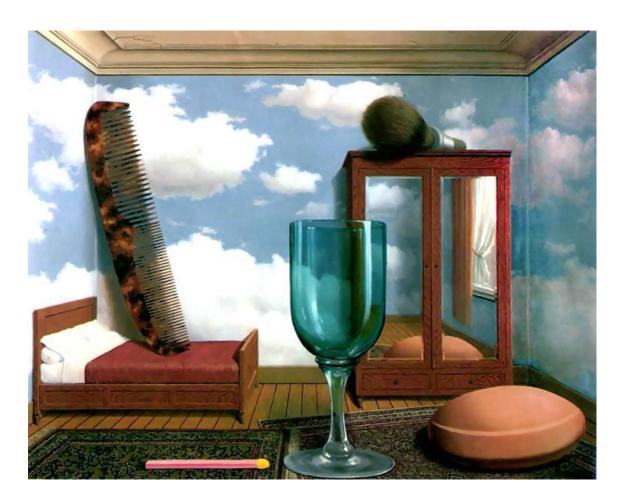
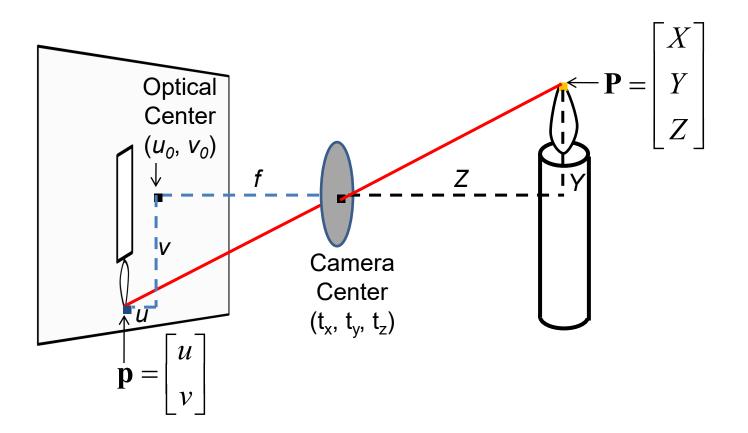
Single-view Metrology and Cameras

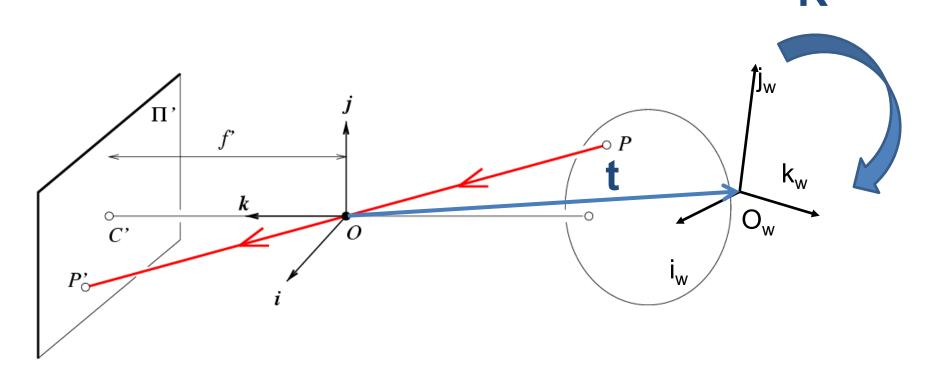


Computational Photography
Derek Hoiem, University of Illinois

Review: Pinhole Camera



Review: Projection Matrix



$$\mathbf{X} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \mathbf{X} \Rightarrow w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f & s & u_0 \\ 0 & \alpha f & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Take-home question review

Suppose the camera axis is in the direction of (x=0, y=0, z=1) in its own coordinate system.
 What is the camera axis in world coordinates given the extrinsic parameters *R*, *t*

• Suppose a camera at height y=h (x=0,z=0) observes a point at (u,v) known to be on the ground (y=0). Assume R is identity. What is the 3D position of the point in terms of f, u_0 , v_0 ?

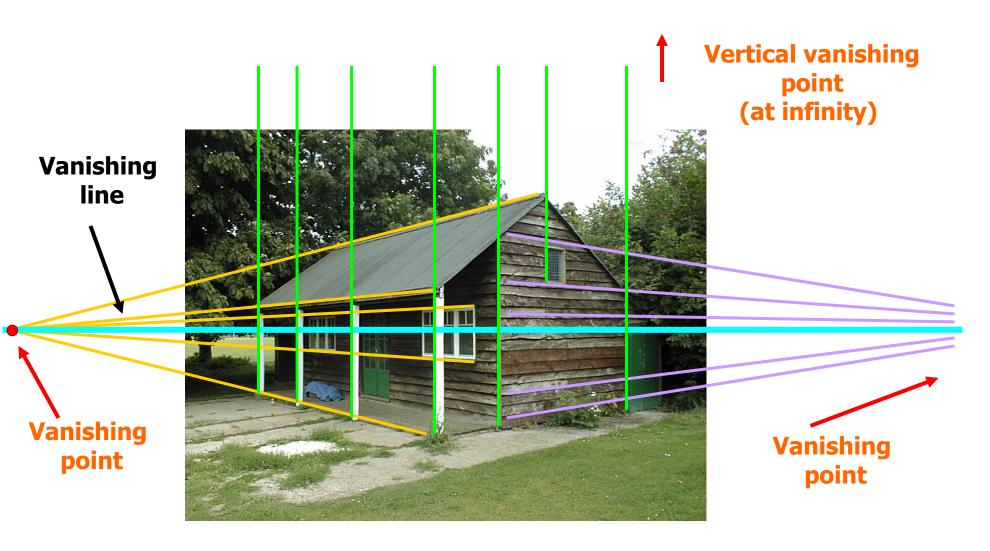
Take-home question review

Suppose we have two 3D cubes on the ground facing the viewer, one near, one far.

- 1. What would they look like in perspective?
- 2. What would they look like in weak perspective?

Photo: Kathy from Flickr

Review: Vanishing Points



This class

How can we calibrate the camera?

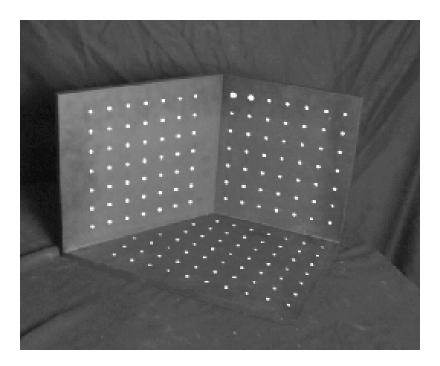
 How can we measure the size of objects in the world from an image?

 What about other camera properties: focal length, field of view, depth of field, aperture, f-number? How to calibrate the camera?

Calibrating the Camera

Method 1: Use an object (calibration grid) with known geometry

- Correspond image points to 3d points
- Get least squares solution (or non-linear solution)

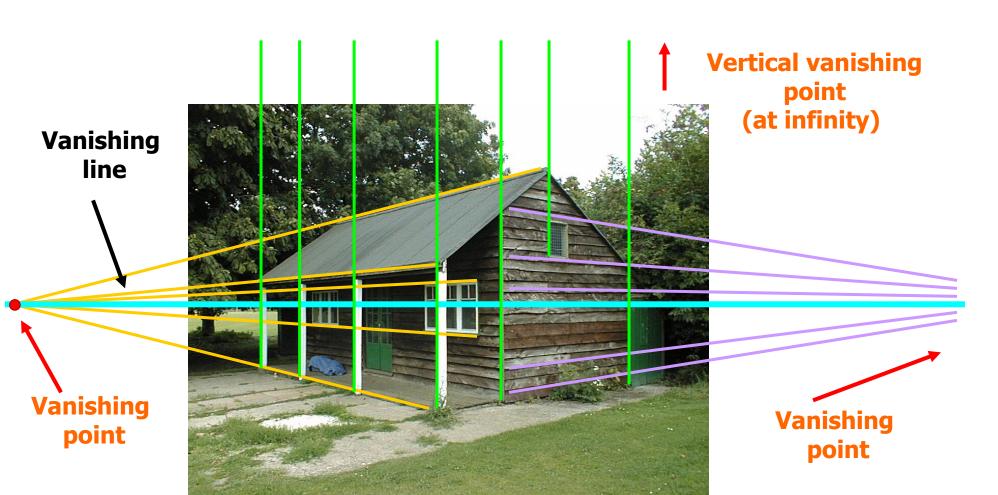


$$\begin{bmatrix} wu \\ wv \\ w \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Calibrating the Camera

Method 2: Use vanishing points

Find vanishing points corresponding to orthogonal directions

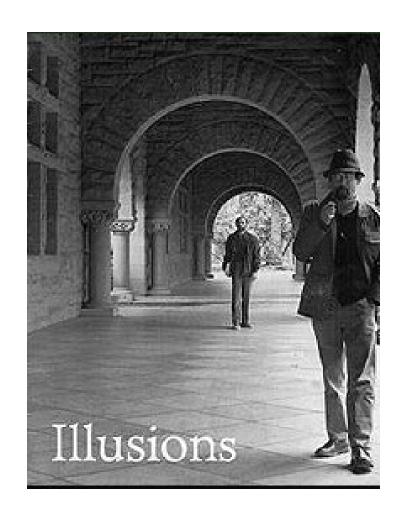


Take-home question (for later)

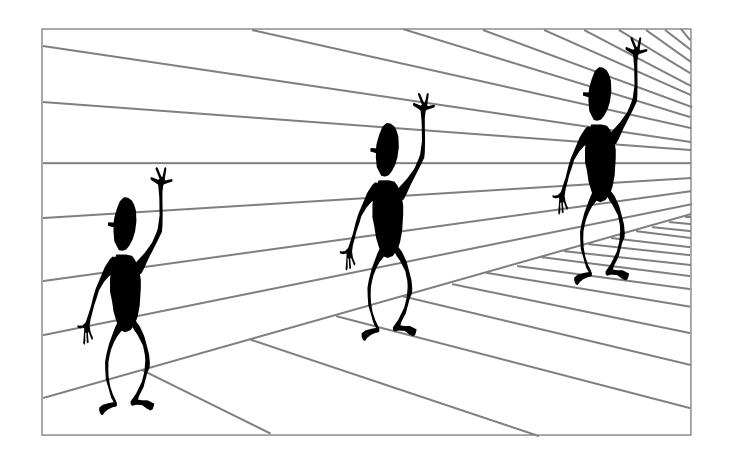
Suppose you have estimated finite three vanishing points corresponding to orthogonal directions:

- 1) How to solve for intrinsic matrix? (assume K has three parameters)
 - The transpose of the rotation matrix is its inverse
 - Use the fact that the 3D directions are orthogonal
- 2) How to recover the rotation matrix that is aligned with the 3D axes defined by these points?
 - In homogeneous coordinates, 3d point at infinity is (X, Y, Z, 0)

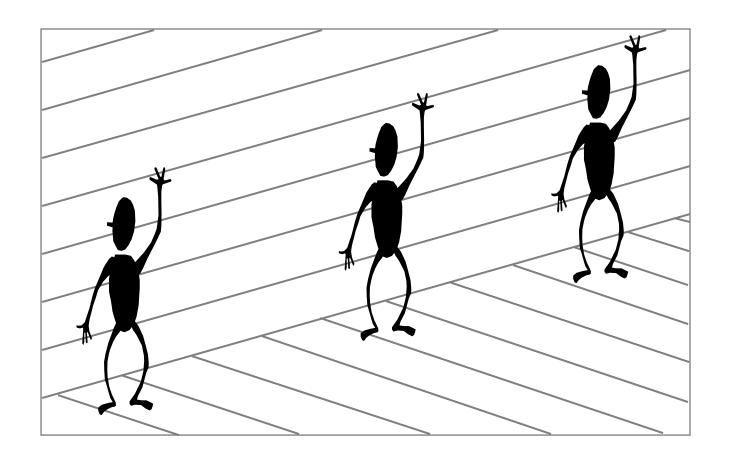
How can we measure the size of 3D objects from an image?



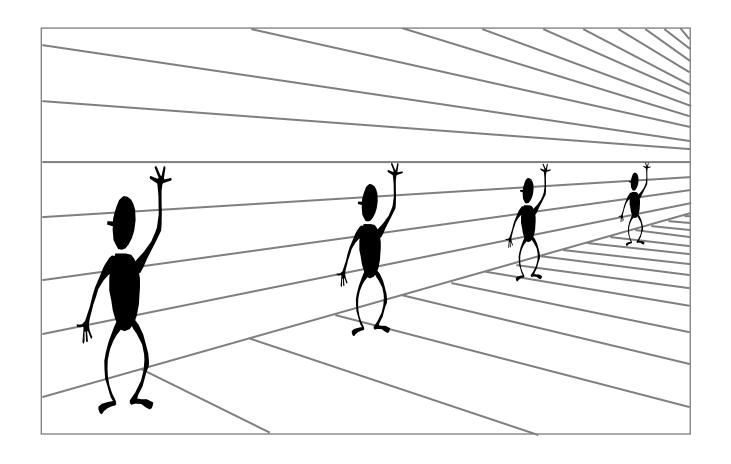
Perspective cues



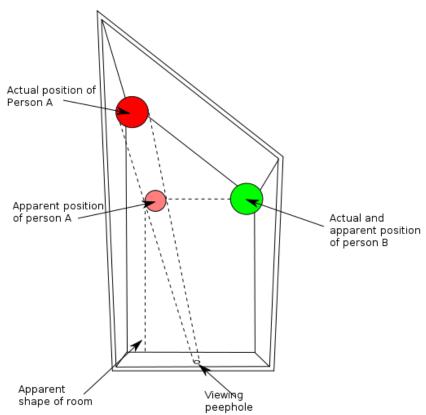
Perspective cues



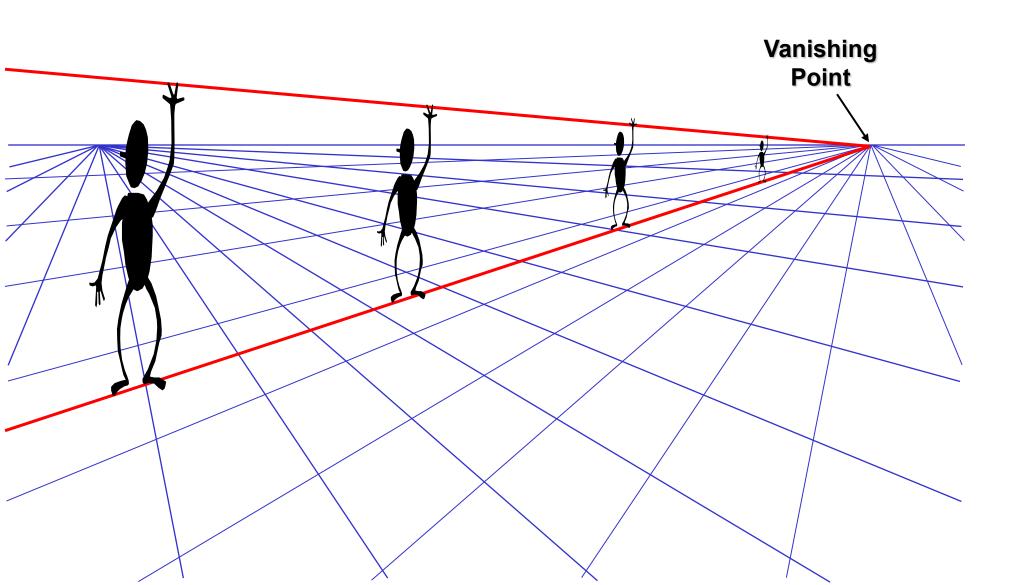
Perspective cues

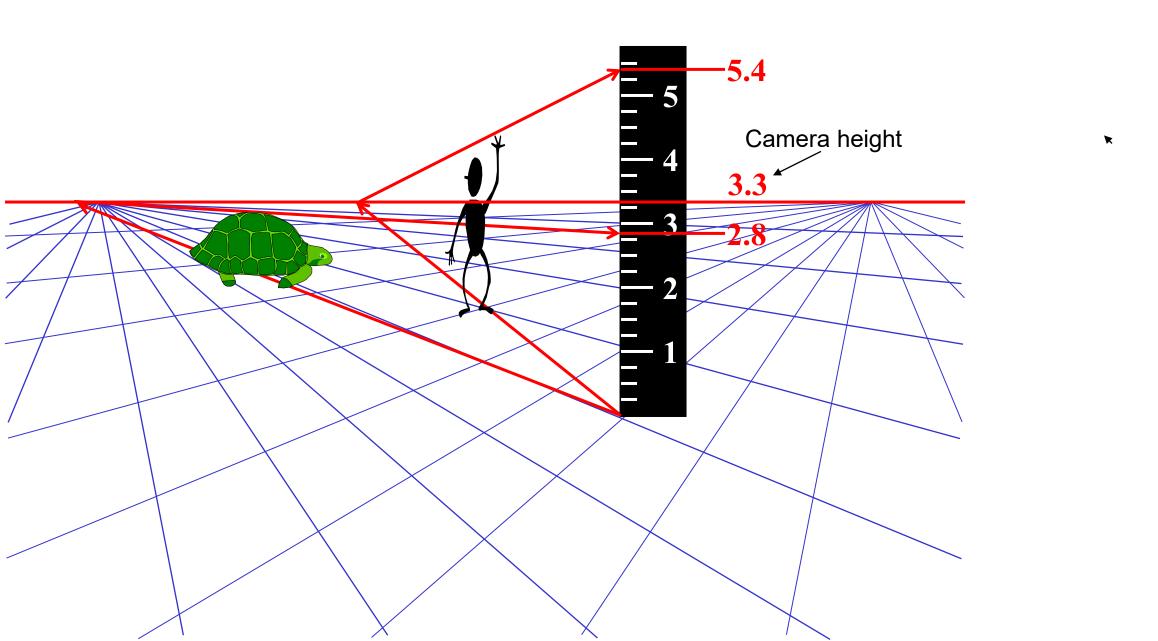


Ames Room

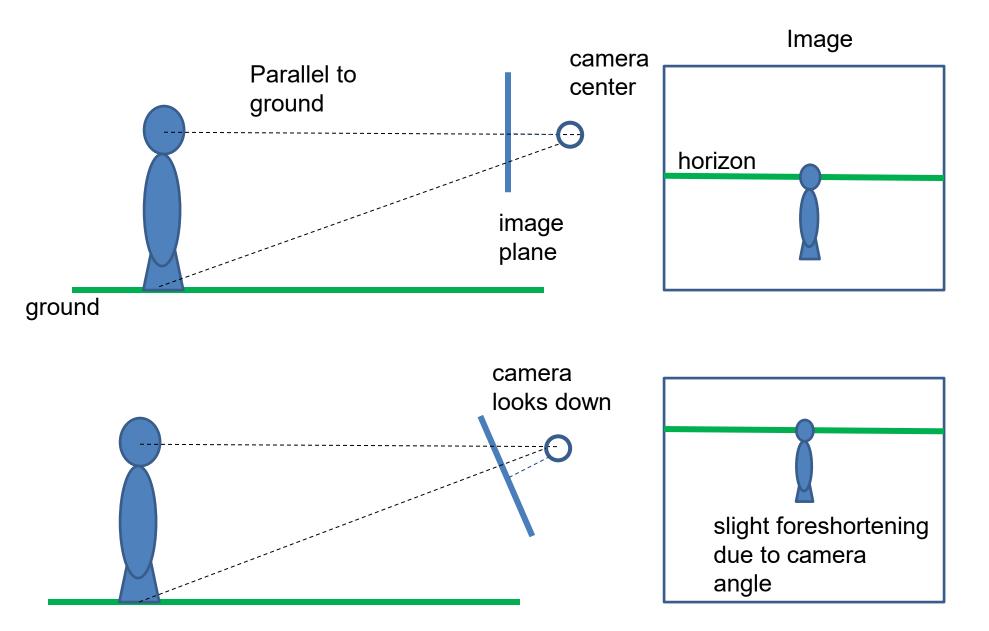


Comparing heights



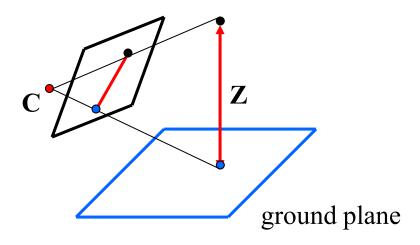


Two views of a scene



Which is higher – the camera or the parachute?

Measuring height without a giant ruler



Compute Z from image measurements

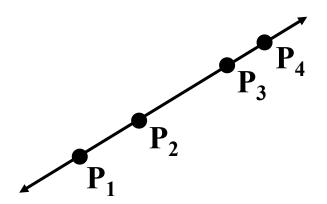
Need a reference object

The cross ratio

A Projective Invariant

 Something that does not change under projective transformations (including perspective projection)

The cross-ratio of 4 collinear points



$$\frac{\|\mathbf{P}_{3} - \mathbf{P}_{1}\| \|\mathbf{P}_{4} - \mathbf{P}_{2}\|}{\|\mathbf{P}_{3} - \mathbf{P}_{2}\| \|\mathbf{P}_{4} - \mathbf{P}_{1}\|}$$

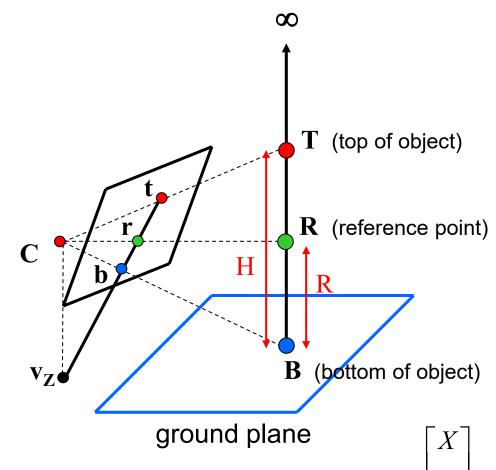
$$\mathbf{P}_i = \begin{bmatrix} X_i \\ Y_i \\ Z_i \\ 1 \end{bmatrix}$$

$$\frac{\|\mathbf{P}_{1} - \mathbf{P}_{3}\| \|\mathbf{P}_{4} - \mathbf{P}_{2}\|}{\|\mathbf{P}_{1} - \mathbf{P}_{2}\| \|\mathbf{P}_{4} - \mathbf{P}_{3}\|}$$

Can permute the point ordering

• 4! = 24 different orders (but only 6 distinct values)

This is the fundamental invariant of projective geometry



scene points represented as P =

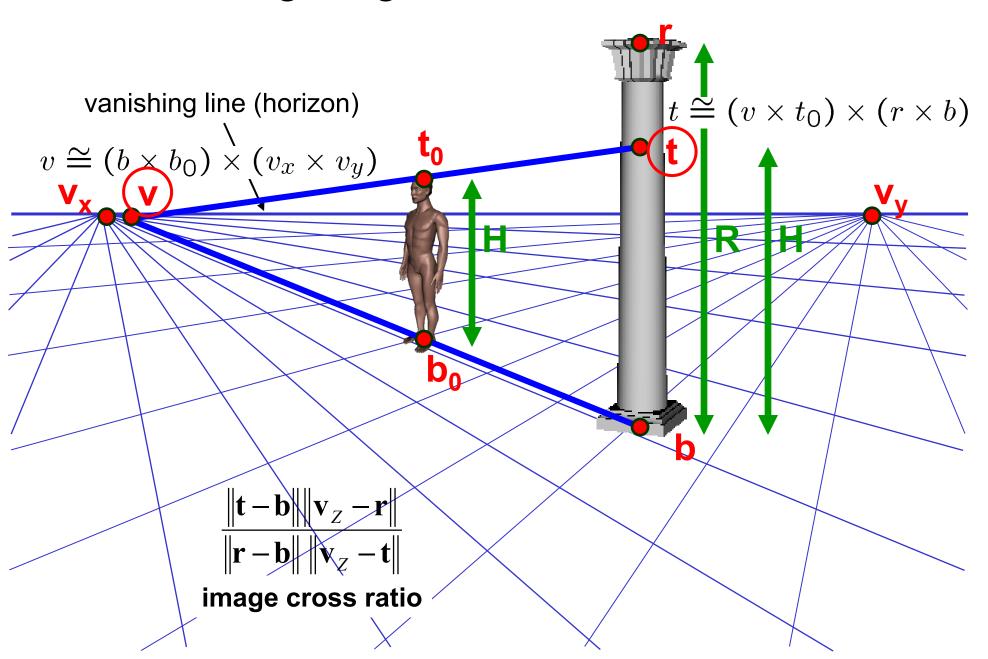
$$\frac{\|\mathbf{B} - \mathbf{T}\| \|\infty - \mathbf{R}\|}{\|\mathbf{B} - \mathbf{R}\| \|\infty - \mathbf{T}\|} = \frac{H}{R}$$

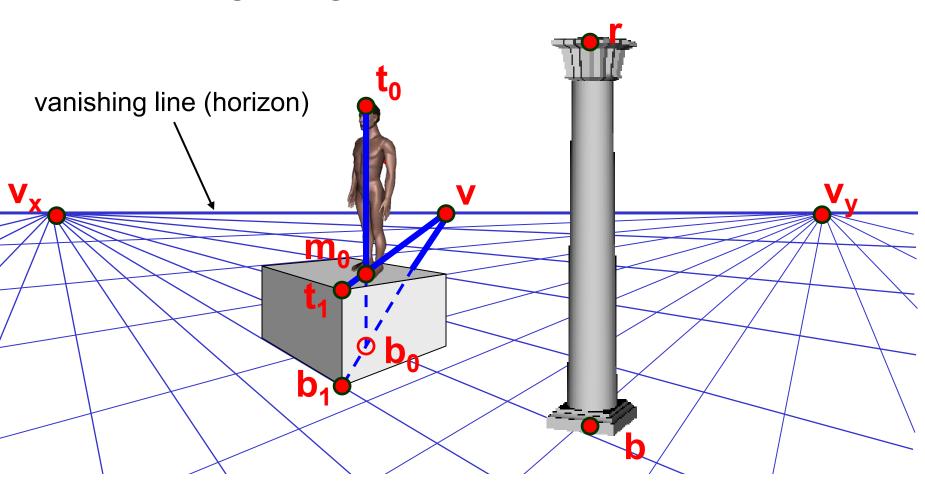
scene cross ratio

$$\frac{\|\mathbf{b} - \mathbf{t}\| \|\mathbf{v}_Z - \mathbf{r}\|}{\|\mathbf{b} - \mathbf{r}\| \|\mathbf{v}_Z - \mathbf{t}\|} = \frac{H}{R}$$

image cross ratio

image points as
$$\mathbf{p} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$





What if the point on the ground plane b_0 is not known?

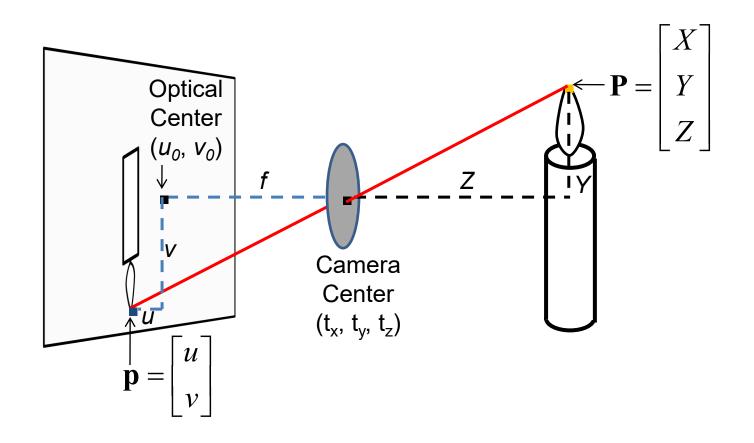
- Here the guy is standing on the box, height of box is known
- Use one side of the box to help find b_0 as shown above

Take-home question

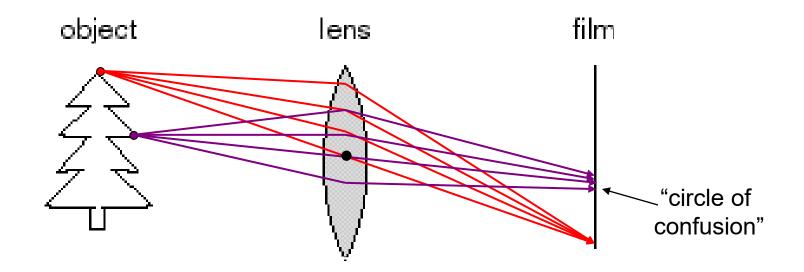
Assume that the man is 6 ft tall

- What is the height of the front of the building?
- What is the height of the camera?

Beyond the pinhole: What about focus, aperture, DOF, FOV, etc?

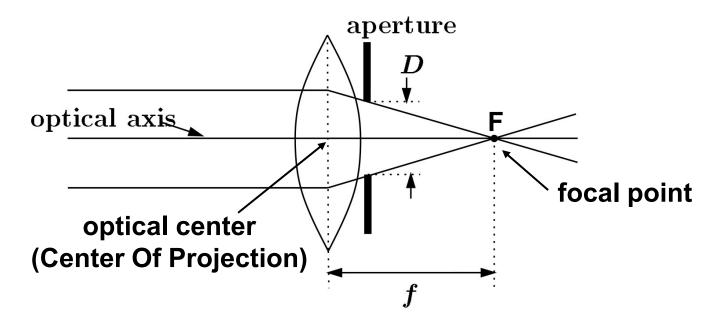


Adding a lens



- A lens focuses light onto the film
 - There is a specific distance at which objects are "in focus"
 - other points project to a "circle of confusion" in the image
 - Changing the shape of the lens changes this distance

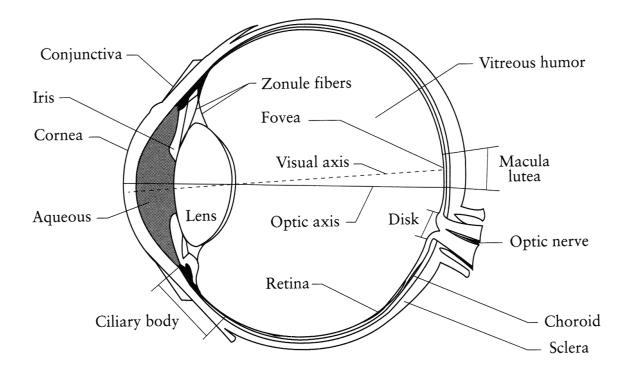
Focal length, aperture, depth of field



A lens focuses parallel rays onto a single focal point

- focal point at a distance f beyond the plane of the lens
- Aperture of diameter D restricts the range of rays

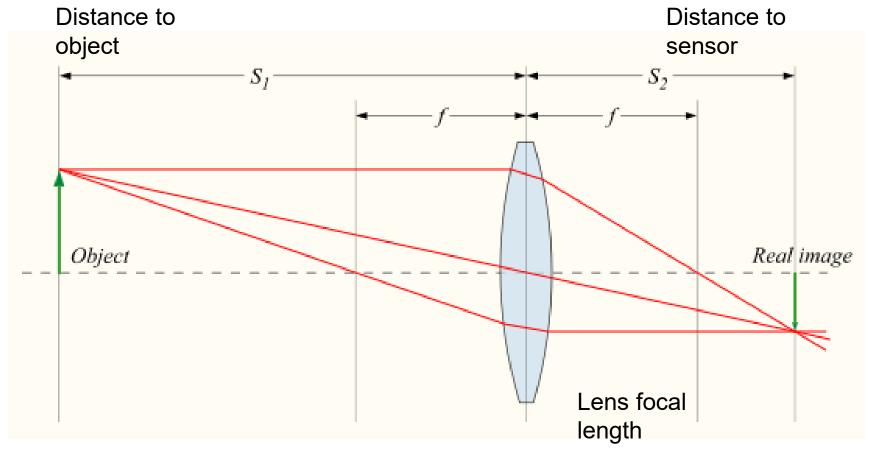
The eye



The human eye is a camera

- Iris colored annulus with radial muscles
- Pupil the hole (aperture) whose size is controlled by the iris

Focus with lenses

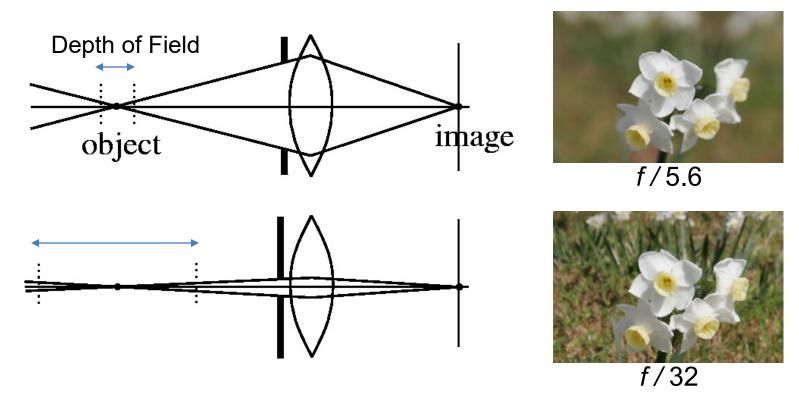


Equation for objects in focus

$$\frac{1}{S_1} + \frac{1}{S_2} = \frac{1}{f}$$

Source: http://en.wikipedia.org/wiki/File:Lens3.svg

The aperture and depth of field



Changing the aperture size or focusing distance affects depth of field

f-number (f/#) =focal_length / aperture_diameter (e.g., f/16 means that the focal length is 16 times the diameter)

When you change the f-number, you are changing the aperture

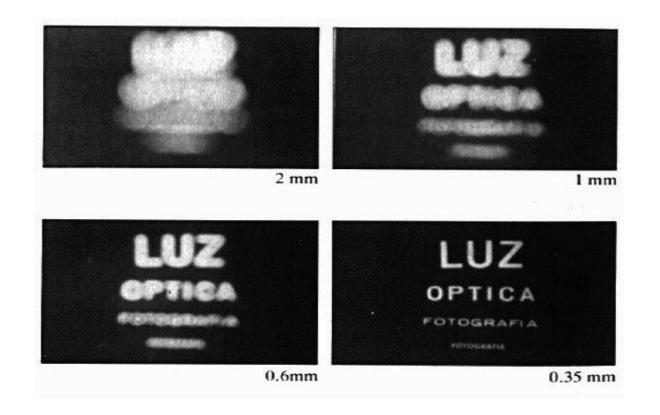
Depth of Field = range around focused distance that leads to smaller than threshold circle of confusion

Varying the aperture

Large aperture = small DOF

Small aperture = large DOF

Shrinking the aperture



Why not make the aperture as small as possible?

- Less light gets through
- Diffraction effects

Figure: Optics. Eugene Hecht

Shrinking the aperture

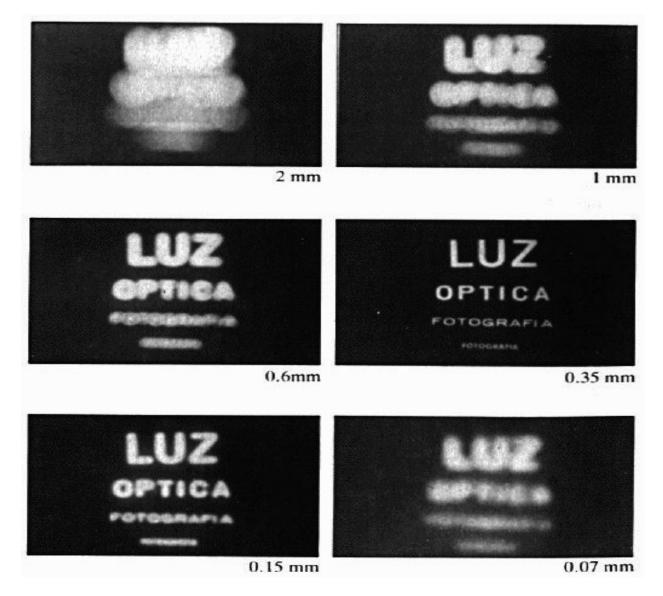


Figure: Optics. Eugene Hecht

The Photographer's Great Compromise

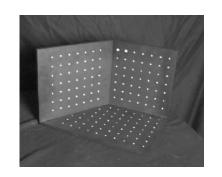
What we want	How we get it	Cost
More spatial resolution —	>> Increase focal length	Light, FOV
	Decrease focal length	DOF
Broader field of view		
	Decrease aperture Increase aperture	Light DOF
More depth of field	/ mercuse aperture	DOF
More temporal resolution	Shorten exposure	Light
	Lengthen exposure	Temporal Res
More light		

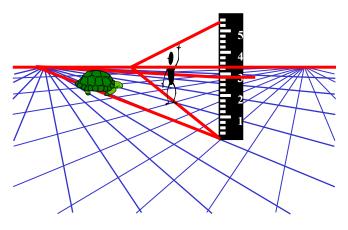
Things to remember

 Can calibrate using grid or VP

 Can measure relative sizes using VP

 Effects of focal length, aperture





Next class

- Go over take-home questions from today
- Tricks with focal length: focus stacking and dolly zoom
- Single-view 3D Reconstruction