Texture Synthesis and Hole-Filling

Computational Photography

Derek Hoiem, University of lllinois



Next section: The digital canvas

Cutting and pasting objects,
filling holes, and blending

Image warping and object
morphing




Today’s Class

* Texture synthesis and hole-filling




Texture

* Texture depicts spatially repeating patterns
e Textures appear naturally and frequently

radishes

Many slides from James Hays



Texture Synthesis

* Goal of Texture Synthesis: create new samples of
a given texture

* Many applications: virtual environments, hole-
filling, texturing surfaces




The Challenge

regular

near-regular

irregular

near-stochastic

stochastic

Need to model the whole spectrum: from
repeated to stochastic texture



One idea: Build Probability Distributions

Basic idea

1. Compute statistics of input texture (e.g., histogram of edge
filter responses)

2. Generate a new texture that keeps those same statistics

 D.J.Heeger andlJ. R. Bergen. Pyramid-based texture analysis/synthesis. In SIGGRAPH
‘95,

e E.P. Simoncelliand J. Portilla. Texture characterization via joint statistics of wavelet
coefficient magnitudes. In ICIP 1998.



One idea: Build Probability Distributions

But it (usually) doesn’t work

* Probability distributions are hard to model weII

Input

Synthesized




Another idea: Sample from the image

Synthesizing a pixel

non-parametric

sampling

Input image

* Assuming Markov property, compute P(p|N(p))
— Building explicit probability tables infeasible

— Instead, we search the input image for all similar
neighborhoods — that’s our pdf for p

— To sample from this pdf, just pick one match at random

Efros and Leung 1999 SIGGRAPH



ldea from Shannon (Information Theory)

* Generate English-sounding sentences by
modeling the probability of each word given
the previous words (n-grams)

* Large “n” will give more structured sentences

“| spent an interesting evening recently
with a grain of salt.”

(example from fake single.net user Mark V_Shaney)



http://en.wikipedia.org/wiki/Mark_V_Shaney

Details

* How to match patches?

— Gaussian-weighted SSD (more emphasis on nearby
pixels)

 What order to fill in new pixels?

— “Onion skin” order: pixels with most neighbors are
synthesized first

— To synthesize from scratch, start with a randomly
selected small patch from the source texture

* How big should the patches be?



Size of Neighborhood Window




Increasing window size
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Texture synthesis algorithm

While image not filled

1. Get unfilled pixels with filled neighbors, sorted by
number of filled neighbors

2. For each pixel, get top N matches based on visible
neighbors

- Patch Distance: Gaussian-weighted SSD

3. Randomly select one of the matches and copy
pixel from it



Synthesis Results

french canvas rafia weave




More Results

white bread brick wall




Homage to Shannon
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Hole Filling



Extrapolation




In-painting natural scenes

Criminisi, Perez, and Toyama. “Object Removal by Exemplar-based Inpainting,” Proc. CVPR, 2003.



http://research.microsoft.com/pubs/67276/criminisi_tip2004.pdf

Key idea: Filling order matters

In-painting Result

M A A

Image with Hole Raster-Scan Order Onion-Peel Gradient-Sensitive
(Concentric Layers) Order

Criminisi, Perez, and Toyama. “Object Removal by Exemplar-based Inpainting,” Proc. CVPR, 2003.



http://research.microsoft.com/pubs/67276/criminisi_tip2004.pdf

Filling order

Fill a pixel that:
1. Is surrounded by other known pixels
2. Is a continuation of a strong gradient or edge

Criminisi, Perez, and Toyama. “Object Removal by Exemplar-based Inpainting,” Proc. CVPR, 2003.



http://research.microsoft.com/pubs/67276/criminisi_tip2004.pdf

Comparison

Original With Hole Onion-Ring Fill ~ Criminisi

Criminisi, Perez, and Toyama. “Object Removal by Exemplar-based Inpainting,” Proc. CVPR, 2003.



http://research.microsoft.com/pubs/67276/criminisi_tip2004.pdf

Comparison

Concentric Layers Gradient Sensitive



Summary (so far)

 The Efros & Leung texture synthesis algorithm
— Very simple
— Surprisingly good results
— Synthesis is easier than analysis!
— ...but very slow



Image Quilting [Efros & Freeman 2001]

non-parametric |
sampling |
< % IE

Input image

Synthesizing a block
* Observation: neighbor pixels are highly correlated

Idea: unit of synthesis = block
e Exactly the same but now we want P(B|N(B))

e Much faster: synthesize all pixels in a block at once



block

Input texture

B1 B2 B1 | | | B2 B1 | | B2

Random placement Neighboring blocks Minimal error
of blocks constrained by overlap boundary cut




Minimal error boundary

overlapping blocks vertical boundary

overlap error min. error boundary



Solving for Minimum Cut Path

Cost of a cut through this pixel
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Solving for Minimum Cut Path
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Solving for Minimum Cut Path
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Solving for Minimum Cut Path

prev =rl cost=6 cost=5
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Solving for Minimum Cut Path

Best Path




Solving for Minimum Cut Path

Region 1

Mask Based on Best Path
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Wei & Levoy Quilting
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Political Texture Synthesis

Bush campaign digitally altered TV ad

President Bush's campaign acknowledged Thursday that it had
digitally altered a photo that appeared in a national cable television
commercial. In the photo, a handful of soldiers were multiplied
many times.

This section
shows a
sampling

of the
duplication
of soldiers.

Original photograph

.



Texture Transfer

* Try to explain one object with bits and
pieces of another object:




Texture Transfer

Constraint

Texture sample




Texture Transfer

Take the texture from one
Image and “paint” it onto
another object

Same as texture synthesis, except an additional
constraint:

1. Consistency of texture
2. Patches from texture should correspond to patches from constraint in
some way. Typical example: blur luminance, use SSD for distance



Correspondence maps

* Correspondence maps guide which
patches from source are copied into
texture

— Cost to copy a patch is

a * SSDoverlap +(1—a) = SSDtransfer

— SSD,per1q0: SUM sq dist of overlapping
portion of patch with filled target image

— S5D¢transfer: SUM sq dist of
correspondence map in target and source

* Correspondence map typically is blurred
grayscale version of original source and
target

— Want low frequency intensities to match
but not details or color
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Making sacred toast

http://www.nbcnews.com/id/6511148/ns/us_news-weird_news/t/virgin-mary-grilled-cheese-sells/



Project 2: texture synthesis and transfer

* https://courses.engr.illinois.edu
/cs445/fa2022/projects/quiltin
g/ComputationalPhotography
ProjectQuilting.html

* Note: this is significantly
more challenging than the
first project
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Texture Synthesis and Transfer Recap

"

For each overlapping patch in the output image

1. Compute the cost to each patch in the sample

— Texture synthesis: this cost is the SSD (sum of square difference) of pixel values
in the overlapping portion of the existing output and sample

— Texture transfer: cost is & * SSDyperiap + (1 — @) * SSD¢ygnser The latter
term enforces that the source and target correspondence patches should
match.

2. Select one sample patch that has a small cost (e.g. randomly pick one of
K candidates)

3. Find a cut through the left/top borders of the patch based on
overlapping region with existing output

— Use this cut to create a mask that specifies which pixels to copy from sample

patch
4. Copy masked pixels from sample image to corresponding pixel locations
in output image



PatchMatch

* Efros & Leung synthesis is very slow: for every pixel to be filled,
match surrounding patch across the source image

* “Image Quilting” is faster by copying a patch at a time and

blending it into the output

— Typically neighboring pixels in source should stay together, so copy
them patch by patch

e PatchMatch solves this in a more efficient and general way

Barnes et al. Siggraph 2009
http://gfx.cs.princeton.edu/pubs/Barnes 2009 PAR/index.php



http://gfx.cs.princeton.edu/pubs/Barnes_2009_PAR/index.php

PatchMatch

e Goal: Solve for labels that minimize some cost function

Hole Fill-in:
For each pixel (i,j) in the hole, solve for pixel coordinate (n,m) from
source to minimize sum of SSD of patches between target and source

How to solve for this efficiently?



PatchMatch

e Goal: Solve for labels that minimize some cost function

Hole Fill-in:
For each pixel (i,)) in the hole, solve for pixel-ceerdinate{rm)

offset (a,b)=(n,m)-(i,j) from source to minimize sum of SSD of
patches between target and source

When copying a patch, offset is piecewise constant




PatchMatch

e Goal: Solve for labels that minimize some cost function

e Key assumption: a pixel and its neighbor very likely have the
same or similar labels

Hole Fill-in:
For each pixel (i,)) in the hole, solve for offset (a,b)=(n,m)-(i,j) from
source to minimize sum of SSD of patches between target and

source

When copying a patch, offset is piecewise constant




PatchMatch: Optimization

e Goal: Solve for labels that minimize some cost function

e Key assumption: a pixel and its neighbor very likely have the
same or similar labels

PatchMatch Algorithm basics 4 y y
1. Randomly initialize matches ] (]
2. Scan across image (forward and backward) / / /
a. Check if neighbor’s offsets or random 5| [ B 5 '&
perturbations around current offset w\ X& .
produce better scores et L —

(a) Initialization (b) Propagation (c) Search

b. Keep best found so far
3. Repeat (2) several times




PatchMatch: Convergence

(b) random (¢) 21[ iteration (d) % iteration (e) 1 iteration (f) 2 iterations g) 5 iterations

Example of convergence with retargeting (find offsets to map bottom image onto top)

Why so fast?
« Offset has constant or similar values in large regions

| * Very good chance that at least one pixel gets lucky in random
assignment

« (Good assignments propagate quickly




PatchMatch: Image Completion

Guides constrain

(close up)

(¢) hole filled : ;
(g) same input (h) hole and guides (1) guided (close up)



PatchMatch: retargeting

* Produce output image of target size with optional constraints

* Bi-directional matching: each patch in source should match
something in target and vice-versa




PatchMatch: other applications and extensions

Applications

Two-view stereo: labels are
displacements

Multiview stereo: labels are plane
parameters

Semantic correspondence: labels are
offsets

Denoising, symmetry detection, ...

Extensions

Red/black propagation for efficient

GPU implementation

* Varying propagation/scoring schemes

A A o rTryYyYyYYyY
Schoenberger et al. ECCV 2016

ANC-Net PMNC (Ours)

Lee et al. CVPR 2021



Things to remember

* Texture synthesis and hole-filling can
be thought of as a form of probabilistic
hallucination

* Simple, similarity-based matchingis a
powerful tool
— Synthesis
— Hole-filling
— Retargeting
— And much more...

* Key is how to define similarity and
efficiently find neighbors

* PatchMatch provides flexible and
highly efficient optimization




Next class

e Cutting and seam finding



