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Today’s Lecture

* Representing natural language text as integers
— Byte pair encoding
— WordPiece

* Representing text tokens with continuous vectors
— Word2Vec

* Attention and Transformers
— “Attention is all you need” transformers



Each pixel means little, but images can be interpreted by grouping and
recognizing patterns in groups of groups of groups of pixels

_ K

https://www.istockphoto.com/photos/funny-animal



CNNs iteratively process
pixels->edges/colors->textures->sub-parts->parts->objects/scenes
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But in text, the meaning is already in the words... right?



Which of these is more similar?

The chalir says the
department is

He sat on the broke.
chair, and it broke.

After sitting, the
seat Is broken.



Which of these is more similar?

The chair says
the department is

He sat on the broke.
chair, and it broke.

After sitting, the
seat Is broken.



 Same word (character
sequence) may mean
different things

 Different words may
mean similar things

 Word meaning depends
on surrounding words

He sat on the
chair, and it broke.

The chair says
the department Is
broke.

After sitting, the
seat Is broken.



To analyze text, need to convert text to tokens

“Token”: an integer or vector that represents
a data element, a unit of processing

* With integer tokens, the values are not
continuous (e.g. 5 is no closer to 10 than 5000)

* With vector tokens, similarity/distance (typically
L2, dot product or cosine) is meaningful



Word =2 Integer

* Each unique space-delimited
character string is assigned to a
different integer

— To limit vocabulary size, assign only
the most frequent words to integers

— Others are <unk> (unknown)

* Pros and cons
— Simple

— Possible to compare/retrieve
documents based on count of tokens

— Many words map to unknown (e.g.
1298, Bart’s, Area-52, anachronism,

)

— Large vocabulary needed

— Does not model similarity of related
words like broke/broken

He sat on the
chair, and it broke.

The chair says
the department Is
broke.

After sitting, the
seat Is broken.



Character = Integer

 Each character is assighed to a
unigque integer

* Pros and cons
— Simple

— Every document within
alphabet can be fully modeled

— Small vocabulary (< 100 integers
needed for English)

— Sometimes, similar words will

have similar sequences
(broke/n)

— Count of tokens is not
meaningful

— Character sequences are long



Subword = Integer

e Common sequences of
characters are assigned to
unigue integers

* Pros and cons

— Every document within
alphabet can be fully modeled

— Vocabulary size is flexible (e.g.
30K for BERT, 50K for GPT-3)

— Sometimes, similar words will

have similar sequences
(broke/n)

— Need to solve for good subword
tokenization



Character Subword Word

“Chair is broken” c,halir, ... chi#t#t, ##air, is, brok##, ##en chair, is, broken
Vocabulary Size 256 4K-50K > 30K
Completeness Perfect Perfect Incomplete
Independent Bad OK Good

Meaningfulness

H Medium A little sh
Sequence Lengt Long (e.g., 1.4 tokens per word) Ittle shorter
Encodes word Somewhat A little better Not at all

similarity



Subword Tokenizers: Byte Pair Encoding

1. Start with each character assighed to a unique token

2. lteratively assigh a new token to the most common pair of
consecutive tokens, until max_tokens is reached

Initial array of 4 characters aaabdaaabac

Replace aa by Z ZabdZabac
Z=aa
LXCBYAE X7Zd = 7YZd > aaabaad

Replace ab by Y Y=ab
Z=aa
XdXac

Replace ZY by X X=21
Y=ab
Z=aa

Example from Wikipedia


https://en.wikipedia.org/wiki/Byte_pair_encoding

WordPiece Tokenizer (Sennrich et al., Wu et al. 2016)

Word: Jet makers feud over seat width with big orders at stake
 wordpieces: Jet makers feud over seat width with big orders at stake

Algorithm 1 Learn BPE operations

import re, collections

def get_stats(vocab) :
pairs = collections.defaultdict (int)
for word, freq in vocab.items():
symbols = word.split ()
for i in range (len(symbols)-1):

roturn paire oS e For each merge:
cet nerge vosan pas, v_in) 1. Count token pair frequencies in dataset
e LT L e 2. Select most frequent pair
foiﬁziid:l;.‘;ﬁ;;i‘.join(pair), word) 3- Merge that “beSt” palr
v_out [w_out] = v_in[word] . .
a. Assign best pair to new token
e e e S T a O Ly b. Replace all instances of best pair in dataset with that token

num _merges = 10

for i1 in range (num merges) :
pairs = get stats(vocab)
best = max(pairs, key=pairs.get)
vocab = merge_vocab(best, vocab)
print (best)

I
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https://arxiv.org/abs/1508.07909
https://arxiv.org/pdf/1609.08144.pdf

. For each merge:
Try It 1. Count token pair frequencies in
dataset
2. Select most frequent pair
3. Merge that “best” pair
a. Assign best pair to new
token
b. Replace all instances of
best pair in dataset with that
token

Do first two merges of:
Your cat cannot do the can-can, can he?
_Your

cat cannot do the can-can, can he?

~Your Xt Xnnot do
~Your Xt Znot do

~the Xn-Xn, Xn he?
the 7-7, Z, he?



How can we better encode word similarity?

e Different words are related to each other
* Encode “meaning” in a continuous vector

* Learn these vectors based on surrounding words



Word2Vec (Mikolov et al. 2013)

For each word, solve for a continuous vector representation:
« CBOW: predict center word as average of surrounding words (after projecting each word to a vector)

» Skip-Gram: each word (after projecting to a vector) predicts each surrounding word with a linear
model

INPUT PROJECTION OUTPUT INPUT PROJECTION  OQUTPUT

w(t-1)
SUM /

w(t+1)

w(t-2)

w(t-1)

w(t+1)

\\
w(t+2) ﬁ w(t+2)

CBOW Skip-gram

N

https://arxiv.orq/pdf/1301.3781.pdf



https://arxiv.org/pdf/1301.3781.pdf

Train by gradient descent

At the end, each
word integer can
be replaced by a
fixed-length
continuous vector

* These vectors can

predict word
relationships

Table 6:

Table 1: Examples of five types of semantic and nine types of syntactic questions in the Semantic-
Syntactic Word Relationship test set.

Type of relationship Word Pair 1 Word Pair 2
Common capital city Athens Greece Oslo Norway
All capital cities Astana Kazakhstan Harare Zimbabwe
Currency Angola kwanza [ran rial
City-in-state Chicago [llinois Stockton California
Man-Woman brother sister grandson | granddaughter
Adjective to adverb apparent apparently rapid rapidly
Opposite possibly impossibly ethical unethical
Comparative great greater tough tougher
Superlative easy easiest lucky luckiest
Present Participle think thinking read reading
Nationality adjective | Switzerland Swiss Cambodia Cambodian
Past tense walking walked swimming swam
Plural nouns mouse mice dollar dollars
Plural verbs work works speak speaks

Comparison of models trained using the DistBelief distributed framework. Note that
training of NNLM with 1000-dimensional vectors would take too long to complete.

Model Vector Training Accuracy %] Training time
Dimensionality words [days x CPU cores]
Semantic | Syntactic | Total
NNLM 100 6B 342 64.5 50.8 14 x 180
CBOW 1000 6B 57.3 68.9 63.7 2x 140
Skip-gram 1000 6B 66.1 65.1 65.6 2.5x 125




Word2Vec predicted relationship examples

Table 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skip-
gram model trained on 783M words with 300 dimensionality).

Relationship Example | Example 2 Example 3
France - Paris [taly: Rome Japan: Tokyo Florida: Tallahassee
big - bigger small: larger cold: colder quick: quicker
Miami - Florida Baltimore: Maryland Dallas: Texas Kona: Hawaii
Einstein - scientist Messi: midfielder Mozart: violinist Picasso: painter
Sarkozy - France Berlusconi: Italy Merkel: Germany Koizumi: Japan
copper - Cu zinc: Zn gold: Au uranium: plutonium
Berlusconi - Silvio Sarkozy: Nicolas Putin: Medvedev Obama: Barack
Microsoft - Windows Google: Android IBM: Linux Apple: iPhone
Microsoft - Ballmer Google: Yahoo [BM: McNealy Apple: Jobs
Japan - sushi Germany: bratwurst France: tapas USA: pizza

E.g., Paris — France + Italy = Rome



Word2Vec demos

https://turbomaze.qithub.io/word2vecijson/ (fastest)

https://www.cs.cmu.edu/~dst/WordEmbeddingDemo/

https://remykarem.qgithub.io/word2vec-demo/



https://www.cs.cmu.edu/~dst/WordEmbeddingDemo/
https://www.cs.cmu.edu/~dst/WordEmbeddingDemo/
https://remykarem.github.io/word2vec-demo/

A new type of data processing

e Linear: output is sum of weights times features

* Convolution: output at each position is sum of weights times
features within a window

* Attention: given a set of <key, value> pairs and a <query>,
output is sum of values weighted by key-query similarity



Cross-Attention

<key k, value v>: a data element, in which key is used for
matching and value is used to output

<query g>: used to match keys and accumulate values

out(q) = Zs(ki,q)vi / ZS(ki»CI)
T

Similarity of ith key and query ith value Make similarities sum to 1



Cross-attention simple example

out(q) = Zs(ki; Qvi|/

l

1
(k—q)?+1

S(k,q) =

<key, value> pairs: < 1,1 >,<7,-1 >,<5,-1 >

query: 4
1 1 1
(D5 (-D+5(-1)
OUt — 10 }O 1 12 — _0-71
T0t1072

query =0

out =

l

> stk )

1 1 1
(W4 (=D +(=1)

= 0.79



Self-attention

e Key=value
* Each key is also a query

I
S(ka)= /(x4
m: |, 7, 5l | |
Ou+.‘(+'\+2'iﬁ'7 2 f?zﬁS)/(l*@"] * Y*H>=(,’S7,
@.S«J,S.Jg)

Apply GGAIA (1.76, C.oé,&zq)
oy ageat (210, 564, 5242)



Another example of self attention

S(kq)= / keqf'#

Input

(k,q,v)

1.000
9.000
8.000

2.000

iter 1

1.497
8.503
3.128

1.872

iter 2

1.818
3.182
3.141

1.859

iter 3

1.988
3.012
3.010
1.990

iter 4

2.147
7.853
7.853

2.147

Self-attention performs a kind of clustering

Typically, this is applied to high-dimensional

vectors



Attention

* Cross-Attention: query vectors are
separate from <key, value> vectors

— Performs instance-based regression

* Self-Attention: query vectors are the same
as the key and value vectors
— Performs soft clustering/aggregation

— Adding multi-dimensional vectors can overlay
multiple types of information, not just blend or
replace N\

* Attention is extremely powerful and
general when combined with learned
similarity and non-linear feature
transformations

TROG DO
e
B ULNWATOR

https://homestarrunner.com/



Transformer (Vaswani et al. 2017)

* Define similarity via linear projection with softmax
S(ki,q) = exp(k; - q)

Scaled Dot-Product Attention

t
MatMul
SoftMax
: - QK" I
Attention(Q, K, V') = softmax( ~ )V Mask (opt)
\AL)" |
/ Scale
Normalize by sqrt of dimensionality of keys MatMul
tt
Q KV

Attention is all you need



https://arxiv.org/abs/1706.03762

Transformer (Vaswani et al. 2017)

* One or more similarity functions
can be learned with linear layers

— If there are K similarities and D
dimensions to input, each parallel
linear layer outputs D/K values

MultiHead(Q, K, V') = Concat (headq, ..., heady, )W €
where head; = Attontion(Q‘-T-fg. KWE vwY)
Where the projections are parameter matrices I'I-"E-Q € Rifmoser*dic 7K Redmoser i 7V ¢ [Rmoser X v

and WO ¢ RMdv X dmoger

Attention is all you need

Multi-Head Attention

t

Linear

A

Concat

AN

L

Scaled Dot-Product

2

Attention
T 1)
Lo V- L
Linear _] Linear L] Linear L]
V K Q


https://arxiv.org/abs/1706.03762

Transformers: general data processors

Input tokens can represent anything: image
patches, text tokens, audio, controls, etc.

Invariant to order of tokens: add positional
embedding to distinguish pos/type of input

Transformer block:
o Apply multi-head attention
o Apply 2-layer MLP with ReLU to each token separately
o Residual and layer norm (over all tokens) after each

Can stack any number of transformer blocks

Attention is all you need

-

i
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https://arxiv.org/abs/1706.03762

Positional encodings

e Transformer processing does not depend
on position of token

o This is kind of similar to convolution, as each
“patch” or token vector is processed

independently, but no overlap between
patches

o But to compare between tokens, relative
position may be important

e Sinusoidal encoding (on right) is such that
a dot product between encodings
corresponds to positional similarity

e Learned or even fixed random encodings
also work similarly in practice

PE (s .2i) = sin(pos/10000%"/ )
PE(pos2i+1) = cos(pos/100002/ dms)

Positional
Encoding

Input
Embedding

T

Inpuls




Language Transformer: Complete Architecture

Qutput

Probabilities
: : t
* WordPiece tokens (integers) are =
mapped to learned 512-d vectors L
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https://arxiv.org/abs/1706.03762

Attention Visualizations
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Figure 3: An example of the attention mechanism following long-distance dependencies in the
encoder self-attention in layer 5 of 6. Many of the attention heads attend to a distant dependency of
the verb ‘making’, completing the phrase ‘making...more difficult’. Attentions here shown only for
the word ‘making’. Different colors represent different heads. Best viewed in color.
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sentence. We give two such examples above, from two different heads from the encoder self-attention

Figure 5: Many of the attention heads exhibit behaviour that seems related to the structure of the
at layer 5 of 6. The heads clearly learned to perform different tasks.

Figure 4: Two attention heads, also in layer 5 of 6, apparently involved in anaphora resolution. Top:
Full attentions for head 5. Bottom: Isolated attentions from just the word ‘its’ for attention heads 5

and 6. Note that the attentions are very sharp for this word.



Application to Translation

* English-German
— 4.5M sentence pairs
— 37K tokens
* English-French
— 36M sentences
— 32K tokens

e Base models trained on 8 P100s for 12
hours

* Big models (2x token dim, 3x training steps)
trained for 3.5 days

 Adam optimizer: learning rate ramps up for
4K iterations, then down

* Regularization: drop-out, L2 weight, label
smoothing

Attention is all you need
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https://arxiv.org/abs/1706.03762

Results

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Mod BLEU Training Cost (FLOPs)
odel EN-DE EN-FR EN-DE  EN-FR

ByteNet [18] 23.75

Deep-Att + PosUnk [39] 39.2 1.0 -10%°
GNMT + RL [38] 24.6 39.92 2.3-10¥  1.4-102°
ConvS2S [9] 25.16 40.46 0.6-10¥  1.5.102°
MokE [32] 26.03 40.56 2.0-10¥  1.2-102Y
Deep-Att + PosUnk Ensemble [39] 40.4 8.0-10%
GNMT + RL Ensemble [38] 26.30 41.16 1.8-10%°  1.1-10%!
ConvS2S Ensemble [9] 26.36 41.29 7.7-1017  1.2.10%
Transformer (base model) 27.3 38.1 3.3.10'8

Transformer (big) 28.4 41.8 2 3.1019




Things to remember

Sub-wprd .tokenlzathn based on byte-pair Chair is broken <
encoding is an effective way to turn natural  ch##, ##air, is, brok##, ##en

text into a sequence of integers

Learned vector embeddings of these

integers model the relationships between

words

Input
(k,q,v)

1.000

Attention is a general processing oo
mechanism that regresses or clusters values s

2.000

iter 1
1.497
8.503
8.128

1.872

Paris — France
+ Italy = Rome

iter2 iter3 iter4

1.818
8.182
8.141

1.859

Stacked transformer blocks are a powerful

network architecture that alternates
attention and MLPs

Further reading: http://nlp.seas.harvard.edu/annotated-transformer/
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http://nlp.seas.harvard.edu/annotated-transformer/

Next class: Transformers in Language and Vision
* BERT

* ViT

e Unified-10
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