
Texture Synthesis and Hole-Filling

Computational Photography

Derek Hoiem, University of Illinois

Next section: The digital canvas

Image warping and object

morphing

Cutting and pasting objects,

filling holes, and blending

Today’s Class

• Texture synthesis and hole-filling

Texture

• Texture depicts spatially repeating patterns

• Textures appear naturally and frequently

radishes rocks yogurt

Many slides from James Hays

Texture Synthesis

• Goal of Texture Synthesis: create new samples of
a given texture

• Many applications: virtual environments, hole-
filling, texturing surfaces

The Challenge

Need to model the whole spectrum: from
repeated to stochastic texture

One idea: Build Probability Distributions

Basic idea
1. Compute statistics of input texture (e.g., histogram of edge

filter responses)

2. Generate a new texture that keeps those same statistics

• D. J. Heeger and J. R. Bergen. Pyramid-based texture analysis/synthesis. In SIGGRAPH
’95.

• E. P. Simoncelli and J. Portilla. Texture characterization via joint statistics of wavelet
coefficient magnitudes. In ICIP 1998.

One idea: Build Probability Distributions

But it (usually) doesn’t work
• Probability distributions are hard to model well

Input

Synthesized

Another idea: Sample from the image

• Assuming Markov property, compute P(p|N(p))
– Building explicit probability tables infeasible

– Instead, we search the input image for all similar
neighborhoods — that’s our pdf for p

– To sample from this pdf, just pick one match at random

p

Synthesizing a pixel

non-parametric

sampling

Input image

Efros and Leung 1999 SIGGRAPH

Idea from Shannon (Information Theory)

• Generate English-sounding sentences by
modeling the probability of each word given
the previous words (n-grams)

• Large “n” will give more structured sentences

“I spent an interesting evening recently

with a grain of salt.”
(example from fake single.net user Mark V Shaney)

http://en.wikipedia.org/wiki/Mark_V_Shaney

Details

• How to match patches?

– Gaussian-weighted SSD (more emphasis on nearby
pixels)

• What order to fill in new pixels?

– “Onion skin” order: pixels with most neighbors are
synthesized first

– To synthesize from scratch, start with a randomly
selected small patch from the source texture

• How big should the patches be?

Size of Neighborhood Window

input

Varying Window Size

Increasing window size

Texture synthesis algorithm

While image not filled

1. Get unfilled pixels with filled neighbors, sorted by
number of filled neighbors

2. For each pixel, get top N matches based on visible
neighbors

- Patch Distance: Gaussian-weighted SSD

3. Randomly select one of the matches and copy
pixel from it

Synthesis Results

french canvas rafia weave

More Results
white bread brick wall

Homage to Shannon

Hole Filling

Extrapolation

In-painting natural scenes

Criminisi, Perez, and Toyama. “Object Removal by Exemplar-based Inpainting,” Proc. CVPR, 2003.

http://research.microsoft.com/pubs/67276/criminisi_tip2004.pdf

Key idea: Filling order matters

Image with Hole Raster-Scan Order

In-painting Result

Onion-Peel

(Concentric Layers)

Gradient-Sensitive

Order

Criminisi, Perez, and Toyama. “Object Removal by Exemplar-based Inpainting,” Proc. CVPR, 2003.

http://research.microsoft.com/pubs/67276/criminisi_tip2004.pdf

Filling order

Fill a pixel that:

1. Is surrounded by other known pixels

2. Is a continuation of a strong gradient or edge

Criminisi, Perez, and Toyama. “Object Removal by Exemplar-based Inpainting,” Proc. CVPR, 2003.

http://research.microsoft.com/pubs/67276/criminisi_tip2004.pdf

Comparison

Criminisi, Perez, and Toyama. “Object Removal by Exemplar-based Inpainting,” Proc. CVPR, 2003.

Original With Hole Onion-Ring Fill Criminisi

http://research.microsoft.com/pubs/67276/criminisi_tip2004.pdf

Comparison

Concentric Layers Gradient Sensitive

Summary (so far)

• The Efros & Leung texture synthesis algorithm

– Very simple

– Surprisingly good results

– Synthesis is easier than analysis!

– …but very slow

p

Image Quilting [Efros & Freeman 2001]

• Observation: neighbor pixels are highly correlated

Input image

non-parametric

sampling

B

Idea: unit of synthesis = block

• Exactly the same but now we want P(B|N(B))

• Much faster: synthesize all pixels in a block at once

Synthesizing a block

Input texture

B1 B2

Random placement

of blocks

block

B1 B2

Neighboring blocks

constrained by overlap

B1 B2

Minimal error

boundary cut

min. error boundary

Minimal error boundary

overlapping blocks vertical boundary

_ =

2

overlap error

Solving for Minimum Cut Path

1

2

4

3

1

2

4

2

1

1

3

4

Cost of a cut through this pixel

Solving for Minimum Cut Path

1

2

4

3

1

2

4

2

1

1

3

4

prev = r1

cost = 4

r1

r2

r3

prev = r1

cost = 2

prev = r2

cost = 4

Solving for Minimum Cut Path

1

2

4

3

1

2

4

2

1

1

3

4

prev = r1

cost = 4

r1

r2

r3

prev = r1

cost = 2

prev = r2

cost = 4 cost = 3

cost = 4

cost = 6

Solving for Minimum Cut Path

1

2

4

3

1

2

4

2

1

1

3

4

prev = r1

cost = 4

r1

r2

r3

prev = r1

cost = 2

prev = r2

cost = 4 cost = 3

cost = 4

cost = 6 cost = 5

cost = 6

cost = 7

Solving for Minimum Cut Path

1

2

4

3

1

2

4

2

1

3

1

4

Best Path

1

3

cost = 5

cost = 6

cost = 7

Solving for Minimum Cut Path

Mask Based on Best Path

1

2

4

3

1

2

4

2

1

3

1

4

1

3

Region 1

Portilla & Simoncelli

Wei & Levoy Quilting

Xu, Guo & Shum

input image

Portilla & Simoncelli

Wei & Levoy Quilting

input image

Xu, Guo & Shum

Political Texture Synthesis

+ =

Texture Transfer

• Try to explain one object with bits and
pieces of another object:

Texture Transfer

Constraint

Texture sample

Take the texture from one

image and “paint” it onto

another object

Same as texture synthesis, except an additional

constraint:
1. Consistency of texture

2. Patches from texture should correspond to patches from constraint in

some way. Typical example: blur luminance, use SSD for distance

Texture Transfer

Correspondence maps

• Correspondence maps guide which
patches from source are copied into
texture
– Cost to copy a patch is
𝛼 ∗ 𝑆𝑆𝐷𝑜𝑣𝑒𝑟𝑙𝑎𝑝 + 1 − 𝛼 ∗ 𝑆𝑆𝐷𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟
– 𝑆𝑆𝐷𝑜𝑣𝑒𝑟𝑙𝑎𝑝: sum sq dist of overlapping

portion of patch with filled target image

– 𝑆𝑆𝐷𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟: sum sq dist of
correspondence map in target and source

• Correspondence map typically is blurred
grayscale version of original source and
target
– Want low frequency intensities to match

but not details or color

=+

Making sacred toast

+ ?

http://www.nbcnews.com/id/6511148/ns/us_news-weird_news/t/virgin-mary-grilled-cheese-sells/

Project 2: texture synthesis and transfer

• https://courses.engr.illinois.edu
/cs445/fa2022/projects/quiltin
g/ComputationalPhotography_
ProjectQuilting.html

• Note: this is significantly
more challenging than the
first project

Texture Synthesis and Transfer Recap

For each overlapping patch in the output image
1. Compute the cost to each patch in the sample

– Texture synthesis: this cost is the SSD (sum of square difference) of pixel values
in the overlapping portion of the existing output and sample

– Texture transfer: cost is 𝛼 ∗ 𝑆𝑆𝐷𝑜𝑣𝑒𝑟𝑙𝑎𝑝 + 1 − 𝛼 ∗ 𝑆𝑆𝐷𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 The latter
term enforces that the source and target correspondence patches should
match.

2. Select one sample patch that has a small cost (e.g. randomly pick one of
K candidates)

3. Find a cut through the left/top borders of the patch based on
overlapping region with existing output

– Use this cut to create a mask that specifies which pixels to copy from sample
patch

4. Copy masked pixels from sample image to corresponding pixel locations
in output image

Sample Output

PatchMatch

• Efros & Leung synthesis is very slow: for every pixel to be filled,
match surrounding patch across the source image

• “Image Quilting” is faster by copying a patch at a time and
blending it into the output

– Typically neighboring pixels in source should stay together, so copy
them patch by patch

• PatchMatch solves this in a more efficient and general way

Barnes et al. Siggraph 2009

http://gfx.cs.princeton.edu/pubs/Barnes_2009_PAR/index.php

http://gfx.cs.princeton.edu/pubs/Barnes_2009_PAR/index.php

PatchMatch

• Goal: Solve for labels that minimize some cost function

Hole Fill-in:

For each pixel (i,j) in the hole, solve for pixel coordinate (n,m) from

source to minimize sum of SSD of patches between target and source

How to solve for this efficiently?

PatchMatch

• Goal: Solve for labels that minimize some cost function

Hole Fill-in:

For each pixel (i,j) in the hole, solve for pixel coordinate (n,m)

offset (a,b)=(n,m)-(i,j) from source to minimize sum of SSD of

patches between target and source

When copying a patch, offset is piecewise constant

PatchMatch

• Goal: Solve for labels that minimize some cost function

• Key assumption: a pixel and its neighbor very likely have the
same or similar labels

Hole Fill-in:

For each pixel (i,j) in the hole, solve for offset (a,b)=(n,m)-(i,j) from

source to minimize sum of SSD of patches between target and

source

When copying a patch, offset is piecewise constant

PatchMatch: Optimization

• Goal: Solve for labels that minimize some cost function

• Key assumption: a pixel and its neighbor very likely have the
same or similar labels

PatchMatch Algorithm basics

1. Randomly initialize matches

2. Scan across image (forward and backward)

a. Check if neighbor’s offsets or random

perturbations around current offset

produce better scores

b. Keep best found so far

3. Repeat (2) several times

PatchMatch: Convergence

Example of convergence with retargeting (find offsets to map bottom image onto top)

Why so fast?

• Offset has constant or similar values in large regions

• Very good chance that at least one pixel gets lucky in random

assignment

• Good assignments propagate quickly

PatchMatch: Image Completion

Guides constrain
search

PatchMatch: retargeting

• Produce output image of target size with optional constraints

• Bi-directional matching: each patch in source should match
something in target and vice-versa

PatchMatch: other applications and extensions

Applications
• Two-view stereo: labels are

displacements
• Multiview stereo: labels are plane

parameters
• Semantic correspondence: labels are

offsets
• Denoising, symmetry detection, …

Extensions
• Red/black propagation for efficient

GPU implementation
• Varying propagation/scoring schemes

Lee et al. CVPR 2021

Schoenberger et al. ECCV 2016

Things to remember

• Texture synthesis and hole-filling can
be thought of as a form of probabilistic
hallucination

• Simple, similarity-based matching is a
powerful tool
– Synthesis
– Hole-filling
– Retargeting
– And much more…

• Key is how to define similarity and
efficiently find neighbors

• PatchMatch provides flexible and
highly efficient optimization

Next class

• Cutting and seam finding

