Image Stitching

Computational Photography Derek Hoiem, University of Illinois

Photos by Russ Hewett

Last Class: Keypoint Matching

- 1. Find a set of distinctive keypoints
- 2. Define a region around each keypoint
- 3. Extract and normalize the region content
- 4. Compute a local descriptor from the normalized region
- 5. Match local descriptors

Last Class: Summary

- Keypoint detection: repeatable and distinctive
 - Corners, blobs
 - Harris, DoG

- Descriptors: robust and selective
 - SIFT: spatial histograms of gradient orientation

Today: Image Stitching

• Combine two or more overlapping images to make one larger image

Slide credit: Vaibhav Vaish

Views from rotating camera

Correspondence of rotating camera

- x = K [R t] X
- x' = K' [R' t'] X
- t=t'=0

- x' = Hx where $H = K' R' R^{-1} K^{-1}$
- Typically only R and f will change (4 parameters), but, in general, H has 8 parameters

Image Stitching Algorithm Overview

- 1. Detect keypoints
- 2. Match keypoints
- 3. Estimate homography with four matched keypoints (using RANSAC)
- 4. Project onto a surface and blend

Image Stitching Algorithm Overview

- 1. Detect/extract keypoints (e.g., DoG/SIFT)
- 2. Match keypoints (most similar features, compared to 2nd most similar) $\frac{d1}{d2} < thresh$

Assume we have four matched points: How do we compute homography **H**?

Direct Linear Transformation (DLT)

$$\mathbf{X}' = \mathbf{H}\mathbf{X} \qquad \mathbf{x}' = \begin{bmatrix} w'u' \\ w'v' \\ w' \end{bmatrix} \qquad \mathbf{H} = \begin{bmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \\ h_7 & h_8 & h_9 \end{bmatrix}$$
$$\begin{bmatrix} -u & -v & -1 & 0 & 0 & uu' & vu' & u' \\ h_7 & h_8 & h_9 \end{bmatrix} \mathbf{h} = \mathbf{0} \qquad \mathbf{h} = \begin{bmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \\ h_7 & h_8 & h_9 \end{bmatrix}$$

Direct Linear Transform

$$\begin{bmatrix} -u_1 & -v_1 & -1 & 0 & 0 & 0 & u_1u'_1 & v_1u'_1 & u'_1 \\ 0 & 0 & 0 & -u_1 & -v_1 & -1 & u_1v'_1 & v_1v'_1 & v'_1 \\ \vdots & & & & \\ 0 & 0 & 0 & -u_n & -v_n & -1 & u_nv'_n & v_nv'_n & v'_n \end{bmatrix} \mathbf{h} = \mathbf{0} \Rightarrow \mathbf{A}\mathbf{h} = \mathbf{0}$$

- Apply SVD: $UDV^T = A$
- $h = V_{\text{smallest}}$ (column of V corr. to smallest singular value)

$$\mathbf{h} = \begin{bmatrix} h_1 \\ h_2 \\ \vdots \\ h_9 \end{bmatrix} \quad \mathbf{H} = \begin{bmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \\ h_7 & h_8 & h_9 \end{bmatrix}$$

Matlab
[U, S, V] = svd(A);
h = V(:, end);

Assume we have four matched points: How do we compute homography **H**?

Normalized DLT

1. Normalize coordinates for each image

- a) Translate for zero mean
- b) Scale so that u and v are ~=1 on average

 $\widetilde{\mathbf{x}} = \mathbf{T}\mathbf{x}$ $\widetilde{\mathbf{x}}' = \mathbf{T}'\mathbf{x}'$

- This makes problem better behaved numerically (see Hartley and Zisserman p. 107-108)
- 2. Compute $\widetilde{\mathbf{H}}$ using DLT in normalized coordinates
- 3. Unnormalize: $\mathbf{H} = \mathbf{T'}^{-1} \mathbf{\widetilde{H}} \mathbf{T}$

 $\mathbf{x}_i' = \mathbf{H}\mathbf{x}_i$

• Assume we have matched points with outliers: How do we compute homography **H**?

Automatic Homography Estimation with RANSAC

RANSAC: RANdom SAmple Consensus

Scenario: We've got way more matched points than needed to fit the parameters, but we're not sure which are correct

RANSAC Algorithm

- Repeat N times
 - 1. Randomly select a sample
 - Select just enough points to recover the parameters
 - 2. Fit the model with random sample
 - 3. See how many other points agree
- Best estimate is one with most agreement
 - can use agreeing points to refine estimate

• Assume we have matched points with outliers: How do we compute homography **H**?

Automatic Homography Estimation with RANSAC

- 1. Choose number of iterations N
- 2. Choose 4 random potential matches
- 3. Compute H using normalized DLT
- 4. Project points from **x** to **x'** for each potentially matching pair: $\mathbf{x}^{p}_{i} = \mathbf{H}\mathbf{x}_{i}$
- 5. Count points with projected distance < t
 - E.g., t = 3 pixels $\sqrt{(u'_i u_i^{p})^2 + (v'_i v_i^{p})^2} < t$
- 6. Repeat steps 2-5 *N* times
 - Choose **H** with most inliers

Automatic Image Stitching

- 1. Compute interest points on each image
- 2. Find candidate matches
- 3. Estimate homography **H** using matched points and RANSAC with normalized DLT
- 4. Project each image onto the same surface and blend

Choosing a Projection Surface

Many to choose: planar, cylindrical, spherical, cubic, etc.

Planar Mapping

- 1) For red image: pixels are already on the planar surface
- 2) For green image: map to first image plane

Planar Projection

Photos by Russ Hewett

Planar Projection

Planar

Cylindrical Mapping

- 1) Convert pixel coordinate p to bearing: $\tilde{p} = K^{-1}p$, $\tilde{p} = \tilde{p}/\|\tilde{p}\|$
- 2) Compute theta, h: $\theta = \tan^{-1}(\widetilde{p}_x/f)$, $h = \widetilde{p}_y f$
- 3) For non-reference image, adjust for relative rotation/height

Cylindrical Projection

Cylindrical

Cylindrical Projection

Cylindrical

Planar vs. Cylindrical Projection

Automatically choosing images to stitch

Recognizing Panoramas

Some of following material from Brown and Lowe 2003 talk

Brown and Lowe 2003, 2007

Recognizing Panoramas

Input: N images

- 1. Extract SIFT points, descriptors from all images
- 2. Find K-nearest neighbors for each point (K=4)
- 3. For each image
 - a) Select M candidate matching images by counting matched keypoints (M=6)
 - b) Solve homography \mathbf{H}_{ij} for each matched image

Recognizing Panoramas

Input: N images

- 1. Extract SIFT points, descriptors from all images
- 2. Find K-nearest neighbors for each point (K=4)
- 3. For each image
 - a) Select M candidate matching images by counting matched keypoints (M=6)
 - b) Solve homography \mathbf{H}_{ij} for each matched image
 - c) Decide if match is valid ($n_i > 8 + 0.3 n_f$)

RANSAC for Homography

RANSAC for Homography

Verification

RANSAC for Homography

Recognizing Panoramas (cont.)

(now we have matched pairs of images)

4. Find connected components

Finding the panoramas

Finding the panoramas

Finding the panoramas

Recognizing Panoramas (cont.)

(now we have matched pairs of images)

- 4. Find connected components
- 5. For each connected component
 - a) Perform bundle adjustment to solve for rotation $(\theta_1, \theta_2, \theta_3)$ and focal length f of all cameras
 - b) Project to a surface (plane, cylinder, or sphere)
 - c) Render with multiband blending
Bundle adjustment for stitching

• Non-linear minimization of re-projection error

$$\mathbf{R}_{i} = e^{[\boldsymbol{\theta}_{i}]_{\times}}, \quad [\boldsymbol{\theta}_{i}]_{\times} = \begin{bmatrix} 0 & -\theta_{i3} & \theta_{i2} \\ \theta_{i3} & 0 & -\theta_{i1} \\ -\theta_{i2} & \theta_{i1} & 0 \end{bmatrix}$$

• $\mathbf{\hat{x}'} = \mathbf{H}\mathbf{x}$ where $\mathbf{H} = \mathbf{K'} \mathbf{R'} \mathbf{R}^{-1} \mathbf{K}^{-1}$

$$\mathbf{K}_{i} = \begin{bmatrix} f_{i} & 0 & 0 \\ 0 & f_{i} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

 $error = \sum_{1}^{N} \sum_{j}^{M_{i}} \sum_{k} dist(\mathbf{x'}, \hat{\mathbf{x}'})$

- Solve non-linear least squares (Levenberg-Marquardt algorithm)
 - See paper for details

Bundle Adjustment

New images initialized with rotation, focal length of the best matching image

Bundle Adjustment

New images initialized with rotation, focal length of the best matching image

Details to make it look good

- Choosing seams
- Blending

Choosing seams

- Easy method
 - Assign each pixel to image with nearest center

Choosing seams

- Easy method
 - Assign each pixel to image with nearest center
 - Create a mask:
 - mask(y, x) = 1 iff pixel should come from im1
 - Smooth boundaries (called "feathering"):
 - mask_sm = imfilter(mask, gausfil);
 - Composite

Choosing seams

• Better method: dynamic program to find seam along well-matched regions

Illustration: <u>http://en.wikipedia.org/wiki/File:Rochester_NY.jpg</u>

Gain compensation

- Simple gain adjustment
 - Compute average RGB intensity of each image in overlapping region
 - Normalize intensities by ratio of averages

Multi-band (aka Laplacian Pyramid) Blending

- Burt & Adelson 1983
 - Blend frequency bands over range $\propto \lambda$

Multiband Blending with Laplacian Pyramid

- At low frequencies, blend slowly
- At high frequencies, blend quickly

Left pyramid

blend

Right pyramid

Multiband blending

- 1. Compute Laplacian pyramid of images and mask
- 2. Create blended image at each level of pyramid
- 3. Reconstruct complete image

Laplacian pyramids

(a) Original images and blended result

(b) Band 1 (scale 0 to $\sigma)$

(c) Band 2 (scale σ to $2\sigma)$

(d) Band 3 (scale lower than 2σ)

Blending comparison (IJCV 2007)

(a) Linear blending

(b) Multi-band blending

Blending Comparison

(b) Without gain compensation

(c) With gain compensation

(d) With gain compensation and multi-band blending

Straightening

Rectify images so that "up" is vertical

(a) Without automatic straightening

(b) With automatic straightening

Further reading

Harley and Zisserman: Multi-view Geometry book

- DLT algorithm: HZ p. 91 (alg 4.2), p. 585
- Normalization: HZ p. 107-109 (alg 4.2)
- RANSAC: HZ Sec 4.7, p. 123, alg 4.6
- Tutorial: <u>http://users.cecs.anu.edu.au/~hartley/Papers/CVPR99-</u> <u>tutorial/tut_4up.pdf</u>

• <u>Recognising Panoramas</u>: Brown and Lowe, IJCV 2007 (also bundle adjustment)

How does iphone panoramic stitching work?

- Capture images at 30 fps
- Stitch the central 1/8 of a selection of images
 - Select which images to stitch using the accelerometer and frame-toframe matching
 - Faster and avoids radial distortion that often occurs towards corners of images
- Alignment
 - Initially, perform cross-correlation of small patches aided by accelerometer to find good regions for matching
 - Register by matching points (KLT tracking or RANSAC with FAST (similar to SIFT) points) or correlational matching
- Blending
 - Linear (or similar) blending, using a face detector to avoid blurring face regions and choose good face shots (not blinking, etc)

http://www.patentlyapple.com/patently-apple/2012/11/apples-cool-iphone-5-panorama-app-revealed-in-5-patents.html

Project 5

Input video: <u>https://www.youtube.com/watch?v=agI5za_gHHU</u>

Aligned frames: <u>https://www.youtube.com/watch?v=Uahy6kPotaE</u>

Background: https://www.youtube.com/watch?v=Vt9vv1zCnLA

Foreground: <u>https://www.youtube.com/watch?v=OICkKNndEt4</u> Tips and Photos from Russ Hewett

Capturing Panoramic Images

- Tripod vs Handheld
 - Help from modern cameras
 - Leveling tripod
 - Gigapan
 - Or wing it
- Image Sequence
 - Requires a reasonable amount of overlap (at least 15-30%)
 - Enough to overcome lens distortion
- Exposure
 - Consistent exposure between frames
 - Gives smooth transitions
 - Manual exposure
 - Makes consistent exposure of dynamic scenes easier
 - But scenes don't have constant intensity everywhere
- Caution
 - Distortion in lens (Pin Cushion, Barrel, and Fisheye)
 - Polarizing filters
 - Sharpness in image edge / overlap region

Pike's Peak Highway, CO

Nikon D70s, Tokina 12-24mm @ 16mm, f/22, 1/40s

Pike's Peak Highway, CO

Photo: Russell J. Hewett

(See Photo On Web)

360 Degrees, Tripod Leveled

Photo: Russell J. Hewett

Nikon D70, Tokina 12-24mm @ 12mm, f/8, 1/125s

Howth, Ireland

Photo: Russell J. Hewett

(See Photo On Web)

Handheld Camera

Photo: Russell J. Hewett

Nikon D70s, Nikon 18-70mm @ 70mm, f/6.3, 1/200s

Handheld Camera

Les Diablerets, Switzerland

Photo: Russell J. Hewett

(See Photo On Web)

Macro

Photo: Russell J. Hewett & Bowen Lee

Nikon D70s, Tamron 90mm Micro @ 90mm, f/10, 15s

Side of Laptop

Considerations For Stitching

- Variable intensity across the total scene
- Variable intensity and contrast between frames
- Lens distortion
 - Pin Cushion, Barrel, and Fisheye
 - Profile your lens at the chosen focal length (read from EXIF)
 - Or get a profile from LensFun
- Dynamics/Motion in the scene
 - Causes ghosting
 - Once images are aligned, simply choose from one or the other
- Misalignment
 - Also causes ghosting
 - Pick better control points
- Visually pleasing result
 - Super wide panoramas are not always 'pleasant' to look at
 - Crop to golden ratio, 10:3, or something else visually pleasing

Ghosting and Variable Intensity

Photo: Russell J. Hewett

Nikon D70s, Tokina 12-24mm @ 12mm, f/8, 1/400s

Photo: Russell J. Hewett

Ghosting From Motion

Photo: Bowen Lee

Nikon e4100 P&S

Motion Between Frames

Photo: Russell J. Hewett

Gibson City, IL

Photo: Russell J. Hewett

(See Photo On Web)

Mount Blanca, CO

Nikon D70s, Tokina 12-24mm @ 12mm, f/22, 1/50s

Photo: Russell J. Hewett
Mount Blanca, CO

Things to remember

- Homography relates rotating cameras
 - Homography is plane to plane mapping
- Recover homography using RANSAC and normalized DLT
- Can choose surface of projection: cylinder, plane, and sphere are most common
- Refinement methods (blending, straightening, etc.)

Next class

• Object recognition and retrieval