Single-view 3D Reconstruction

Computational Photography Derek Hoiem, University of Illinois

Some slides from Alyosha Efros, Steve Seitz

Take-home question

Suppose you have estimated finite three vanishing points corresponding to orthogonal directions:

- 1) How to solve for intrinsic matrix? (assume K has three parameters)
 - The transpose of the rotation matrix is its inverse
 - Use the fact that the 3D directions are orthogonal
- 2) How to recover the rotation matrix that is aligned with the 3D axes defined by these points?
 - In homogeneous coordinates, 3d point at infinity is (X, Y, Z, 0)

Photo from Garry Knight

Take-home question

Assume that the man is 6 ft tall.

- What is the height of the front of the building?
- What is the height of the camera?

Take-home question

Assume that the man is 6 ft tall.

- What is the height of the front of the building?
- What is the height of the camera?

(0.92+1.55)/1.55*6=9.56

~5'7

Focal length, aperture, depth of field

- Increase in focal length "zooms in", decreasing field of view (and light per pixel), increasing depth of field (less blur)
- Increase in aperture lets more light in but decreases depth of field

Increasing focal length decreases field of view because smaller range of rays to scene can hit sensor

Decreasing aperture increases depth of field because lens refocuses rays from smaller range of angles

Difficulty in macro (close-up) photography

- For close objects, we have a small relative DOF
- Can only shrink aperture so far

How to get both bugs in focus?

Solution: Focus stacking

1. Take pictures with varying focal length

Example from http://www.wonderfulphotos.com/articles/macro/focus_stacking/

Solution: Focus stacking

- 1. Take pictures with varying focal length
- 2. Combine

Focus stacking

http://www.wonderfulphotos.com/articles/macro/focus_stacking/

Focus stacking

How to combine?

- 1. Align images (e.g., using corresponding points)
- 2. Two ideas
 - a) Mask regions by hand and combine with pyramid blend
 - b) Gradient domain fusion (mixed gradient) without masking

Automatic solution would make an interesting final project

Recommended Reading:

http://www.digital-photographyschool.com/an-introduction-to-focusstacking

http://www.zen20934.zen.co.uk/photograph y/Workflow.htm#Focus%20Stacking

Relation between field of view and focal length

Dolly Zoom or "Vertigo Effect"

http://www.youtube.com/watch?v=NB4bikrNzMk

How is this done?

Zoom in while moving away

http://en.wikipedia.org/wiki/Focal_length

Dolly zoom (or "Vertigo effect")

Today's class: Single View 3D Scene Reconstruction

The challenge

One 2D image could be generated by an infinite number of 3D geometries

The solution

Make simplifying assumptions about 3D geometry

Unlikely

Likely

Today's class: Two Models

• Box + frontal billboards

• Ground plane + non-frontal billboards

"Tour into the Picture" (Horry et al. SIGGRAPH '97)

Create a 3D "theater stage" of five planes

Specify foreground objects through bounding polygons

Use camera transformations to navigate through the scene

Following slides modified from Efros

The idea

Many scenes can be represented as an axis-aligned box volume (i.e. a stage)

Key assumptions

- All walls are orthogonal
- Camera view plane is parallel to back of volume

How many vanishing points does the box have?

- Three, but two at infinity
- Single-point perspective

Can use the vanishing point to fit the box to the particular scene

Step 1: specify scene geometry

- User controls the inner box and the vanishing point placement (# of DOF?)
- Q: If we assume camera is looking straight at back wall, what camera parameter(s) does the vanishing point position provide?
- A: Vanishing point direction is perpendicular to image plane, so the vp is the principal point

Example of user input: vanishing point and back face of view volume are defined

Example of user input: vanishing point and back face of view volume are defined

Another example of user input: vanishing point and back face of view volume are defined

Another example of user input: vanishing point and back face of view volume are defined

Question

- Think about the camera center and image plane...
 - What happens when we move the box?
 - What happens when we move the vanishing point?

Moving the box corresponds to changing the position of the camera.

Moving the vanishing point changes the orientation of the room relative to the camera.

2D to 3D conversion

• Use ratios

Box width / height in 3D is proportional to width over height in the image because back plane is parallel to image plane

Get depth using similar triangles

- Can compute by similar triangles
- Need to know focal length f (or FoV)
- Note: can compute position of any object on the ground
 - Simple unprojection
 - What about things off the ground?

Get depth using similar triangles

- Can compute by similar triangles (CVA vs. CV'A')
- Need to know focal length f (or FoV)
- Can compute 3D position of any object on the ground w/ unprojection
 - What about things off the ground?

Step 2: map image textures into frontal view

Image rectification by homography

To unwarp (rectify) an image solve for homography **H** given **p** and **p':** w**p'=Hp**

Computing homography

Assume we have four matched points: How do we compute homography **H**?

Direct Linear Transformation (DLT)

$$\mathbf{p'} = \mathbf{H}\mathbf{p} \qquad \mathbf{p'} = \begin{bmatrix} w'u' \\ w'v' \\ w' \end{bmatrix} \qquad \mathbf{p} = \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \qquad \mathbf{H} = \begin{bmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \\ h_7 & h_8 & h_9 \end{bmatrix}$$
$$-u - v - 1 \qquad 0 \qquad 0 \qquad uu' \qquad vu' \qquad u' \\ 0 \qquad 0 \qquad 0 \qquad -u \qquad -v \qquad -1 \qquad uv' \qquad vv' \qquad v' \end{bmatrix} \mathbf{h} = \mathbf{0} \qquad \mathbf{h} = \begin{bmatrix} h_1 \\ h_2 \\ h_3 \\ h_4 \\ h_5 \\ h_6 \\ h_7 \\ h_8 \\ h_9 \end{bmatrix}$$

Computing homography

Direct Linear Transform

$$\begin{bmatrix} -u_1 & -v_1 & -1 & 0 & 0 & 0 & u_1u'_1 & v_1u'_1 & u'_1 \\ 0 & 0 & 0 & -u_1 & -v_1 & -1 & u_1v'_1 & v_1v'_1 & v'_1 \\ & & \vdots & & & \\ 0 & 0 & 0 & -u_n & -v_n & -1 & u_nv'_n & v_nv'_n & v'_n \end{bmatrix} \mathbf{h} = \mathbf{0} \Rightarrow \mathbf{A}\mathbf{h} = \mathbf{0}$$

- Apply SVD: *USV*^T = *A*
- $h = V_{\text{smallest}}$ (column of V^{T} corresponds to smallest singular value)

$$\mathbf{h} = \begin{bmatrix} h_1 \\ h_2 \\ \vdots \\ h_9 \end{bmatrix} \quad \mathbf{H} = \begin{bmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \\ h_7 & h_8 & h_9 \end{bmatrix}$$

Python U, S, Vt = scipy.linalg.svd(A) # last column of V corresp. to smallest singular value h = Vt[-1, :];

Explanation of SVD, solving systems of linear equations, derivation of solution here

Solving for homography (another formulation)

$$\begin{bmatrix} -u_{1} & -v_{1} & -1 & 0 & 0 & 0 & u_{1}u'_{1} & v_{1}u'_{1} & u'_{1} \\ 0 & 0 & 0 & -u_{1} & -v_{1} & -1 & u_{1}v'_{1} & v_{1}v'_{1} & v'_{1} \\ \vdots & & & & \\ 0 & 0 & 0 & -u_{n} & -v_{n} & -1 & u_{n}v'_{n} & v_{n}v'_{n} & v'_{n} \end{bmatrix} \mathbf{h} = \mathbf{0} \Rightarrow \mathbf{A}\mathbf{h} = \mathbf{0}$$

$$\begin{bmatrix} 0 & 0 & 0 & -u_{n} & -v_{n} & -1 & u_{n}v'_{n} & v_{n}v'_{n} & v'_{n} \end{bmatrix} \mathbf{h} = \mathbf{0} \Rightarrow \mathbf{A}\mathbf{h} = \mathbf{0}$$

$$\begin{bmatrix} 0 & 0 & 0 & -u_{n} & -v_{n} & -1 & u_{n}v'_{n} & v_{n}v'_{n} & v'_{n} \end{bmatrix} \mathbf{h} = \mathbf{0} \Rightarrow \mathbf{A}\mathbf{h} = \mathbf{0}$$

Defines a least squares problem:

minimize $\|\mathbf{A}\mathbf{h}-\mathbf{0}\|^2$

- Since h is only defined up to scale, solve for unit vector $\boldsymbol{\hat{h}}$
- Solution: $\hat{\mathbf{h}}$ = eigenvector of $\mathbf{A}^{\mathsf{T}}\mathbf{A}$ with smallest eigenvalue
 - Can derive using Lagrange multipliers method
- Works with 4 or more points

Tour into the picture algorithm

1. Set the box corners

Tour into the picture algorithm

- 1. Set the box corners
- 2. Set the VP
- 3. Get 3D coordinates
 - Compute height, width, and depth of box
- 4. Get texture maps
 - homographies for each face
- 5. Create file to store plane coordinates and texture maps

Result

Render from new views

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15463-f08/www/proj5/www/dmillett/

Foreground Objects

Use separate billboard for each

For this to work, three separate images used:

- Original image.
- Mask to isolate desired foreground images.
- Background with objects removed

Foreground Objects

Add vertical rectangles for each foreground object

Can compute 3D coordinates P0, P1 since they are on known plane.

P2, P3 can be computed as before (similar triangles)

(c) Three foreground object models

Foreground Result

Video from CMU class: http://www.youtube.com/watch?v=dUAtd mGwcuM

Automatic Photo Pop-up

Cut'n'Fold 3D Model Input Geometric Labels Ground Image Vertical Learned Models Sky

Hoiem et al. 2005

- Fit ground-vertical boundary
 - Iterative Hough transform

- Form polylines from boundary segments
 - Join segments that intersect at slight angles
 - Remove small overlapping polylines
- Estimate horizon position from perspective cues

- ``Fold'' along polylines and at corners
- ``Cut'' at ends of polylines and along vertical-sky boundary

- Construct 3D model
- Texture map

Results

http://www.cs.illinois.edu/homes/dhoiem/projects/popup/

Input Image

Cut and Fold

Automatic Photo Pop-up

Results

Input Image

Automatic Photo Pop-up

Comparison with Manual Method

Input Image

[Liebowitz et al. 1999] (manual)

Automatic Photo Pop-up

Failures

Labeling Errors

Failures

Foreground Objects

Adding Foreground Labels

Recovered Surface Labels + Ground-Vertical Boundary Fit

Object Boundaries + Horizon

Fitting boxes to indoor scenes

Box Layout Algorithm

2.

3. Apply region classifier to label pixels with visible surfaces

Estimate 3 orthogonal vanishing points

- Boosted decision trees on region based on color, texture, edges, position
- 4. Generate box candidates by sampling pairs of rays from VPs
- 5. Score each box based on edges and pixel labels
 - Learn score via structured learning
- 6. Jointly refine box layout and pixel labels to get final estimate

Experimental results

Detected Edges

Surface Labels

Box Layout

Detected Edges

Surface Labels

Box Layout

Experimental results

Detected Edges

Surface Labels

Box Layout

Detected Edges

Surface Labels

Box Layout

Complete 3D from RGBD

Zou et al. IJCV 2018

Complete 3D from RGBD

Complete 3D from RGBD

Final project idea

- Interactive program to make 3D model from an image (e.g., output in VRML, or draw path for animation)
 - Add tools for cutting out foreground objects and automatic hole-filling

Summary

- 2D→3D is mathematically impossible (but we do it without even thinking)
- Need right assumptions about the world geometry

- Important tools
 - Vanishing points
 - Camera matrix
 - Homography

Next Week

• Exam review next Tuesday

• Exam next Thursday