Templates and Image Pyramids

Computational Photography

Derek Hoiem, University of Illinois

Why does a lower resolution image still make sense to us? What do we lose?

Image: http://www.flickr.com/photos/igorms/136916757/

Why does a lower resolution image still make sense to us? What do we lose?

Image: http://www.flickr.com/photos/igorms/136916757/

Why do we get different, distance-dependent interpretations of hybrid images?

Hybrid Image in FFT

Review

1. Match the spatial domain image to the Fourier magnitude image

В

Today's class: applications of filtering

• Template matching

• Coarse-to-fine alignment

• Denoising, Compression

Template matching

- Goal: find 💽 in image
- Main challenge: What is a good similarity or distance measure between two patches?
 - Correlation
 - Zero-mean correlation
 - Sum Square Difference
 - Normalized Cross
 Correlation

- Goal: find 💽 in image
- Method 0: filter the image with eye patch

im = image
f = filter

What went wrong?

- Goal: find 💽 in image
- Method 1: filter the image with zero-mean eye

 $h[m,n] = \sum_{k,l} (f[k,l] - \overline{f}) \underbrace{im[m+k,n+l]}_{\text{mean of filter f}}$

Input

- Goal: find 💽 in image
- Method 2: SSD $h[m,n] = \sum_{k,l} (f[k,l] - im[m+k,n+l])^2$

Can SSD be implemented with linear filters?

$$h[m,n] = \sum_{k,l} (f[k,l] - im[m+k,n+l])^2$$

$$h[m,n] = \sum_{k,l} (f[k,l]^2 - 2 \cdot im[m+k,n+l] \cdot f[k,l] + im[m+k,n+l]^2)$$

$$h[m,n] = \sum_{k,l} f[k,l]^2 - 2 \sum_{k,l} im[m+k,n+l] \cdot f[k,l] + \sum_{k,l} im[m+k,n+l]^2$$

$$h = \sum_{k,l} f[k,l]^2 - 2 \text{ filter}(im, f) + \text{ filter}(im. ^2, \text{ones}(f. \text{ shape}))$$

$$f$$
linear filter
constant
Element-wise square f, then
sum with ones kernel of size f

• Goal: find 💽 in image

• Method 2: SSD

What's the potential downside of SSD?

 $h[m,n] = \sum_{k,l} (f[k,l] - im[m+k,n+l])^2$

Input

1- sqrt(SSD)

- Goal: find 💽 in image
- Method 3: Normalized cross-correlation

(divide by product of standard deviations of template and image patch)

Python: cv2.matchTemplate(im,template,cv2.TM_CCOEFF_NORMED)

- Goal: find 💽 in image
- Method 3: Normalized cross-correlation

Input

Normalized X-Correlation

Thresholded Image

- Goal: find 💽 in image
- Method 3: Normalized cross-correlation

Input

Normalized X-Correlation

Thresholded Image

Q: What is the best method to use?

A: Depends

- Zero-mean filter: fastest but not a great matcher
- SSD: next fastest, sensitive to overall intensity
- Normalized cross-correlation: slowest, invariant to local average intensity and contrast

Q: What if we want to find larger or smaller eyes?

A: Image Pyramid

Review of Sampling

Gaussian pyramid

Source: Forsyth

Laplacian filter

Source: Lazebnik

Laplacian pyramid

Computing Gaussian/Laplacian Pyramid

Creating a 2-level Laplacian pyramid

Reconstructing the image from Laplacian pyramid

Hybrid Image in Laplacian Pyramid

Extra points for project 1

High frequency \rightarrow Low frequency

- 1. Compute Gaussian pyramid
- 2. Align at coarse level
 - Find minimum SSD position
- 3. Successively align at finer levels
 - Search small range (e.g., 5x5)
 centered around position
 determined at coarser scale

- 1. Compute Gaussian pyramid
- 2. Align at coarse level
 - Find minimum SSD position
- 3. Successively align at finer levels
 - Search small range (e.g., 5x5)
 centered around position
 determined at coarser scale

Why is this faster?

Are we guaranteed to get the same result?

Can you align the images using the FFT?

Compression

How is it that a 4 megapixel image (12MB) can be compressed to a few hundred KB without a noticeable change?

Lossy Image Compression (JPEG)

Block-based Discrete Cosine Transform (DCT)

Using DCT in JPEG

- The first coefficient B(0,0) is the DC component, the average intensity
- The top-left coeffs represent low frequencies, the bottom right – high frequencies

Image compression using DCT

- Quantize
 - More coarsely for high frequencies (which also tend to have smaller values)

Quantization table

 $35 \ 55 \ 64 \ 81 \ 104 \ 113$

92 95 98 112 100 103

64 78 87 103 121 120 101

12

24

49 72

Q =

12

22

92

99

- Many quantized high frequency values will be zero
- Encode
 - Can decode with inverse dct

Filter responses $\overset{u}{\longrightarrow}$									
	-415.38	-30.19	-61.20	27.24	56.13	-20.10	-2.39	0.46	
G =	4.47	-21.86	-60.76	10.25	13.15	-7.09	-8.54	4.88	$\downarrow v$
	-46.83	7.37	77.13	-24.56	-28.91	9.93	5.42	-5.65	
	-48.53	12.07	34.10	-14.76	-10.24	6.30	1.83	1.95	
	12.12	-6.55	-13.20	-3.95	-1.88	1.75	-2.79	3.14	
	-7.73	2.91	2.38	-5.94	-2.38	0.94	4.30	1.85	
	-1.03	0.18	0.42	-2.42	-0.88	-3.02	4.12	-0.66	
	-0.17	0.14	-1.07	-4.19	-1.17	-0.10	0.50	1.68	
Quantized values									
			5 -3 -	6 2	2 - 1	0 0			
0 -2				4 1	1 0	0 0			
		-3	31	5 - 1 - 1	-1 0	0 0			
	D	3	31	2 - 1	0 0	0 0			
	D	= 1	L 0	0 0	0 0	0 0			
		() ()	0 0	0 0	0 0			
		() ()	0 0	0 0	0 0			
		L) ()	0 0	0 0	0 0			

JPEG Compression Summary

- 1. Convert image to YCrCb
- 2. Subsample color by factor of 2
 - People have bad resolution for color
- 3. Split into blocks (8x8, typically), subtract 128
- 4. For each block
 - a. Compute DCT coefficients
 - b. Coarsely quantize
 - Many high frequency components will become zero
 - c. Encode (e.g., with Huffman coding)

Lossless compression (PNG)

- 1. Predict that a pixel's value based on its upper-left neighborhood
 - Choose one rule per row, e.g. x~=A or x~=floor((A+B)/2)
- 2. Store difference of predicted and actual value
- 3. Pkzip it (DEFLATE algorithm)

Denoising

Additive Gaussian Noise

Reducing Gaussian noise

Smoothing with larger standard deviations suppresses noise, but also blurs the image

Source: S. Lazebnik

Reducing salt-and-pepper noise by Gaussian smoothing

Alternative idea: Median filtering

• A median filter operates over a window by selecting the median intensity in the window

• Is median filtering linear?

Median filter

- What advantage does median filtering have over Gaussian filtering?
 - Robustness to outliers

Source: K. Grauman

Median filter

Python: scipy.ndimage.median_filter (image, size)

Source: M. Hebert

Median Filtered Examples

original image

1px median filter

3px median filter

10px median filter

http://en.wikipedia.org/wiki/File:Medianfilterp.png http://en.wikipedia.org/wiki/File:Median_filter_example.jpg

Median vs. Gaussian filtering

Gaussian

Median

Other filter choices

- Weighted median (pixels further from center count less)
- Clipped mean (average, ignoring few brightest and darkest pixels)
- Bilateral filtering (weight by spatial distance *and* intensity difference)

cv2.bilateralFilter(size, sigma_color, signal_spatial)

Bilateral filtering

- Filtering in spatial domain
 - Slide filter over image and take dot product at each position
 - Remember properties of linear filters

- Linear filters for basic processing
 - Edge filter (high-pass)
 - -Gaussian filter (low-pass)
 - [-1 1]

• Derivative of Gaussian

- Filtering in frequency domain
 - Can be faster than filtering in spatial domain (for large filters)
 - Can help understand effect of filter
 - Algorithm:
 - 1. Convert image and filter to FFT
 - 2. Pointwise-multiply FFTs
 - 3. Convert result to spatial domain with inverse FFT

- Applications of filters
 - Template matching (SSD or normalized x-corr)
 - SSD can be done with linear filters, is sensitive to overall intensity
 - Gaussian pyramid
 - Coarse-to-fine search, multi-scale detection
 - Laplacian pyramid
 - Can be used for blending (later)
 - More compact image representation

- Applications of filters
 - Downsampling
 - Need to sufficiently low-pass before downsampling
 - Compression
 - In JPEG, coarsely quantize high frequencies
 - Reducing noise (important for aesthetics and for later processing such as edge detection)
 - Gaussian filter, median filter, bilateral filter

Next lecture

• Light and color

