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Next section: The digital canvas

Image warping and object 

morphing

Cutting and pasting objects, 

filling holes, and blending



Today’s Class

• Texture synthesis and hole-filling



Texture

• Texture depicts spatially repeating patterns

• Textures appear naturally and frequently

radishes rocks yogurt

Many slides from James Hays



Texture Synthesis

• Goal of Texture Synthesis: create new samples of 
a given texture

• Many applications: virtual environments, hole-
filling, texturing surfaces 



The Challenge

Need to model the whole spectrum: from 
repeated to stochastic texture



One idea: Build Probability Distributions

Basic idea
1. Compute statistics of input texture (e.g., histogram of edge 

filter responses)

2. Generate a new texture that keeps those same statistics

• D. J. Heeger and J. R. Bergen.  Pyramid-based texture analysis/synthesis. In SIGGRAPH 
’95.

• E. P. Simoncelli and J. Portilla. Texture characterization via joint statistics of wavelet 
coefficient magnitudes. In ICIP 1998.



One idea: Build Probability Distributions

But it (usually) doesn’t work
• Probability distributions are hard to model well

Input

Synthesized



Another idea: Sample from the image 

• Assuming Markov property, compute P(p|N(p))
– Building explicit probability tables infeasible 

– Instead, we search the input image for all similar 
neighborhoods — that’s our pdf for p

– To sample from this pdf, just pick one match at random

p

Synthesizing a pixel

non-parametric

sampling

Input image

Efros and Leung 1999 SIGGRAPH



Idea from Shannon (Information Theory)

• Generate English-sounding sentences by 
modeling the probability of each word given 
the previous words (n-grams)

• Large “n” will give more structured sentences

“I spent an interesting evening recently 

with a grain of salt.”
(example from fake single.net user Mark V Shaney)

http://en.wikipedia.org/wiki/Mark_V_Shaney


Details

• How to match patches?

– Gaussian-weighted SSD (more emphasis on nearby 
pixels)

• What order to fill in new pixels?

– “Onion skin” order: pixels with most neighbors are 
synthesized first

– To synthesize from scratch, start with a randomly 
selected small patch from the source texture

• How big should the patches be?



Size of Neighborhood Window

input



Varying Window Size

Increasing window size



Texture synthesis algorithm

While image not filled

1. Get unfilled pixels with filled neighbors, sorted by 
number of filled neighbors

2. For each pixel, get top N matches based on visible 
neighbors

- Patch Distance: Gaussian-weighted SSD

3. Randomly select one of the matches and copy 
pixel from it



Synthesis Results

french canvas rafia weave



More Results
white bread brick wall



Homage to Shannon



Hole Filling



Extrapolation



In-painting natural scenes

Criminisi, Perez, and Toyama. “Object Removal by Exemplar-based Inpainting,” Proc. CVPR, 2003.

http://research.microsoft.com/pubs/67276/criminisi_tip2004.pdf


Key idea: Filling order matters

Image with Hole Raster-Scan Order

In-painting Result

Onion-Peel 

(Concentric Layers)

Gradient-Sensitive 

Order

Criminisi, Perez, and Toyama. “Object Removal by Exemplar-based Inpainting,” Proc. CVPR, 2003.

http://research.microsoft.com/pubs/67276/criminisi_tip2004.pdf


Filling order

Fill a pixel that:

1. Is surrounded by other known pixels 

2. Is a continuation of a strong gradient or edge

Criminisi, Perez, and Toyama. “Object Removal by Exemplar-based Inpainting,” Proc. CVPR, 2003.

http://research.microsoft.com/pubs/67276/criminisi_tip2004.pdf


Comparison

Criminisi, Perez, and Toyama. “Object Removal by Exemplar-based Inpainting,” Proc. CVPR, 2003.

Original          With Hole            Onion-Ring Fill      Criminisi

http://research.microsoft.com/pubs/67276/criminisi_tip2004.pdf


Comparison

Concentric Layers Gradient Sensitive



Summary (so far)

• The Efros & Leung texture synthesis algorithm

– Very simple

– Surprisingly good results

– Synthesis is easier than analysis!

– …but very slow



p

Image Quilting [Efros & Freeman 2001]

• Observation: neighbor pixels are highly correlated

Input image

non-parametric

sampling

B

Idea: unit of synthesis = block

• Exactly the same but now we want P(B|N(B))

• Much faster: synthesize all pixels in a block at once

Synthesizing a block



Input texture

B1 B2

Random placement 

of blocks 

block

B1 B2

Neighboring blocks

constrained by overlap

B1 B2

Minimal error

boundary cut



min. error boundary

Minimal error boundary

overlapping blocks vertical boundary

_ =

2

overlap error



Solving for Minimum Cut Path
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Solving for Minimum Cut Path
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Solving for Minimum Cut Path
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Solving for Minimum Cut Path
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Solving for Minimum Cut Path
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Solving for Minimum Cut Path

Mask Based on Best Path
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Portilla & Simoncelli

Wei & Levoy Quilting

Xu, Guo & Shum

input image



Portilla & Simoncelli

Wei & Levoy Quilting

input image

Xu, Guo & Shum



Political Texture Synthesis
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Texture Transfer

• Try to explain one object with bits and 
pieces of another object:



Texture Transfer 

Constraint

Texture sample



Take the texture from one 

image and “paint” it onto 

another object

Same as texture synthesis, except an additional 

constraint:
1. Consistency of texture 

2. Patches from texture should correspond to patches from constraint in 

some way.  Typical example: blur luminance, use SSD for distance

Texture Transfer



Correspondence maps

• Correspondence maps guide which 
patches from source are copied into 
texture
– Cost to copy a patch is 
𝛼 ∗ 𝑆𝑆𝐷𝑜𝑣𝑒𝑟𝑙𝑎𝑝 + 1 − 𝛼 ∗ 𝑆𝑆𝐷𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟
– 𝑆𝑆𝐷𝑜𝑣𝑒𝑟𝑙𝑎𝑝: sum sq dist of overlapping 

portion of patch with filled target image

– 𝑆𝑆𝐷𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟: sum sq dist of 
correspondence map in target and source

• Correspondence map typically is blurred 
grayscale version of original source and 
target
– Want low frequency intensities to match 

but not details or color
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Making sacred toast

+ ?

http://www.nbcnews.com/id/6511148/ns/us_news-weird_news/t/virgin-mary-grilled-cheese-sells/



Project 2: texture synthesis and transfer 

• https://courses.engr.illinois.edu
/cs445/fa2022/projects/quiltin
g/ComputationalPhotography_
ProjectQuilting.html  

• Note: this is significantly 
more challenging than the 
first project



Texture Synthesis and Transfer Recap

For each overlapping patch in the output image
1. Compute the cost to each patch in the sample

– Texture synthesis: this cost is the SSD (sum of square difference) of pixel values 
in the overlapping portion of the existing output and sample

– Texture transfer: cost is 𝛼 ∗ 𝑆𝑆𝐷𝑜𝑣𝑒𝑟𝑙𝑎𝑝 + 1 − 𝛼 ∗ 𝑆𝑆𝐷𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 The latter 
term enforces that the source and target correspondence patches should 
match.

2. Select one sample patch that has a small cost (e.g. randomly pick one of 
K candidates)

3. Find a cut through the left/top borders of the patch based on 
overlapping region with existing output

– Use this cut to create a mask that specifies which pixels to copy from sample 
patch

4. Copy masked pixels from sample image to corresponding pixel locations 
in output image

Sample Output



PatchMatch

• Efros & Leung synthesis is very slow: for every pixel to be filled, 
match surrounding patch across the source image

• “Image Quilting” is faster by copying a patch at a time and 
blending it into the output

– Typically neighboring pixels in source should stay together, so copy 
them patch by patch

• PatchMatch solves this in a more efficient and general way

Barnes et al. Siggraph 2009

http://gfx.cs.princeton.edu/pubs/Barnes_2009_PAR/index.php

http://gfx.cs.princeton.edu/pubs/Barnes_2009_PAR/index.php


PatchMatch

• Goal: Solve for labels that minimize some cost function

Hole Fill-in: 

For each pixel (i,j) in the hole, solve for pixel coordinate (n,m) from 

source to minimize sum of SSD of patches between target and source

How to solve for this efficiently?



PatchMatch

• Goal: Solve for labels that minimize some cost function

Hole Fill-in: 

For each pixel (i,j) in the hole, solve for pixel coordinate (n,m)

offset (a,b)=(n,m)-(i,j) from source to minimize sum of SSD of 

patches between target and source

When copying a patch, offset is piecewise constant



PatchMatch

• Goal: Solve for labels that minimize some cost function

• Key assumption: a pixel and its neighbor very likely have the 
same or similar labels

Hole Fill-in: 

For each pixel (i,j) in the hole, solve for offset (a,b)=(n,m)-(i,j) from 

source to minimize sum of SSD of patches between target and 

source

When copying a patch, offset is piecewise constant



PatchMatch: Optimization

• Goal: Solve for labels that minimize some cost function

• Key assumption: a pixel and its neighbor very likely have the 
same or similar labels

PatchMatch Algorithm basics

1. Randomly initialize matches

2. Scan across image (forward and backward)

a. Check if neighbor’s offsets or random 

perturbations around current offset 

produce better scores 

b. Keep best found so far

3. Repeat (2) several times



PatchMatch: Convergence

Example of convergence with retargeting (find offsets to map bottom image onto top)

Why so fast?

• Offset has constant or similar values in large regions

• Very good chance that at least one pixel gets lucky in random

assignment

• Good assignments propagate quickly



PatchMatch: Image Completion

Guides constrain 
search



PatchMatch: retargeting

• Produce output image of target size with optional constraints

• Bi-directional matching: each patch in source should match 
something in target and vice-versa



PatchMatch: other applications and extensions

Applications
• Two-view stereo: labels are 

displacements
• Multiview stereo: labels are plane

parameters
• Semantic correspondence: labels are 

offsets
• Denoising, symmetry detection, … 

Extensions
• Red/black propagation for efficient 

GPU implementation
• Varying propagation/scoring schemes

Lee et al. CVPR 2021

Schoenberger et al. ECCV 2016



Things to remember

• Texture synthesis and hole-filling can 
be thought of as a form of probabilistic 
hallucination

• Simple, similarity-based matching is a 
powerful tool
– Synthesis
– Hole-filling
– Retargeting
– And much more…

• Key is how to define similarity and 
efficiently find neighbors

• PatchMatch provides flexible and 
highly efficient optimization



Next class

• Cutting and seam finding


