
Reinforcement Learning
Applied Machine Learning

Joshua Levine

Today’s Lecture

• Markov Decision Process

• Overview of Reinforcement Learning

• Q-Learning

• Example Applications

Reinforcement Learning

Main idea: an agent learns to take actions by simulating episodes and
collecting rewards.

Learning To Park

Reinforcement Learning from
Human Feedback (RLHF)

Reinforcement Learning from
Human Feedback (RLHF)

RLHF for Large Language Models

LLMs can learn from human feedback.

Markov Decision Process

MDP is defined by:
• Set of states 𝑠 ∈ S

• Set of actions 𝑎 ∈ 𝐴

• Transition function 𝑇(𝑠, 𝑎, 𝑠′)
• Probability that 𝑎 in 𝑠 leads to 𝑠′: 𝑃(𝑠′|𝑠, 𝑎)

• Reward function 𝑅(𝑠, 𝑎, 𝑠′)

• A start state

• Possibly one or more terminal states

• Possibly a discount factor 𝛾

Policies

• The policy determines the actions that an agent will take

• Policies can be deterministic or stochastic

• The goal of an agent is to learn an optimal policy 𝜋∗

• In Deep RL we define the policy with learned parameters 𝜃

𝑎𝑡 = 𝜋𝜃(𝑠𝑡)

Discounted Rewards

• Solving an MDP: maximize cumulative reward

• Convergence: we use 𝛾 to give less weight to samples that are further in

the future. This causes the utility to converge

• Discounted utility:

𝑈 𝑠0, 𝑎0, 𝑠1, 𝑎1, 𝑠2, … = 𝑅 𝑠0, 𝑎0, 𝑠1 + 𝛾𝑅 𝑠1, 𝑎1, 𝑠2 + 𝛾2𝑅 𝑠2, 𝑎2, 𝑠3 + ⋯

Compute Rewards

10 1

a b c d e

Start State Reward

a 10

b 1

c 0.1

d 0.1

e 1Exit ← ← → Exit

a b c d e

Policy:

• States: 𝑆 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}

• Actions: 𝐴 = {𝐿𝑒𝑓𝑡, 𝑅𝑖𝑔ℎ𝑡, 𝐸𝑥𝑖𝑡}, and 𝐸𝑥𝑖𝑡 is only valid in states 𝑎 and 𝑒

• Discount factor: 𝛾 = 0.1

𝑈 𝑠0, 𝑎0, 𝑠1, 𝑎1, … =
𝑅 𝑠0, 𝑎0, 𝑠1 + 𝛾𝑅 𝑠1, 𝑎1, 𝑠2 + ⋯

What if we don’t know T and R?

• Usually we don’t know the transition probabilities or the reward
function

• The agent needs to learn a policy from the unknown probabilities and
reward function

Reinforcement Learning

• The environment is the world that the agent acts in

• The agent receives a reward to represent how good or bad the
current state is

• RL: the agent learns to maximize cumulative reward

Value Functions

• On-Policy Value Function, 𝑉𝜋 𝑠 : expected return starting in state 𝑠 acting according to

policy 𝜋

• Q-state Value Function, 𝑄𝜋(𝑠, 𝑎): expected return if we start in state 𝑠, take 𝑎, then act

according to 𝜋

• 𝑉∗(𝑠) and 𝑄∗(𝑠, 𝑎) are the optimal functions, used with the optimal policy, 𝜋∗

Bellman Equations

𝑉∗ 𝑠 = 𝑚𝑎𝑥𝑎 ෍

𝑠′

𝑇 𝑠, 𝑎, 𝑠′ [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉∗ 𝑠′]

𝑄∗ 𝑠, 𝑎 = ෍

𝑠′

𝑇 𝑠, 𝑎, 𝑠′ [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉∗ 𝑠′]

• Main Idea: the value of the starting point is the reward for being there plus the value of the next

state

𝑎𝑡
∗ = arg max𝑎𝑄∗(𝑠𝑡 , 𝑎)

Model-Free vs Model-Based RL

• Model-Based: the agent either has access to or learns a model of the
environment
• Often used for games

• Model-Free: the agent neither learns nor has access to a model of the
environment
• Policy Optimization
• Q-Learning

Policy Optimization

• Optimize 𝜋𝜃 either directly or using gradient ascent on an objective
function, which depends on the cumulative reward

• The optimization is generally done on-policy
• The policy can only be updated by data from the policy we want to update

Q-Learning

• Learn an approximator 𝑄𝜃(𝑠, 𝑎), using the Bellman equation for an
objective function

• Optimization is performed off-policy, the Q-values can be updated using
data from any time during training

• Recall that once we learn the Q-values, our policy becomes:

𝜋(𝑠) = arg max𝑎𝑄𝜃 (𝑠, 𝑎)

Q-Learning

• Collect samples to update 𝑄(𝑠, 𝑎):
sample = 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾max𝑎′𝑄 𝑠′, 𝑎′

• Incorporate samples into an exponential moving average with learning rate
𝛼:

𝑄 𝑠, 𝑎 ← 1 − 𝛼 𝑄 𝑠, 𝑎 + 𝛼 ∙ sample

Q-Learning

• Collect samples to update 𝑄(𝑠, 𝑎):
sample = 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾max𝑎′𝑄 𝑠′, 𝑎′

• Incorporate samples into an exponential moving average:
𝑄 𝑠, 𝑎 ← 1 − 𝛼 𝑄 𝑠, 𝑎 + 𝛼 ∙ sample

10 1

a b c d e

State Left Right Exit

a 0 0 10

b 1 0 -

c 0.1 0 -

d 0.01 0 -

e 0 0 0
𝛾 = 0.1
𝛼 = 1

Approximate Q-Learning

• A Q-value table would be too big

• Represent states with feature vectors

• Feature vector might include:
• Distance to nearest ghost
• Distance to nearest food pellet
• Number of ghosts
• Is pacman trapped?

• Value of Q-states becomes a linear value function

• We can do the same for state values

𝑄 𝑠, 𝑎 = 𝑤1𝑓1 𝑠, 𝑎 + 𝑤2𝑓2 𝑠, 𝑎 + ⋯ + 𝑤𝑛𝑓𝑛 𝑠 = 𝑤 ∙ Ԧ𝑓(𝑠, 𝑎)

Ԧ𝑓(𝑠, 𝑎) is the feature vector for Q-state 𝑠, 𝑎
𝑤 is a weight vector

Approximate Q-Learning

• Collect samples to update 𝑄(𝑠, 𝑎):
𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾max𝑎′𝑄 𝑠′, 𝑎′

• Define Difference:
difference = 𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑄(𝑠, 𝑎)

• Update with learning rate 𝛼:
𝑤𝑖 ← 𝑤𝑖 + 𝛼 ∙ difference ∙ 𝑓𝑖(𝑠, 𝑎)

* Note: Exact Q-learning can be expressed
as 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 ∗ difference

Trade-offs

• Policy optimization optimizes the thing you want
• More stable and reliable; less efficient

• Q-learning can reuse data better because it uses off-policy optimization
• More efficient; less stable

RLHF for Large Language Models

LLMs can learn from human feedback.

Training

• Exploration: explore new states to update approximators

• Exploitation: rely on approximators for actions

• Encourage exploration in the objective function or by randomly
choosing some actions

Stretch Break

Think about:

How does reinforcement learning differ from other types of machine
learning, such as supervised and unsupervised learning?

What are some advantages and disadvantages of reinforcement
learning compared to these other types?

After the break: Applications of RL

Applications

Deep RL: Steps to train an agent

1. Choose or design an algorithm

2. If you are doing deep RL, construct 𝜋𝜃 which is a deep neural
network that can be optimized

3. Define a reward function

4. Start training and tune your reward function as necessary

Hide & Seek

Baker et al., 2020 Emergent Tool Use From Multi-Agent Autocurricula

Popular Algorithms

Taxonomy of RL Algorithms [Open AI]

Aircraft Controller

• Soft Actor-Critic
• Hybrid between policy optimization and Q-

learning

• Actor learns policy while critic learns values

• Entropy regularization

• Balancing convergence time and sparse
rewards

• Creating a realistic environment

• Developing cooperative controllers

Simulated Cockpit [Viper Wing]

Additional Challenges

• Multi-Agent Reinforcement Learning:
multiple agents in an environment
learn policies and can either compete
or cooperate

• Sim-to-Real Gap: policies in
simulation don’t usually transfer well
to the real world

• Tuning LMs: using PPO variants for
LLM tuning

• Imitation Learning: learning from
examples

Source

https://www.technologyreview.com/2022/11/25/1063707/ai-minecraft-video-unlock-next-big-thing-openai-imitation-learning/

Things to remember

• Markov Decision Process:
• States, actions, transition probabilities, reward
• Discounted utility
• Policy determines actions

• Reinforcement Learning
• Agents live in and get rewards from the environment
• On-policy Value Function and Q-State Value Function
• Bellman Equations
• Model-Based vs. Model-free RL

• Policy Optimization
• Q-Learning
• Approximate Q-Learning

References

• Open AI Spinning Up Introduction to RL

• UC Berkeley CS188

• UIUC CS440

https://spinningup.openai.com/en/latest/spinningup/rl_intro.html
https://inst.eecs.berkeley.edu/~cs188/sp21/
https://courses.grainger.illinois.edu/cs440/fa2022/lectures/rl.html

	Slide 1
	Slide 2: Today’s Lecture
	Slide 3: Reinforcement Learning
	Slide 4: Learning To Park
	Slide 5: Reinforcement Learning from Human Feedback (RLHF)
	Slide 6: Reinforcement Learning from Human Feedback (RLHF)
	Slide 7: RLHF for Large Language Models
	Slide 8: Markov Decision Process
	Slide 9: Policies
	Slide 10: Discounted Rewards
	Slide 11: Compute Rewards
	Slide 12: What if we don’t know T and R?
	Slide 13: Reinforcement Learning
	Slide 14: Value Functions
	Slide 15: Bellman Equations
	Slide 16: Model-Free vs Model-Based RL
	Slide 17: Policy Optimization
	Slide 18: Q-Learning
	Slide 19: Q-Learning
	Slide 20: Q-Learning
	Slide 21: Approximate Q-Learning
	Slide 22: Approximate Q-Learning
	Slide 23: Trade-offs
	Slide 24: RLHF for Large Language Models
	Slide 25: Training
	Slide 26: Stretch Break
	Slide 27: Applications
	Slide 28: Deep RL: Steps to train an agent
	Slide 29: Hide & Seek
	Slide 30: Popular Algorithms
	Slide 31: Aircraft Controller
	Slide 32: Additional Challenges
	Slide 33: Things to remember
	Slide 34: References

