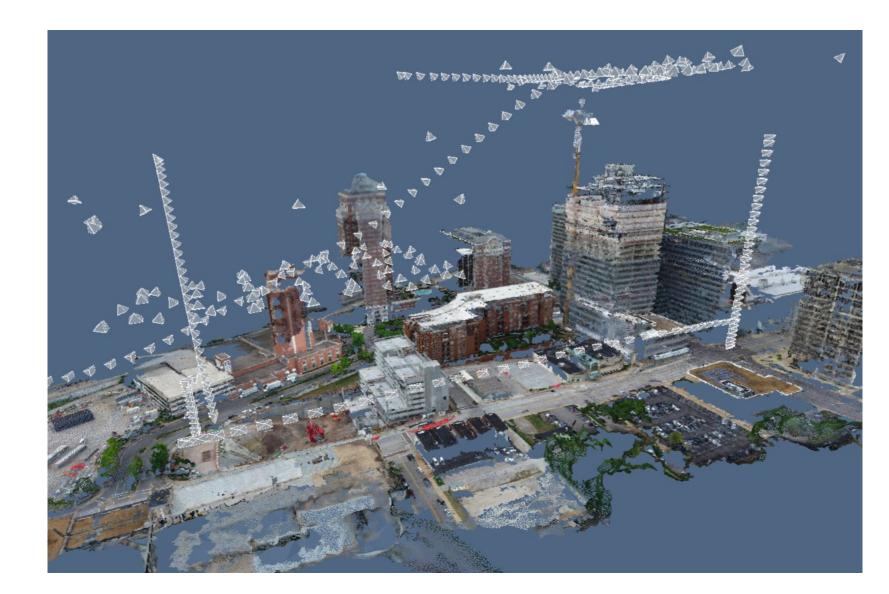
• <u>3D face from image</u> (Kemelmacher ICCV'13)

Better and simpler 3D reconstruction

MobileFusion (2015): <u>https://youtu.be/8M_-ISYqACo</u>

How to create 3D model from multiple images

- 1. Solve for camera poses
- Propose and verify 3D points by matching
- 3. Fit a surface to the points



Incremental Structure from Motion (SfM)

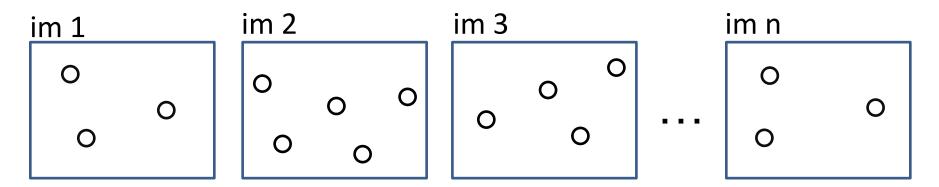
Goal: Solve for camera poses and 3D points in scene

Incremental SfM

- 1. Compute features
- 2. Match images
- 3. Reconstruct
 - a) Solve for pose and 3D points in two cameras
 - b) Solve for pose of additional camera(s) that observe reconstructed 3D points
 - Solve for new 3D points that are viewed in at least two cameras
 - d) Bundle adjust to minimize reprojection error

Incremental SFM: detect features

• Feature types: SIFT, ORB, Hessian-Laplacian, ...

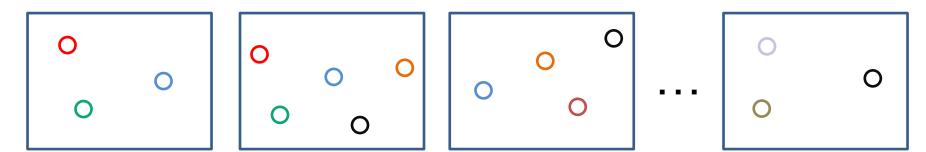


Each circle represents a set of detected features

Incremental SFM: match features and images

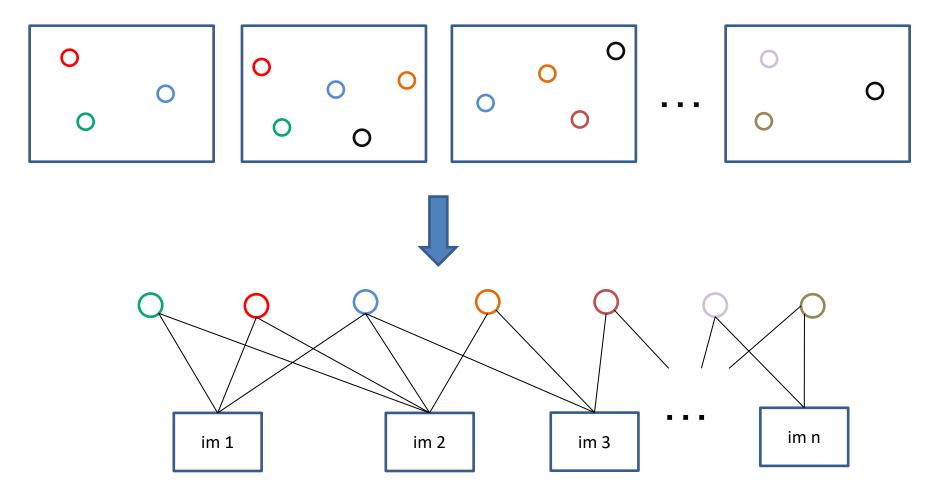
For each pair of images:

- 1. Match feature descriptors via approximate nearest neighbor and apply Lowe's ratio test
- 2. Solve for F and find inlier feature correspondences
- Speed tricks
 - Use vocabulary tree to get image match candidates
 - Use GPS coordinates to get match candidates, if available



Points of same color have been matched to each other

Incremental SFM: create tracks graph



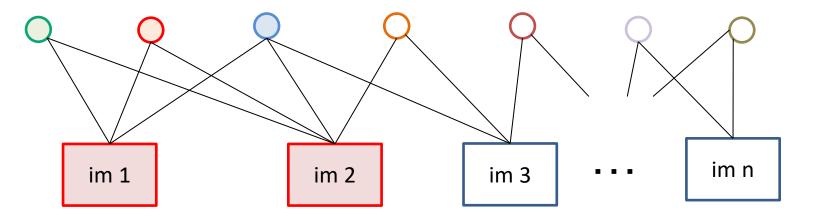
tracks graph: bipartite graph between observed 3D points and images

Incremental SFM: initialize reconstruction

1. Choose two images that are likely to provide a stable estimate of relative pose

- E.g.,
$$\frac{\# \text{ inliers for } H}{\# \text{ inliers for } F}$$
 < 0.7 and many inliers for F

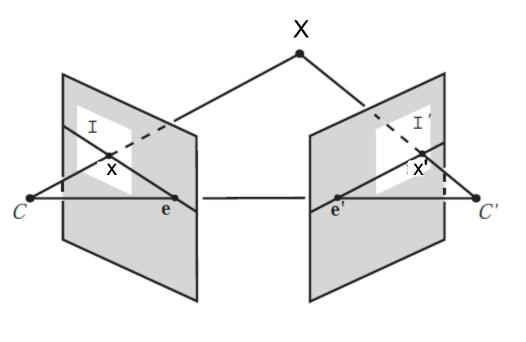
- 2. Get focal lengths from EXIF, estimate essential matrix using <u>5</u>point algorithm, extract pose R_2 , t_2 with $R_1 = I$, $t_1 = 0$
- 3. Solve for 3D points given poses
- 4. Perform bundle adjustment to refine points and poses



filled circles = "triangulated" points filled rectangles = "resectioned" images (solved pose)

Triangulation: Linear Solution

- Generally, rays C→x and C'→x' will not exactly intersect
- Can solve via SVD, finding a least squares solution to a system of equations

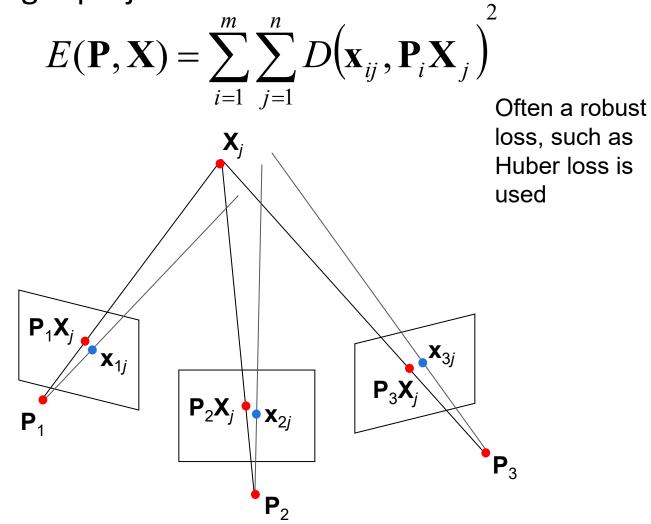


$$\mathbf{x} = \mathbf{P}\mathbf{X} \qquad \mathbf{x}' = \mathbf{P}'\mathbf{X}$$
$$\mathbf{A}\mathbf{X} = \mathbf{0} \qquad \mathbf{A} = \begin{bmatrix} u\mathbf{p}_3^T - \mathbf{p}_1^T \\ v\mathbf{p}_3^T - \mathbf{p}_2^T \\ u'\mathbf{p}_3'^T - \mathbf{p}_2'^T \\ v'\mathbf{p}_3'^T - \mathbf{p}_2'^T \end{bmatrix}$$

Further reading: Hartley-Zisserman p. 312-313

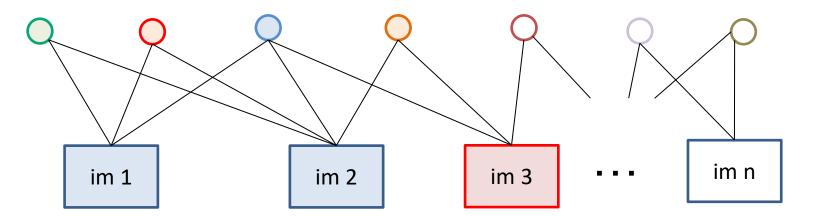
Bundle adjustment

- Non-linear method for refining structure and motion
- Minimizing reprojection error



Incremental SFM: grow reconstruction

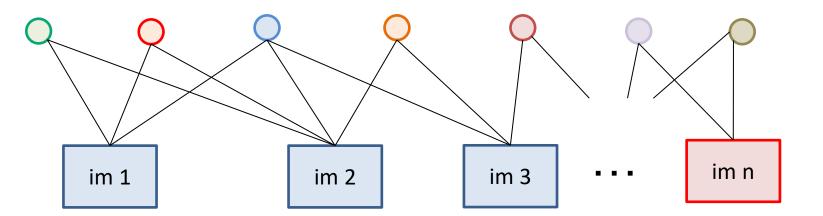
- 1. Resection: solve pose for image(s) that have the most triangulated points
- 2. Triangulate: solve for any new points that have at least two cameras
- 3. Remove 3D points that are outliers
- 4. Bundle adjust
 - For speed, only do full bundle adjust after some percent of new images are resectioned
- 5. Optionally, align with GPS from EXIF or ground control points (GCP)



filled circles = "triangulated" points filled rectangles = "resectioned" images (solved pose)

Incremental SFM: grow reconstruction

- 1. Resection: solve pose for image(s) that have the most triangulated points
- 2. Triangulate: solve for any new points that have at least two cameras
- 3. Remove 3D points that are outliers
- 4. Bundle adjust
 - For speed, only do full bundle adjust after some percent of new images are resectioned
- 5. Optionally, align with GPS from EXIF or ground control points (GCP)



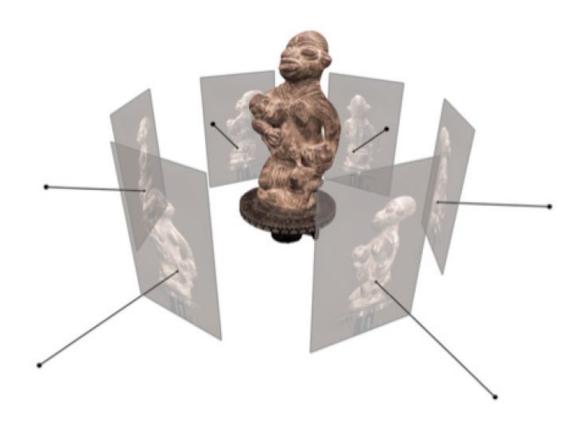
filled circles = "triangulated" points filled rectangles = "resectioned" images (solved pose)

Important recent papers and methods for SfM

- <u>Snavely thesis (2008)</u>: intro to SfM in Chapter 3
- Visual SfM: Visual SfM (Wu 2013)
 - Used to be the best incremental SfM software (but not anymore and closed source); paper still very good
- <u>COLMAP</u>
 - Good open source system based on <u>"Structure-from-motion</u> <u>revisited</u>" (Schonberger Frahm 2016)
- <u>OpenSfM</u>:
 - Python open-source system, easy to read and modify

Reconstruction of Cornell (Crandall et al. ECCV 2011)

Multiview Stereo: propose and verify 3D points by matching pixel patches across images



Select depth at each pixel that minimizes NCC of patches with other images

Key Assumptions

- Enough texture to match
- Surface looks the same from each view (nonreflective)

"Multiview Stereo: a tutorial" by Yasu Furukawa http://www.cse.wustl.edu/~furukawa/papers/fnt_mvs.pdf

COLMAP:

 Code based on "Pixelwise View Selection for Unstructured Multi-View Stereo" by Schonberger et al. 2016

Surface Reconstruction

Floating scale surface reconstruction:

http://www.gcc.tu-darmstadt.de/home/proj/fssr/

Constrained Delaunay triangulation

- Create 3D triangulation of dense points and remove faces that conflict with observed points