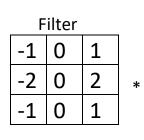
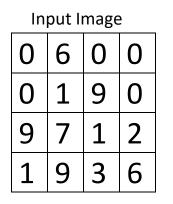
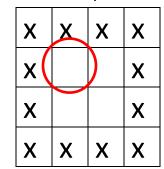
The first exam covers through lecture 7.1 (and review at start of 7.2) including camera models and single view metrology. The exam does not cover the single view 3D scene reconstruction methods of lecture 7.2 or anything after that. The material in lectures is covered fairly evenly with a little less attention to areas well covered by projects. The lecture "take home" questions are good practice questions. The questions below are also good and are of similar style to those that will be offered on the exam. The exam is timed on PrairieLearn but open book.

Filtering

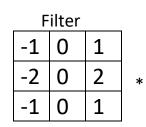

Design a 3x3 linear filter, such that the output will be
*im_{out}(i,j) = 4 · im_{in}(i,j) − · im_{in}(i − 1,j) − im_{in}(i + 1,j) − im_{in}(i,j − 1) − im_{in}(i,j + 1)
where (i,j) is a pixel coordinate that is not on the border, and im_{in} and im_{out} are the input
image and output of the filter.*


Filter

2. Which statement about the filter below is most true?

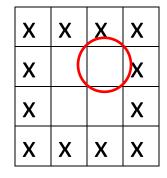

0	0	0
-1	0	1
0	0	0

- a. The filter is a high-pass filter (mostly high frequencies are preserved)
- b. The filter is a low-pass filter (mostly low frequencies are preserved)
- c. The filter preserves both high frequencies and low frequencies about equally
- d. Which frequencies are preserved depends on the input

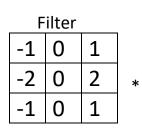


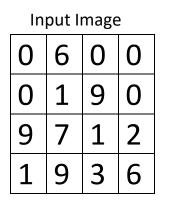


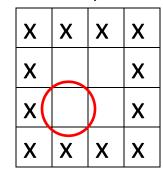
Filter Response



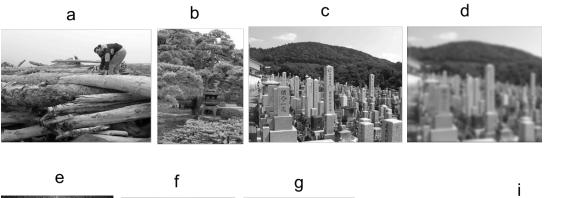
- 3. What is the response at the circled position?
 - a. 19
 - b. 10
 - c. 1
 - d. None of these

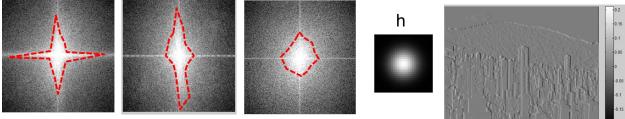






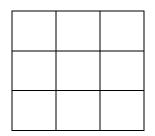
- 4. What is the response at the circled position?
 - a. -18
 - b. 16
 - c. -12
 - d. None of these


Filter Response



→

- 5. What is the response at the circled position?
 - a. 3
 - b. 23
 - c. -5
 - d. None of these


6. Match and answer

FFT Images (center is 0 frequency)

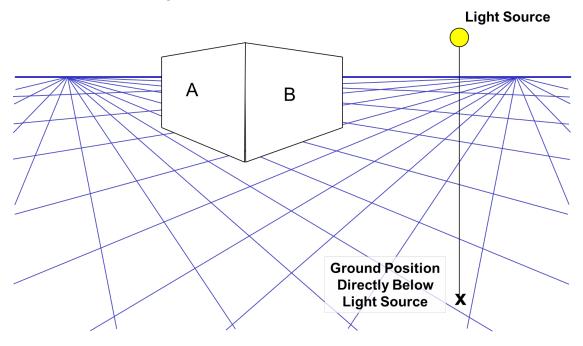
- i. Which FFT image best matches (a)?
- ii. Which FFT image best matches (b)?
- iii. Object _____ convolved with Object _____ produced (d)
- iv. Below, write values for a 3x3 filter that when applied to (c) would result in something similar to image (i)

7. True or False (2 pts)

filter2(A, $k \cdot B$) - filter2(A, $k \cdot C$) = $k \cdot$ filter2(A, B - C) (k is a scalar)

- 8. Which of the following is not true about the Fourier transform?
 - a. Can be used to improve the speed of linear filtering
 - b. Provides a different view of filters that is sometimes easier to interpret
 - c. Adds information to the image
 - d. Preserves the energy in the image

Templates and image pyramids


- 9. Suppose we have computed the normalized cross correlation (NCC), where higher means a better match (max value of 1), and sum of squared differences (SSD), where lower means a better match (min value of 0), for two non-uniform patches. Which of the following are true?
 - a. NCC=1 if and only if SSD=0
 - b. If SSD=0, then NCC=1
 - c. If NCC=1, then SSD=0
 - d. None of these are necessarily true
- 10. Is there any case where NCC is undefined, but SSD can be computed?
 - a. No
 - b. Yes, if both patches are equal
 - c. Yes, if at least one patch has uniform values
 - d. Yes, if either patch has negative values
- 11. Which of these statements are false?
 - a. NCC is invariant to shifts in intensity
 - b. SSD is usually a better matching cost/score than NCC for calibrated stereo pairs and tracking in video
 - c. NCC is faster to compute than SSD
 - d. NCC is usually a better matching cost/score than SSD for comparing patches of images from images taken at different times or different cameras

- 12. If you want to downsample an image by a factor of 2, what is the problem with directly sampling pixels on every other row and column, and how can you fix it?
 - a. Aliasing, apply a high pass filter before sampling
 - b. Aliasing, apply a low pass filter before sampling
 - c. Extrapolation, apply a high pass filter before sampling
 - d. Extrapolation, apply a low pass filter before sampling
 - e. There is no problem
- 13. True or False: An image can be losslessly reconstructed from its Laplacian pyramid

Lighting

- 14. Under which type of reflection does incoming light scatter from the surface?
 - a. Diffuse reflection
 - b. Specular reflection
- 15. Which of the following factors impact the observed intensities of diffusely reflected light? (can choose more than one)
 - a. The intensities of the light coming into the reflecting surface
 - b. The albedo of the reflecting surface
 - c. The orientation of the reflecting surface compared to the direction of incoming light
 - d. The orientation of the camera/observer compared to the surface normal
- 16. Which of the following factors impact the observed intensities of specularly reflected light? (can choose more than one)
 - a. The intensities of the light coming into the reflecting surface
 - b. The albedo of the reflecting surface
 - c. The orientation of the reflecting surface compared to the direction of incoming light
 - d. The orientation of the camera/observer compared to the surface normal

- 17. In the illustration below, assume that each side of the depicted block has the same albedo. Which side will look brighter: side A or side B
 - a. A will look brighter
 - b. B will look brighter

- 18. Imagine that a one-eyed robot is in a dark world, and the only light source is emanating from its eye. Is it possible for the robot to see the shadows that its light source creates?
 - a. No
 - b. Yes
- 19. For each material, indicate whether its reflection can be modeled as Lambertian, specular, or mixed:
 - a. Balloon
 - b. Cotton shirt
 - c. Polished wood
 - d. Mirror
 - e. Cement block

Color

- 20. Which color space(s) have separate luminance (brightness) and chrominance (color) channels? (can select more than one)
 - a. RGB
 - b. HSV
 - c. L*a*b
 - d. YCbCr

21. Which color space is based on perceptual studies of just noticeable differences, so that Euclidean distance between nearby color values corresponds to human perception?

- a. RGB
- b. HSV
- c. L*a*b
- d. YCbCr

22. What is a disadvantage of the RGB color space compared to others?

- a. The channels are highly correlated, which makes compression harder
- b. People don't intuitively think of color in terms of red, green, and blue values
- c. Both (a) and (b)
- d. None of these
- 23. If most of the image intensity values are in the mid-range, such that there are few dark or bright pixels, which of these techniques are best to improve contrast?
 - a. Gamma adjustment, gamma > 1
 - b. Gamma adjustment, gamma < 1
 - c. Histogram equalization
- 24. If an image looks washed out with many high intensities but not many low, which of these techniques is best to improve contrast?
 - a. Gamma adjustment, gamma > 1
 - b. Gamma adjustment, gamma < 1
 - c. Histogram equalization

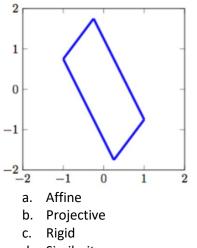
- 25. If an image is too dark with many low intensities but not many high, which of these techniques is best to improve contrast?
 - a. Gamma adjustment, gamma > 1
 - b. Gamma adjustment, gamma < 1
 - c. Histogram equalization

Texture Synthesis and Cutting

- 26. Which of these methods does *not* involve solving for a path through low-cost pixels or edges using a dynamic program?
 - a. Image quilting
 - b. Seam carving
 - c. Intelligent scissors
 - d. All of these involve solving for a path
- 27. In Efros & Leung texture synthesis, which of these design decisions will lead to a more regular texture?
 - a. Use a large patch size for matching
 - b. Use a small patch size for matching
 - c. Use Gaussian weighted SSD
 - d. Randomly choose pixel from a larger number of top matches
- 28. Which of these is a basis for the efficiency of both Image Quilting and PatchMatch?
 - a. A few lucky random assignments can propagate quickly
 - b. Neighbors in the target image will likely be drawn from neighbors in the source image
 - c. A dynamic program can be used to efficiently find a good seam

Pasting: Compositing and Blending

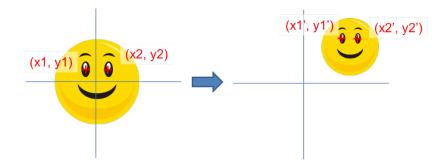
29. Mary wants to cut out the flower region and overlay it on the image of the sunset. She wants to avoid distorting colors or making it look pixelated. What blending method is most appropriate?


- a. Use an alpha matte to determine whether the color for each pixel should come from the foreground or background image
- b. Use Laplacian pyramid blending
- c. Poisson blending (or gradient domain editing)

- 30. Ann wants to see what her arm will look like if she adds this cat drawing as a tattoo. What blending method is most appropriate to overlay the cat on the arm?
- a. Use an alpha matte to determine whether the color for each pixel should come from the foreground or background image
- b. Use Laplacian pyramid blending
- c. Poisson blending (or gradient domain editing)
- 31. Which of the following statements is false?
 - a. Poisson blending preserves gradient of the source region without changing the background
 - b. Pixels are pretty blocky if you use cut and paste
 - c. Foreground colors stay the same when we do Poisson blending
 - d. One should feather when doing alpha compositing

Image Warping

- 32. Which homogeneous coordinate is different from others?
- a. (9, 6, 3)
- b. (12, 8, 4)
- c. (48, 32, 16)
- d. (4, 2, 1)
- 33. What properties do affine transformations and projective transformations have in common?
- a. Parallel lines remain parallel under projection
- b. Origin does not necessarily map to origin
- c. Ratios are preserved
- 34. The figure is the output of applying one of the transformations below to a square with vertices (-1, 1), (-1, -1), (1, 1), (1, -1). Which transformation is it (pick most restrictive possible)?


d. Similarity

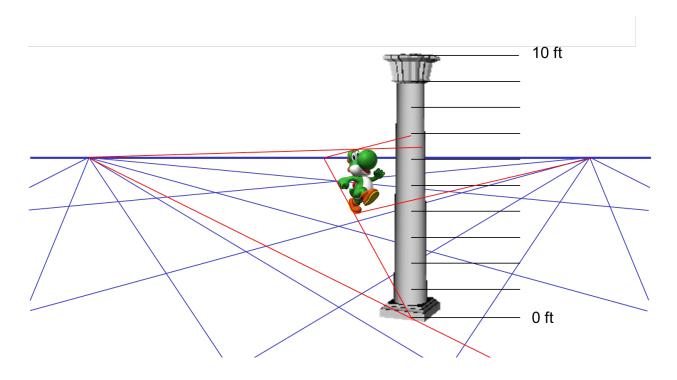
35. What transformations can you model with [a b ; c d]? (can choose multiple)

$$\begin{bmatrix} x'\\y'\end{bmatrix} = \begin{bmatrix} a & b\\c & d\end{bmatrix} \begin{bmatrix} x\\y\end{bmatrix}$$

- a. Translation
- b. Scale
- c. Rotation about the Origin
- d. Shear
- e. Affine
- f. Perspective

36. For (i-iii): Suppose that the image of a face is scaled uniformly by factor *s* and translated in either direction by t_x and t_y .

- i. Write down the equation for a transformed point (x', y') as a function of the original point (x, y) in terms of t_x , t_y , and s.
- ii. Write the transformation in matrix form in terms of t_x , t_y , s, x, y, x', and y':


e. If you are given two pairs of corresponding points: (x1, y1) to (x1', y1') and (x2, y2) to (x2', y2'), how do you solve for the transformation parameters t_x , t_y , s? Write down the system of equations in a matrix form (you don't need to solve it):

$$\begin{bmatrix} S \\ t_x \\ t_y \end{bmatrix} \cong \begin{bmatrix} \\ \end{bmatrix}$$

Image Morphing

- 37. Put these operations in the correct order to perform morphing: (op1) determine corresponding points; (op2) compute average shape; (op3) define triangulation; (op4) warp both images toward the average shape; (op5) cross dissolve.
 - a. (op2) -> (op1) -> (op3) -> (op4) -> (op5)
 - b. (op1) -> (op2) -> (op4) -> (op3) -> (op5)
 - c. (op1) -> (op3) -> (op2) -> (op4) -> (op5)
 - d. (op3) -> (op1) -> (op2) -> (op4) -> (op5)
- 38. What is the lowest parameter transformation that can map from any point in any one triangle to a corresponding point in any other triangle?
- a. Translation
- b. Similarity
- c. Affine
- d. Perspective

Single View Metrology and Camera Model

- 39. The column is 10 ft tall with the lines evenly marking 1 ft increments, and Yoshi (dinosaur) is on the ground. What is the approximate (within 0.5 ft) height of Yoshi?
- a. 4.5 ft
- b. 6.0 ft
- c. 6.5 ft
- d. 7.0 ft
- e. None of these are within 0.5 ft
- 40. The column is 10 ft tall with the lines evenly marking 1 ft increments, and Yoshi (dinosaur) is on the ground. What is the approximate (within 0.5 ft) height of the camera?
- a. 4.5 ft
- b. 6.0 ft
- c. 6.5 ft
- d. 7.0 ft
- e. None of these are within 0.5 ft

41. Draw a diagram of the projection of a 3D point onto an image pixel and label: vertical component of 3D position Y; distance from camera along camera axis Z; pixel column u; pixel row v; principal point u₀, v₀; focal length f; center of projection (aka camera center).

42. Suppose a point's position is X, Y, Z in the camera's 3D coordinates. Given focal length f and principal point (u0, v0), what is the pixel row v of the projected point.

a.
$$v = \frac{fY}{X} + v_0$$

b.
$$v = \frac{x}{fY} + u_0 + v_0$$

c.
$$v = fY + Zv_0$$

d.
$$v = \frac{fX}{7} + u_0$$

- e. None of these are correct
- 43. Complete the intrinsic parameter matrix that projects from a 3D point to a 2D homogenous image coordinate. Assume zero-skew and unit aspect ratio.

$$w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} & & \\ & \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

44. Let (X=2, Y = 0, Z = 10), f=2, u0 = 0.5, v0=0.5. Solve for u.

- a. 0.9
- b. 0.7
- c. 0.4
- d. 0.5

- 45. Suppose you are taking a picture in low-light conditions and your first photo looks grainy. Which of the following can increase the amount of light coming into the camera without changing the field of view? (can select more than one)
 - a. Increase aperture
 - b. Decrease aperture
 - c. Increase focal length
 - d. Decrease focal length
 - e. Increase shutter time
 - f. Decrease shutter time
- 46. How can you increase the field of view?
 - a. Increase aperture
 - b. Decrease aperture
 - c. Increase focal length
 - d. Decrease focal length
 - e. Increase shutter time
 - f. Decrease shutter time