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Image: http://www.flickr.com/photos/igorms/136916757/ 

Why does a lower resolution image still make 
sense to us?  What do we lose?

http://www.flickr.com/photos/igorms/136916757/


Why does a lower resolution image still make 
sense to us?  What do we lose?

Image: http://www.flickr.com/photos/igorms/136916757/ 

FFT linear scale
+

http://www.flickr.com/photos/igorms/136916757/


Why do we get different, distance-dependent 
interpretations of hybrid images?

?



Hybrid Image in FFT

Hybrid Image Low-passed Image High-passed Image



Review

1. Match the spatial domain image to the Fourier magnitude 
image
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Today’s class: applications of filtering

• Template matching

• Coarse-to-fine alignment

• Denoising, Compression 



Template matching

• Goal: find       in image

• Main challenge: What is a 
good similarity or distance 
measure between two 
patches?
– Correlation

– Zero-mean correlation

– Sum Square Difference

– Normalized Cross 
Correlation



Matching with filters

• Goal: find       in image

• Method 0: filter the image with eye patch

Input Filtered Image

ℎ[𝑚, 𝑛] = ෍

𝑘,𝑙

𝑓[𝑘, 𝑙] 𝑖𝑚[𝑚 + 𝑘, 𝑛 + 𝑙]

What went wrong?

im = image

f = filter



Matching with filters

• Goal: find       in image

• Method 1: filter the image with zero-mean eye

Input Filtered Image (scaled) Thresholded Image

ℎ[𝑚, 𝑛] = ෍

𝑘,𝑙

(𝑓[𝑘, 𝑙] − ҧ𝑓) 𝑖𝑚[𝑚 + 𝑘, 𝑛 + 𝑙]

True detections

False 

detections

mean of filter f



Matching with filters

• Goal: find       in image

• Method 2: SSD

Input 1- sqrt(SSD) Thresholded Image

ℎ[𝑚, 𝑛] = ෍

𝑘,𝑙

(𝑓[𝑘, 𝑙] − 𝑖𝑚[𝑚 + 𝑘, 𝑛 + 𝑙])2

True detections



Matching with filters

Can SSD be implemented with linear filters?

ℎ[𝑚, 𝑛] = ෍

𝑘,𝑙

(𝑓[𝑘, 𝑙] − 𝑖𝑚[𝑚 + 𝑘, 𝑛 + 𝑙])2

ℎ[𝑚, 𝑛] = ෍

𝑘,𝑙

𝑓[𝑘, 𝑙]2 − 2 ⋅ 𝑖𝑚[𝑚 + 𝑘, 𝑛 + 𝑙] ⋅ 𝑓[𝑘, 𝑙] + 𝑖𝑚[𝑚 + 𝑘, 𝑛 + 𝑙]2

ℎ[𝑚, 𝑛] = ෍

𝑘,𝑙

𝑓[𝑘, 𝑙]2 − 2෍

𝑘,𝑙

𝑖𝑚[𝑚 + 𝑘, 𝑛 + 𝑙] ⋅ 𝑓[𝑘, 𝑙] +෍

𝑘,𝑙

𝑖𝑚[𝑚 + 𝑘, 𝑛 + 𝑙]2

ℎ = ෍

𝑘,𝑙

𝑓[𝑘, 𝑙]2 − 2 filter( 𝑖𝑚, 𝑓) + filter( 𝑖𝑚. ^2, ones( 𝑓. shape))

constant
linear filter Element-wise square f, then 

sum with ones kernel of size f



Matching with filters

• Goal: find       in image

• Method 2: SSD

Input 1- sqrt(SSD)

What’s the potential 

downside of SSD?

ℎ[𝑚, 𝑛] = ෍

𝑘,𝑙

(𝑓[𝑘, 𝑙] − 𝑖𝑚[𝑚 + 𝑘, 𝑛 + 𝑙])2



Matching with filters

• Goal: find       in image

• Method 3: Normalized cross-correlation

ℎ[𝑚, 𝑛] =
σ𝑘,𝑙(𝑓[𝑘, 𝑙] − ҧ𝑓)( 𝑖𝑚[𝑚 + 𝑘, 𝑛 + 𝑙] − 𝑖𝑚𝑚,𝑛)

σ𝑘,𝑙(𝑓[𝑘, 𝑙] − ҧ𝑓)2σ𝑘,𝑙( 𝑖𝑚[𝑚 + 𝑘, 𝑛 + 𝑙] − 𝑖𝑚𝑚,𝑛)
2 0.5

Python: cv2.matchTemplate(im,template,cv2.TM_CCOEFF_NORMED) 

mean image patchmean template

(divide by product of standard deviations of template and image patch)



Matching with filters

• Goal: find       in image

• Method 3: Normalized cross-correlation

Input Normalized X-Correlation Thresholded Image

True detections



Matching with filters

• Goal: find       in image

• Method 3: Normalized cross-correlation

Input Normalized X-Correlation Thresholded Image

True detections



Q: What is the best method to use?

A: Depends

• Zero-mean filter: fastest but not a great matcher

• SSD: next fastest, sensitive to overall intensity

• Normalized cross-correlation: slowest, invariant 
to local average intensity and contrast



Q: What if we want to find larger or smaller eyes?

A: Image Pyramid



Review of Sampling

Low-Pass 
Filtered Image

Image

Gaussian

Filter Sample
Low-Res 
Image



Gaussian pyramid

Source: Forsyth



Laplacian filter

Gaussian
unit impulse

Laplacian of Gaussian

Source: Lazebnik



Laplacian pyramid

Source: Forsyth



Computing Gaussian/Laplacian Pyramid

Can we reconstruct the original 

from the laplacian pyramid?



Creating a 2-level Laplacian pyramid

Image  a.k.a.
Gaussian_0

Lap 1 
Gauss 1

Subsample

Smoothed_0

Gaussian 

Smooth

Laplacian_0 = 
Guassian_0 – Smoothed_0

-+



Reconstructing the image from Laplacian 
pyramid

Image  = 
Smoothed_0 + 

Laplacian_0

Lap 1 
Gauss 1

Upsample

and smooth

Smoothed_0Laplacian_0

++



Hybrid Image in Laplacian Pyramid

High frequency → Low frequency

Extra points for project 1



Coarse-to-fine Image Registration

1. Compute Gaussian pyramid

2. Align at coarse level
– Find minimum SSD position

3. Successively align at finer levels
– Search small range (e.g., 5x5) 

centered around position 
determined at coarser scale



Coarse-to-fine Image Registration

Level 0

HxW

Level 1

H/2 x W/2

Level 2

H/4 x W/4

Im1 Im2



Coarse-to-fine Image Registration
Im1 Im2

𝑡𝑥2, 𝑡𝑦2 = argmin
𝑡𝑥∈ −

𝑊
8 ..

𝑊
8 ,𝑡𝑦∈{−

𝐻
8..
𝐻
8}

SSD(𝑖𝑚12, translate 𝑖𝑚22, 𝑡𝑥, 𝑡𝑦 )

𝑡𝑥1, 𝑡𝑦1 = argmin
𝑡𝑥∈2⋅𝑡𝑥2+ −𝑠..𝑠 ,𝑡𝑦=2⋅𝑡𝑦2+{−𝑠..𝑠}

SSD(𝑖𝑚11, translate 𝑖𝑚21, 𝑡𝑥, 𝑡𝑦 )

𝑡𝑥0, 𝑡𝑦0 = argmin
𝑡𝑥∈2⋅𝑡𝑥1+ −𝑠..𝑠 ,𝑡𝑦=2⋅𝑡𝑦1+{−𝑠..𝑠}

SSD(𝑖𝑚10, translate 𝑖𝑚20, 𝑡𝑥, 𝑡𝑦 )

x

.

.x

x



Coarse-to-fine Image Registration

1. Compute Gaussian pyramid

2. Align at coarse level
– Find minimum SSD position

3. Successively align at finer levels
– Search small range (e.g., 5x5) 

centered around position 
determined at coarser scale

Why is this faster?

Are we guaranteed to get the same result?



Question

Can you align the images using the FFT?



How is it that a 4 megapixel image (12MB) can 
be compressed to a few hundred KB without a 
noticeable change?

Compression



Lossy Image Compression (JPEG)

Block-based Discrete Cosine Transform (DCT)

Slides: Efros



Using DCT in JPEG 

• The first coefficient B(0,0) is the DC 
component, the average intensity

• The top-left coeffs represent low frequencies, 
the bottom right – high frequencies



Image compression using DCT

• Quantize 
– More coarsely for high frequencies (which also tend to have smaller values)

– Many quantized high frequency values will be zero

• Encode
– Can decode with inverse dct

Quantization table

Filter responses

Quantized values



JPEG Compression Summary

1. Convert image to YCrCb

2. Subsample color by factor of 2

– People have bad resolution for color

3. Split into blocks (8x8, typically), subtract 128

4. For each block

a. Compute DCT coefficients

b. Coarsely quantize

• Many high frequency components will become zero

c. Encode (e.g., with Huffman coding)

http://en.wikipedia.org/wiki/YCbCr

http://en.wikipedia.org/wiki/JPEG

http://en.wikipedia.org/wiki/YCbCr
http://en.wikipedia.org/wiki/JPEG


Lossless compression (PNG)

1. Predict that a pixel’s value based on 
its upper-left neighborhood

– Choose one rule per row, e.g. x~=A or 
x~=floor((A+B)/2)

2. Store difference of predicted and 
actual value

3. Pkzip it (DEFLATE algorithm)



Denoising

Additive Gaussian Noise

Gaussian 

Filter



Smoothing with larger standard deviations suppresses noise, but also blurs the 

image

Reducing Gaussian noise

Source: S. Lazebnik



Reducing salt-and-pepper noise by Gaussian smoothing

3x3 5x5 7x7



Alternative idea: Median filtering

• A median filter operates over a window by 
selecting the median intensity in the window

• Is median filtering linear?
Source: K. Grauman



Median filter

• What advantage does median filtering have 
over Gaussian filtering?
– Robustness to outliers

Source: K. Grauman



Median filter
Salt-and-pepper noise Median filtered

Source: M. Hebert

Python: scipy.ndimage.median_filter (image, size)



Median Filtered Examples

http://en.wikipedia.org/wiki/File:Medianfilterp.png

http://en.wikipedia.org/wiki/File:Median_filter_example.jpg



Median vs. Gaussian filtering
3x3 5x5 7x7

Gaussian

Median



Other filter choices

• Weighted median (pixels further from center count less)

• Clipped mean (average, ignoring few brightest and darkest 
pixels)

• Bilateral filtering (weight by spatial distance and intensity 
difference)

http://vision.ai.uiuc.edu/?p=1455Image:

Bilateral filtering

cv2.bilateralFilter(size, sigma_color, signal_spatial)

http://vision.ai.uiuc.edu/?p=1455


Review of Last 3 Days

• Filtering in spatial domain

– Slide filter over image and take dot product at each 
position

– Remember properties of linear filters



Review of Last 3 Days

• Linear filters for basic processing

– Edge filter (high-pass)

–Gaussian filter (low-pass)

FFT of Gaussian

[-1 1]

FFT of Gradient Filter

Gaussian



Review of Last 3 Days

• Derivative of Gaussian



Review of Last 3 Days

• Filtering in frequency domain

– Can be faster than filtering in spatial domain 
(for large filters)

– Can help understand effect of filter

– Algorithm:

1. Convert image and filter to FFT

2. Pointwise-multiply FFTs

3. Convert result to spatial domain with inverse FFT



Review of Last 3 Days

• Applications of filters

– Template matching (SSD or normalized x-corr)

• SSD can be done with linear filters, is sensitive to 
overall intensity

– Gaussian pyramid

• Coarse-to-fine search, multi-scale detection

– Laplacian pyramid

• Can be used for blending (later)

• More compact image representation



Review of Last 3 Days

• Applications of filters

– Downsampling

• Need to sufficiently low-pass before downsampling

– Compression

• In JPEG, coarsely quantize high frequencies

– Reducing noise (important for aesthetics and for 
later processing such as edge detection)

• Gaussian filter, median filter, bilateral filter



Next lecture

• Light and color


