Retrieval, Reconstruction, and other uses of Interest Points

Magritte, The Treachery of Images

Computational Photography

Derek Hoiem, University of Illinois

Last class: Image Stitching

1. Detect keypoints

2. Match keypoints

3. Use RANSAC to estimate homography

- 4. Project onto a surface and
 - blend

Project 5: coming up

- 1. Align frames to a central frame
- 2. Identify background pixels on panorama
- 3. Map background pixels back to videos
- 4. Identify and display foreground pixels

Lots of possible extensions for extra credit

Aligning frames

$$\begin{array}{l} x_1 = H_{21} x_2 \\ x_2 = H_{32} x_3 \end{array} \qquad \qquad x_1 = ? \, x_3 \end{array}$$

Background identification

Background identification

Idea 1: take average (mean) pixel

- Not bad but averages over outliers

Idea 2: take mode (most common) pixel

- Can ignore outliers if background shows more than any other single color

Idea 3: take median pixel

- Can ignore outliers if background shows at least 50% of time, or outliers tend to be well-distributed

Identifying foreground

1. Simple method: foreground pixels are some distance away from background

- 2. Another method: count times that each color is observed and assign unlikely colors to foreground
 - Can work for repetitive motion, like a tree swaying in the breeze

Augmented reality

- Insert and/or interact with object in scene
 - Project by Karen Liu
 - <u>Responsive characters in AR</u>
 - Pokeman Go

- Overlay information on a display
 - <u>Tagging reality</u>
 - HoloLens
 - Google goggles

Adding fake objects to real video

Approach

- 1. Recognize and/or track points that give you a coordinate frame
- 2. Apply homography (flat texture) or perspective projection (3D model) to put object into scene

Main challenge: dealing with lighting, shadows, occlusion

Information overlay

Approach

- 1. Recognize object that you've seen before
- 2. Possibly, compute its pose
- 3. Retrieve info and overlay

Main challenge: how to match reliably and efficiently?

How to quickly find images in a large database that match a given image region?

Let's start with interest points

Query

Compute interest points (or keypoints) for every image in the database and the query

Simple idea

See how many keypoints are close to keypoints in each other image

Few or No Matches

But this will be really, really slow!

• Cluster the keypoint descriptors

K-means algorithm

2. Assign each point to nearest center

3. Compute new center (mean)for each cluster

Illustration: http://en.wikipedia.org/wiki/K-means_clustering

K-means algorithm

Illustration: <u>http://en.wikipedia.org/wiki/K-means_clustering</u>

Kmeans: Matlab code

```
function C = kmeans(X, K)
% Initialize cluster centers to be randomly sampled points
[N, d] = size(X);
rp = randperm(N);
C = X(rp(1:K), :);
lastAssignment = zeros(N, 1);
while true
  % Assign each point to nearest cluster center
  bestAssignment = zeros(N, 1);
 mindist = Inf*ones(N, 1);
 for k = 1:K
    for n = 1:N
      dist = sum((X(n, :)-C(k, :)).^2);
      if dist < mindist(n)</pre>
        mindist(n) = dist;
        bestAssignment(n) = k;
      end
    end
  end
  % break if assignment is unchanged
  if all(bestAssignment==lastAssignment), break; end;
 lastAssignment = bestAssignmnet;
  % Assign each cluster center to mean of points within it
  for k = 1:K
    C(k, :) = mean(X(bestAssignment==k, :));
  end
```

and

K-means Demo

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

- Cluster the keypoint descriptors
- Assign each descriptor to a cluster number
 - What does this buy us?
 - Each descriptor was 128 dimensional floating point, now is 1 integer (easy to match!)
 - Is there a catch?
 - Need **a lot** of clusters (e.g., 1 million) if we want points in the same cluster to be very similar
 - Points that really are similar might end up in different clusters

- Cluster the keypoint descriptors
- Assign each descriptor to a cluster number
- Represent an image region with a count of these "visual words"

- Cluster the keypoint descriptors
- Assign each descriptor to a cluster number
- Represent an image region with a count of these "visual words"
- An image is a good match if it has a lot of the same visual words as the query region

Naïve matching is still too slow

Imagine matching 1,000,000 images, each with 1,000 keypoints

Key Idea 2: Inverse document file

- Like a book index: keep a list of all the words (keypoints) and all the pages (images) that contain them.
- Rank database images based on tf-idf measure.

tf-idf: Term Frequency – Inverse Document Frequency

Fast visual search

"Video Google", Sivic and Zisserman, ICCV 2003

"Scalable Recognition with a Vocabulary Tree", Nister and Stewenius, CVPR 2006.

110,000,000 Images in 5.8 Seconds

Slide Credit: Nister

Slide Credit: Nister

Recognition with K-tree

Following slides by David Nister (CVPR 2006)

Performance

ImageSearch at the VizCentre

Send File

bourne/im1000043322.pgm bourne/im1000043323.pgm bourne/im1000043326.pgm bourne/im1000043327.pgm

Can we be more accurate?

So far, we treat each image as containing a "bag of words", with no spatial information

Can we be more accurate?

So far, we treat each image as containing a "bag of words", with no spatial information

Real objects have consistent geometry

Final key idea: geometric verification

 Goal: Given a set of possible keypoint matches, figure out which ones are geometrically consistent

How can we do this?

Final key idea: geometric verification **RANSAC** for affine transform Repeat N times: Randomly choose 3 matching pairs e Affine Estimate Transform transformation Predict remaining points and count "inliers"

Application: Large-Scale Retrieval

Results on 5K (demo available for 100K)

[Philbin CVPR'07]

Application: Image Auto-Annotation

Left: Wikipedia image Right: closest match from Flickr

[Quack CIVR'08]

Example Applications

Mobile tourist guide

Self-localization Object/building recognition Photo/video augmentation

[Quack, Leibe, Van Gool, CIVR'08]

Video Google System

- 1. Collect all words within query region
- 2. Inverted file index to find relevant frames
- 3. Compare word counts
- 4. Spatial verification

Sivic & Zisserman, ICCV 2003

• Demo online at :

http://www.robots.ox.ac.uk/~vgg/research/vgoogl e/index.html

Query region

Retrieved frames

3D Reconstruction from Flickr

- Create detailed 3D scenes from thousands of consumer photographs
- Challenges include variations in season, lighting, occluding objects, etc.

"Building Rome in a Day", Agarwal et al. 2009

3D Reconstruction from Flickr: How it works

- 1. Download ~10,000 images, convert to grayscale, compute SIFT keypoints
- 2. Match images
 - 1. Get similar images with vocabulary tree
 - 2. Match keypoints across similar images and perform geometric verification with RANSAC (similar to photo stitching)
- 3. Form a graph of matched images and features
- 4. 3D Reconstruction by triangulating points, bundle adjustment

Large-scale 3D Reconstruction

Useful references

- Snavely thesis: <u>"Scene Reconstruction and Visualization</u> from Internet Photo Collections"
- COLMAP: package for sparse and dense reconstruction (with two related papers) <u>https://colmap.github.io/</u>
- List of good papers and tutorials <u>https://github.com/openMVG/awesome_3DReconstruction_list</u>

Summary: Uses of Interest Points

- Interest points can be detected reliably in different images at the same 3D location
 - DOG interest points are localized in x, y, scale
- SIFT is robust to rotation and small deformation
- Interest points provide correspondence
 - For image stitching
 - For defining coordinate frames for object insertion
 - For object recognition and retrieval
 - For 3D reconstruction

Next class

- Opportunities of scale: stuff you can do with millions of images
 - Texture synthesis of large regions
 - Colorization
 - Recognition
 - Etc.