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Today’s Lecture

• Markov Decision Process

• Overview of Reinforcement Learning

• Q-Learning

• Example Applications



Reinforcement Learning

Main idea: an agent learns to take actions by simulating episodes and 
collecting rewards.



Learning To Park



Reinforcement Learning from 
Human Feedback (RLHF)



Reinforcement Learning from 
Human Feedback (RLHF)



RLHF for Large Language Models

LLMs can learn from human feedback.



Markov Decision Process

MDP is defined by:
• Set of states 𝑠 ∈ S

• Set of actions 𝑎 ∈ 𝐴

• Transition function 𝑇(𝑠, 𝑎, 𝑠′)
• Probability that 𝑎 in 𝑠 leads to 𝑠′: 𝑃(𝑠′|𝑠, 𝑎)

• Reward function 𝑅(𝑠, 𝑎, 𝑠′)

• A start state

• Possibly one or more terminal states

• Possibly a discount factor 𝛾



Policies

• The policy determines the actions that an agent will take 

• Policies can be deterministic or stochastic

• The goal of an agent is to learn an optimal policy 𝜋∗

• In Deep RL we define the policy with learned parameters 𝜃

𝑎𝑡 = 𝜋𝜃(𝑠𝑡)



Discounted Rewards

• Solving an MDP: maximize cumulative reward

• Convergence: we use 𝛾 to give less weight to samples that are further in 

the future. This causes the utility to converge

• Discounted utility:

𝑈 𝑠0, 𝑎0, 𝑠1, 𝑎1, 𝑠2, … = 𝑅 𝑠0, 𝑎0, 𝑠1 + 𝛾𝑅 𝑠1, 𝑎1, 𝑠2 + 𝛾2𝑅 𝑠2, 𝑎2, 𝑠3 + ⋯



Compute Rewards
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Start State Reward

a 10

b 1

c 0.1

d 0.1

e 1Exit ← ← → Exit

a b c d e

Policy:

• States: 𝑆 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}

• Actions: 𝐴 = {𝐿𝑒𝑓𝑡, 𝑅𝑖𝑔ℎ𝑡, 𝐸𝑥𝑖𝑡}, and 𝐸𝑥𝑖𝑡 is only valid in states 𝑎 and 𝑒

• Discount factor: 𝛾 = 0.1

𝑈 𝑠0, 𝑎0, 𝑠1, 𝑎1, … =
𝑅 𝑠0, 𝑎0, 𝑠1 + 𝛾𝑅 𝑠1, 𝑎1, 𝑠2 + ⋯



What if we don’t know T and R?

• Usually we don’t know the transition probabilities or the reward 
function

• The agent needs to learn a policy from the unknown probabilities and 
reward function



Reinforcement Learning

• The environment is the world that the agent acts in

• The agent receives a reward to represent how good or bad the 
current state is

• RL: the agent learns to maximize cumulative reward



Value Functions

• On-Policy Value Function, 𝑉𝜋 𝑠  : expected return starting in state 𝑠 acting according to 

policy 𝜋

• Q-state Value Function, 𝑄𝜋(𝑠, 𝑎): expected return if we start in state 𝑠, take 𝑎, then act 

according to 𝜋

• 𝑉∗(𝑠) and 𝑄∗(𝑠, 𝑎) are the optimal functions, used with the optimal policy, 𝜋∗



Bellman Equations

𝑉∗ 𝑠 = 𝑚𝑎𝑥𝑎 ෍

𝑠′

𝑇 𝑠, 𝑎, 𝑠′ [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉∗ 𝑠′ ]

𝑄∗ 𝑠, 𝑎 = ෍

𝑠′

𝑇 𝑠, 𝑎, 𝑠′ [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉∗ 𝑠′ ]

• Main Idea: the value of the starting point is the reward for being there plus the value of the next 

state

𝑎𝑡
∗ = arg max𝑎𝑄∗(𝑠𝑡 , 𝑎)



Model-Free vs Model-Based RL

• Model-Based: the agent either has access to or learns a model of the 
environment
• Often used for games

• Model-Free: the agent neither learns nor has access to a model of the 
environment
• Policy Optimization
• Q-Learning



Policy Optimization

• Optimize 𝜋𝜃  either directly or using gradient ascent on an objective 
function, which depends on the cumulative reward

• The optimization is generally done on-policy
• The policy can only be updated by data from the policy we want to update



Q-Learning

• Learn an approximator 𝑄𝜃(𝑠, 𝑎), using the Bellman equation for an 
objective function

• Optimization is performed off-policy, the Q-values can be updated using 
data from any time during training

• Recall that once we learn the Q-values, our policy becomes:

𝜋(𝑠) = arg max𝑎𝑄𝜃  (𝑠, 𝑎)



Q-Learning

• Collect samples to update 𝑄(𝑠, 𝑎):
sample = 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾max𝑎′𝑄 𝑠′, 𝑎′

• Incorporate samples into an exponential moving average with learning rate 
𝛼:

𝑄 𝑠, 𝑎 ← 1 − 𝛼 𝑄 𝑠, 𝑎 + 𝛼 ∙ sample



Q-Learning

• Collect samples to update 𝑄(𝑠, 𝑎):
sample = 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾max𝑎′𝑄 𝑠′, 𝑎′

• Incorporate samples into an exponential moving average:
𝑄 𝑠, 𝑎 ← 1 − 𝛼 𝑄 𝑠, 𝑎 + 𝛼 ∙ sample

10 1

a b c d e

State Left Right Exit

a 0 0 10

b 1 0 -

c 0.1 0 -

d 0.01 0 -

e 0 0 0
𝛾 = 0.1
𝛼 = 1



Approximate Q-Learning

• A Q-value table would be too big

• Represent states with feature vectors

• Feature vector might include:
• Distance to nearest ghost
• Distance to nearest food pellet
• Number of ghosts
• Is pacman trapped?

• Value of Q-states becomes a linear value function

• We can do the same for state values

𝑄 𝑠, 𝑎 = 𝑤1𝑓1 𝑠, 𝑎 + 𝑤2𝑓2 𝑠, 𝑎 + ⋯ + 𝑤𝑛𝑓𝑛 𝑠 = 𝑤 ∙ Ԧ𝑓(𝑠, 𝑎)

Ԧ𝑓(𝑠, 𝑎) is the feature vector for Q-state 𝑠, 𝑎
𝑤 is a weight vector



Approximate Q-Learning

• Collect samples to update 𝑄(𝑠, 𝑎):
𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾max𝑎′𝑄 𝑠′, 𝑎′

• Define Difference:
difference = 𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑄(𝑠, 𝑎)

• Update with learning rate 𝛼:
𝑤𝑖 ← 𝑤𝑖 + 𝛼 ∙ difference ∙ 𝑓𝑖(𝑠, 𝑎)

* Note: Exact Q-learning can be expressed 
as 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 ∗ difference



Trade-offs

• Policy optimization optimizes the thing you want
• More stable and reliable; less efficient

• Q-learning can reuse data better because it uses off-policy optimization
• More efficient; less stable



RLHF for Large Language Models

LLMs can learn from human feedback.



Training

• Exploration: explore new states to update approximators

• Exploitation: rely on approximators for actions 

• Encourage exploration in the objective function or by randomly 
choosing some actions



Stretch Break

Think about:

How does reinforcement learning differ from other types of machine 
learning, such as supervised and unsupervised learning? 

What are some advantages and disadvantages of reinforcement 
learning compared to these other types?

After the break: Applications of RL



Applications



Deep RL: Steps to train an agent

1. Choose or design an algorithm

2. If you are doing deep RL, construct 𝜋𝜃  which is a deep neural 
network that can be optimized

3. Define a reward function

4. Start training and tune your reward function as necessary



Hide & Seek

Baker et al., 2020 Emergent Tool Use From Multi-Agent Autocurricula



Popular Algorithms

Taxonomy of RL Algorithms [Open AI]



Aircraft Controller

• Soft Actor-Critic
• Hybrid between policy optimization and Q-

learning

• Actor learns policy while critic learns values

• Entropy regularization

• Balancing convergence time and sparse 
rewards

• Creating a realistic environment

• Developing cooperative controllers

Simulated Cockpit [Viper Wing]



Additional Challenges

• Multi-Agent Reinforcement Learning: 
multiple agents in an environment 
learn policies and can either compete 
or cooperate

• Sim-to-Real Gap: policies in 
simulation don’t usually transfer well 
to the real world

• Tuning LMs: using PPO variants for 
LLM tuning

• Imitation Learning: learning from 
examples

Source

https://www.technologyreview.com/2022/11/25/1063707/ai-minecraft-video-unlock-next-big-thing-openai-imitation-learning/


Things to remember

• Markov Decision Process:
• States, actions, transition probabilities, reward
• Discounted utility
• Policy determines actions

• Reinforcement Learning
• Agents live in and get rewards from the environment
• On-policy Value Function and Q-State Value Function
• Bellman Equations
• Model-Based vs. Model-free RL

• Policy Optimization
• Q-Learning
• Approximate Q-Learning



References

• Open AI Spinning Up Introduction to RL
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https://spinningup.openai.com/en/latest/spinningup/rl_intro.html
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