Deep Learning
Optimization
and Computer
Vision

Applied Machine Learning
Derek Hoiem

Today’s Lecture

* Other architecture and training tricks
— Batch normalization
— Data augmentation

* Defining and training a deep network w/ PyTorch

* Adopting the network to new tasks
— Fine-tuning
— Linear probe

 Mask RCNN recognition system

Batch Normalization

Input: Values of = over a mini-batch: B = {x1._,,, }:
] o Parameters to be learned: -, /3
* During training, the feature Output: {y; = BN, 5(z;)}
distribution at intermediate o
|ayers keep Changing as the 1B ;Z:}:i // mini-batch mean
network learns |
— This destabilizes training r,% — — ;(:x;—_ — ;;,3)3 // mini-batch variance
. BatchNorm .normalizes feqtures 5 L T p J normalise
of each mini-batch according to Vot ¢ |
itS mean and Variance and yi + vz; + B = BN, g(x;) // scale and shift
learned parameters y, Tp——— S ——
* Using BatchNorm often i i
improves speed and %) [~ wnouan .
effectiveness of training 7 oK 20K ok a5k 72 i
(a) (b) Without BN (c) With BN

Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift [loffe and Szegedy 2015]

http://arxiv.org/pdf/1502.03167v3.pdf

Example code: ResNet-18 architecture for ImageNet

class Network (nn.Module) :

def init (self, num classes=1000): def forward(self, input):

super (). init () input = self.layerO (input)

resblock = ResBlock | input = self.layerl (input)

self.layer0 = nn.Sequential () B)
nn.Conv2d (3, 64, kernel size=7, stride=2, padding=3), lnput = self. layerz (lnput)
nn.MaxPool2d (kernel size=3, stride=2, padding=1), input = self. layer3 (alUt)
nn.BatchNorm2d (64), input = self.layer4d (input)
nn.ReLU () input = self.gap (input)

) . _ .

self.layerl - nn.Sequential (input = torch.flatten (input, 1)

64, downsample=False), lnput = self.fc (lnput)

resblock (64,
resblock (64, 64, downsample=False)

) _ return input
self.layer2 = nn.Sequential (

resblock (64,
(

4, 128, downsample=True),
128, 128, downsample=False)

resblock

)

self.layer3 nn.Sequential (

resblock (126, 256, downsamplo—True) Forward applies prediction, going through each layer
resblock (256, 256, downsample=False)
) Backward applies backpropagation to compute the loss

self.layer4 nn.Sequential (

56, 512, downsample=True), gradient with respect to parameters in each layer
12

resblock (2
(512, 512, downsample=False)

resblock

)
self.gap = torch.nn.AdaptiveAvgPool2d (1)

self.fc = torch.nn.Linear (512, num classes) Pretrained TorCh mOdels

https://github.com/facebookarchive/fb.resnet.torch/blob/master/pretrained/README.md

Example COde: RESBIOCk ‘channels” = # feature maps

kernel_size = filter size, e.g. 3x3
stride = # pixels to skip when evaluating convolution
padding: to calculate filter values near edge of image/map

class ResBlock(nn.Module) :

def

def

~_init (self, in channels, out channels, downsample) :
super (). init ()
if downsample:
self.convl = nn.Conv2d(in channels, out channels, kernel size=3, stride=2, padding=1)
self.shortcut = nn.Sequential (
nn.Conv2d(in channels, out channels, kernel size=1, stride=2),
nn.BatchNorm2d (out channels) *-————————__________________
)
elee: If downsampling, do it here too so dimensions match
self.convl = nn.Conv2d(in channels, out channels, kernel size=3, stride=1, padding=1)
self.shortcut = nn.Sequential ()
self.convZ = nn.Conv2d(out channels, out channels, kernel size=3, stride=1l, padding=1)
self.bnl = nn.BatchNorm2d(out channels)
self.bn2 = nn.BatchNorm2d (out channels)
forward(self, input):

shortcut = self.shortcut (input)
input = nn.RelU() (self.bnl (self.convl (input)))
input = nn.RelU() (self.bn2(self.conv2 (input)))

input = input + shortcut 4____________________________

return an.ReLU) (Lnput) This ‘+’ is the skip connection!

-I-ra | N | ng 3 d ee p N etwo rk Convolutional network for Digits Classification

class Network{nn.Module):
def init (self, num classes=18, dropout = 8.5):
. super{Network, self). init_ ()
1. DEfIne the network mOdel self.features - nn.Sequentiallg | | . _
nn.Conv2d(3, 64, kernel size=11, stride=4, padding=2),
nn.RelLU({inplace=Trus),

(See ResNet examp|e N previgus nn.MaxPool2d (kernel size=3, stride=2),

nn.Conv2d(64, 256, kernel size=5, padding=2),
|'(j) nn.RelU({inplace=True),

S; I EESS nn.MaxPool2d(kernel size=3, stride=2),
nn.Conv2d(256, 256, kernel _size=3, padding=1),
nn.RelU({inplace=True),
nn.MaxPool2d(kernel size=3, stride=2),

self.avgpool = nn.AdaptivefvgPool2d({(6, 6))
self.classifier = nn.Sequential(
nn.Dropout(p=dropout],
nn.Linear(256 * 6 * 6, 512},
nn.RelU(inplace=True},
nn.Dropout(p=dropout],
nn.Linear(512, 512),
nn.RelU{inplace=True),
nn.Linear(512, num_classes),

def forward(self, x):
M, c, H, W = x.shape
features = self.features(x)
pooled features = self.avgpool(features)
output = self.classifier(torch.flatten(pooled features, 1))
return output

Training a deep network

1. Define the network model

2. Set the key training parameters: # epochs, initial learning rate
and schedule, optimizer, loss function, data loaders

Set up the training
num_epochs = 20

test interval = 1 train loader = DataLGader{data5etftra1n_5et,
batch _size=64,

set initial learning rate and optimizer shuffle=True,

learn rate = 3E-4 num workers=2)

optimizer = torch.optim.adamW(model.parameters(), lr=learn rate)

test loader = DatalLoader(dataset=test set,
batch size=64,
shuffle=False,
num workers=2)

define your learning rate scheduler, e.g. SteplLR
1r scheduler = torch.optim.lr scheduler.SteplLR(optimizer, step size=5, gamma=8.5)

set the loss
criterion = torch.nn.CrossEntropyLoss()

Training a deep network

1. Define the network model
2. Set the key training parameters
3. Train and track performance

Top-level of training

Iterate over the DatalLoader for training data
for epoch in tgdm(range(num epochs), total=num epochs, desc="Training ...", position=1):
train loss = train(train loader, model, criterion, optimizer) # Train the Network for one epoch

TO DO: uncomment the line below. It should be called each epoch to apply the 1lr scheduler
1r_scheduler.step()

train losses.append(train loss)
print(f’'Loss for Training on epoch {str(epoch)} is {str(train loss)} \n")

Also compute validation loss/error every few epochs
Tools like TensorFlow and Weights&Biases make 1t easier to track and visualize experiments

Training a deep network

1. Define the network model
2. Set the key training parameters
3. Train and track performance

def train(train_loader, model, criterion, optimizer):
Train network
rparam train_loader: training dataloader
rparam model: model to be trained
:param criterion: criterion used to calculate loss (should be CrossEntropyloss
:param optimizer: optimizer for medel's params (Adams or 5GD)
:return: mean training loss

model.train()

loss_ = 8.8

losses = []

train for one epoch

it_train = tqdm{enumerate(train_loader), total=len{train_loader), desc="Trainin

for i, (images, labels) in it_train:

get images, labels for this batch
images, labels = images.to(device), labels.to(device)

clear the gradients
optimizer.zero _grad()

generate output for each image in the batch
prediction = model(images)

compute the loss for each example
loss = criterion(prediction, labels)

it train.set description(f'loss: {loss:.3f}"') # update displayed statement

compute the gradients
loss.backward()

update the weights
optimizer.step()

keep track of the loss to monitor the process
losses.append(loss)

return torch.stack(losses).mean().item()

Slide: Jiabin Huang

Training Trick: Data Augmentation

* Create virtual training samples
— Horizontal flip
— Random crop
— Color casting
— Geometric distortion

* Simulates a larger training set,
often improves improve
performance

* |dea goes back to Pomerleau

1995 at least (neural net for car
driving)

Deep Image [Wu et al. 2015]

http://arxiv.org/pdf/1501.02876v2.pdf

Applying Data Augmentation

1. Define transformation sequence

2. Input transform specification to data loader

import torch
from torchvision import datasets, transforms

batch_size=200

train_loader = torch.utils.data.Dataloader(
dataset.MNIST('../data', train=True, download=True,
transform=transforms.Compose(|

transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.RandomRotation(15),
transforms.RandomRotation([90, 180, 270]),
transforms.Resize([32, 32]),
transforms.RandomCrop([28, 28]),
transforms.ToTensor ()

1)),

batch_size=batch_size, shuffle=True)

References:
https://medium.com/dejunhuang/learning-day-23-data-augmentation-in-pytorch-e375e19100c3
https://pytorch.org/vision/main/transforms.html

https://medium.com/dejunhuang/learning-day-23-data-augmentation-in-pytorch-e375e19100c3
https://pytorch.org/vision/main/transforms.html

Training deep networks is a craft

* https://karpathy.github.io/2019/04/25/recipe/
* https://myrtle.ai/learn/how-to-train-your-resnet/

https://karpathy.github.io/2019/04/25/recipe/
https://myrtle.ai/learn/how-to-train-your-resnet/

Questions to check knowledge

https://tinyurl.com/441deep24

https://tinyurl.com/441deep24

Adapting Networks to New Tasks

* Training a deep network from scratch requires a lot of data and
a lot of compute

* Critical concept: We can start with a “pre-trained” network
and adapt it to a new task

— Linear probe

— Fine-tuning

Adapting Networks to New Tasks

e Suppose we’ve trained ImageNet model

 But we want to do something else, e.g. classify flowers or dog
breeds

* We don’t have a huge dataset for that task

ImageNet Trained Model
A

Input

Encoder =) | Decoder = Output 1000 Class
Image

Logits

E.g. weights of _
convolutional layers, E.g. final 1000 class

trained on ImageNet linear layer weights

Linear probe, a.k.a. Feature extraction

ImageNet Trained Model
A
I 1

Input SERE- =) | Decoder |mm Output‘IOOO Class
Image Logits

Pre-trained

Model E.g. weights of E.g. final 1000 class

convolutional layers, linear laver weight
trained on ImageNet earlayerweignts

Keep original encoder weights. Replace decoder linear layer
and train its weights on new task without changing encoder.

Equivalently, extract features from encoder and train linear
v model on those features

ImageNet Trained Encoder

. A \ New Task Decoder

Target Input - Encoder = Decoder Output N, Class

Model Image (Frozen) (Tuned) Logits

How to apply linear probe

Pre-compute features method

1. Load pretrained model (many
available)

https://pytorch.org/vision/stable/model
s.html

2. Remove prediction final layer

3. Apply model to each image to get
features; save them with labels

4. Train new linear model (e.g. logistic
regression or SVM) on the features

import torch
import torch.nn as nn
from torchvision import models

model = models.alexnet(pretrained=True)

new classifier = nn.Sequential(*1ist(model.classifier.children())[:-1])

model.classifier = new _classifier

Freeze encoder method

1. Load pretrained model (many
available)

https://pytorch.org/vision/stable/m
odels.html
2. Set network to not update
weights
3. Replace last layer

4. Retrain network with new
dataset

- Slower than method on left but
does not require storing features,
and can apply data augmentation

model = torchvision.models.vggl9({pretrained=True)
for param in model.parameters():

param.requires_grad = False

Replace the last fully-connected layer

Parameters of newly constructed modules have requires grad=True by default
model.fc = nn.Linear(512, 8) # assuming that the fc7 layer has 512 neurons, other
model.cuda()

Source

https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html
https://jimmy-shen.medium.com/pytorch-freeze-part-of-the-layers-4554105e03a6

Pre-trained networks can provide very good features, as shown in
“CNN Features off-the-shelf: an Astounding Baseline for Recognition”

X CNN |
Representation |
Leam Extract Features
m- Ann';fa':ions Sl:t)rlg;\'lﬂg Normalized RGB, gradient, "
=00 Pose LBP

||3IIJ Best state of the art 00 CNN off-the-shelf 18 CNN off-the-shelf + augmentation 00 Specialized CNN |

100 .
80] o
60
40}
S'%_
/ t(]j,
Ly, €
JUQ}}%S Q@
: &
et’?ép j?@t
O, U

Razavian et al. CVPR 2014

Fine-tuning

ImageNet Trained Model
A
I 1

Input —y SERE- =) | Decoder |mm Output‘IOOO Class
Image Logits

Pre-trained

E.g. weights of .
Model convolutional layers, E.g. final 1000 class
linear layer weights

trained on ImageNet

1. Initialize with original encoder weights.
2. Replace decoder linear layer.
3. Use 10x smaller learning rate than normal and train

N

New Task Encoder

f A | New Task Decoder

Target In Encoder Decod
put ecoder Output N, Class
Model Image = (Fine-tuned) nd (Tuned) Logits i

How to apply fine-tuning

1. Load pre-trained model
2. Replace last layer

3. Set alow learning rate (e.g. Ir=e-4)

— Very sensitive to learning rate because you want to improve but not drift too far
from the initial model

— Learning rate is often at least 10x lower than from “scratch” training

— Can “warm start” by freezing earlier layers initially and then unfreezing after a
few epochs when the linear layer is mostly trained (avoids messing up encoder
while classifier is adjusting)

— Can set lower learning rate for earlier layers

target class = 37

model = torch.hub.load(pytorch/vision:ve.18.8", 'resnet34’, pretrained=True)
model.fc = nn.Linear(512, target class)

In this example, last layer has 512 input features and is called “fc”

Other examples of layer customization (from ‘23 TA Weijie)

https://colab.research.google.com/drive/1x47sniwTl18bZeQEjY9JjHzPnnk7Bo72?usp=sharing

R-CNN first demonstrated major detection improvement by pre-
training on ImageNet and fine-tuning on PASCAL VOC

Improvements in Object Detection

o
N

R-CNN
§mm Deep learning detection

o
o

o
&

5

S

O

O

=

:é 0.4 L 3
o ./.—'/.’l Regionlets
Q- 0.3

i

g 0.2 Deformable Parts Model

< (v1-vd)

© 0.1 @

= HOG Template

o

2005 2007 2008 2009 2010 2012 2013 2014

HOG: Dalal-Triggs 2005 DPM: Felzenszwalb et al. 2008-2012 Regionlets: Wang et al. 2013 R-CNN: Girshick et al. 2014

Comparing linear probe, fine-tuning, and training from
scratch, when does each have an advantage and why?

en)=a+mn-n
100

20 L ‘.14'—1/

60

ResNet18, Err vs # examples / class (in paren)

: Green: Train from scratch
o Blue: Linear Probe from ImageNet
Purple: Fine-tune from ImageNet
0 . Btr; Linear (eqpp = 79.29; Fy00 = 1.32; v 0.84)
- / 18: No Pretr; Finetune (eqgq = 27.91; Sy = 18.23; ~ 0.41)
m— R18: Pretr; Linear (eqpp = 32.42; Sypp = 5.61; 0.35) .
= R18; Pretr; Finetune (egn = 18.86; Fyop = 7.28; ~ 0.57) Very Ilttle data
% 005 01 015 02 025 » Use linear probe on pre-trained model
(0) (400) (100) (45) (25) (16)
400+ examples per class ' 16 examples per class

Moderate data

(a) Transfer: ImageNet to Cifar100 + Fine-tune pre-trained model

“Learning Curves” (2021) pdf Very large dataset

» Either fine-tune or train from scratch

https://arxiv.org/abs/2010.11029

Statistical template approach to object detection

Propose Extract Post-
=P —> 4 Classify L4
Window Features process
SVM Non-max
suppression
Boosted stubs
Segment or
Neural network refine
localization

Sliding window: scan — 1]

image pyramid
)

g

Region proposals:
edge/region-based,
resize to fixed window CNN features

R-CNN (Girshick et al. CVPR 2014)

] warped region aeroplane? no.

person? yes.

tvmonitor? no.

< ::l‘. W S F\'
L i ¥ rd ll I:. ! \ A ;
bl (A i

1. Input 2. Extract region 3. Compute 4. Classity
1mage proposals (~2k) CNN features regions

e Extract regions using Selective Search method (Uijilings et
al. JCV 2013)

* Extract rectangles around regions and resize to 227x227

Extract features with fine-tuned CNN (that was initialized
with network trained on ImageNet before training)

* Classify last layer of network features with SVM
http://arxiv.org/pdf/1311.2524.pdf

http://arxiv.org/pdf/1311.2524.pdf

Fast R-CNN — Girshick 2015

- Outputs: b b OX
={beep softmax regressor
1ConvNet| | N0\ 00 B
| Rol = FC
DL pooling '
. |Rol \ layer
{projection_ | |
Conv : Rol feature
feature map vector .. .

 Compute CNN features for image once

* ROI Pooling: Pool into 7x7 spatial bins for each region proposal,
output class scores and regressed bboxes

e Other refinements: compress classification layer, use network for
final classification, end-to-end training

e 100x speed up of R-CNN (0.02 — 0.1 FPS = 0.5-20 FPS) with similar
accuracy

https://arxiv.org/abs/1504.08083

Faster R-CNN — Ren et al. 2016

classifier

5 pooling
[2k scores | | 4k coordinates | < k anchor boxes
propo V / cls layer \ f reg layer
| 256-d |]
Region Proposal Networ intermediate layer
”eature maps t .

sliding window

conv layers i conv feature map

e Convolutional features used for generating proposals and scoring

— Generate proposals with “objectness” scores and refined bboxes for
each of k “anchors”

— Score proposals in same way as Fast R-CNN
e Similar accuracy to Fast R-CNN with 10x speedup

https://arxiv.org/pdf/1506.01497.pdf

Mask R-CNN — He Gxioxari Dollar Girshick (2017)

« Same network as Faster R-CNN,
except

— Bilinearly interpolate when extracting
7x7 cells of ROl features for better
alignment of features to image

— Instance segmentation: produce a
28x28 mask for each object category

— Keypoint prediction: produce a 56x56
mask for each keypoint (aim is to
label single pixel as correct keypoint)

Faster R-CNN
w/ FPN [27]

class
%7

Rol || x256 02‘”/ |024V Lo
‘ > 14x14_ 28><28

Rol || x256 x256

/

| —
Example ROI and predicted mask

Example ROI and
predicted mask and
keypoints

https://arxiv.org/pdf/1703.06870.pdf

Top performing object detector, keypoint segmenter,
instance segmenter (at time of release and for a bit after)

backbone APPE A Pg% APE’,% A P%b A P?ﬁ, /H’Ell3
Faster R-CNN+++ [19] ResNet-101-C4 34.9 55.7 374 15.6 38.7 50.9
Faster R-CNN w FPN [27] ResNet-101-FPN 36.2 59.1 39.0 18.2 39.0 48.2
Faster R-CNN by G-RMI [21] | Inception-ResNet-v2 [37] 34.7 55.5 36.7 13.5 38.1 52.0
Faster R-CNN w TDM [36] Inception-ResNet-v2-TDM | 36.8 57.7 39.2 16.2 39.8 52.1
Faster R-CNN, RolAlign ResNet-101-FPN 37.3 39.6 40.3 19.8 40.2 48.8
Mask R-CNN ResNet-101-FPN 38.2 60.3 41.7 20.1 41.1 50.2
Mask R-CNN ResNeXt-101-FPN 39.8 62.3 43.4 22.1 43.2 51.2

Table 3. Object detection single-model results (bounding box AP), vs. state-of-the-art on test-dev. Mask R-CNN usir

backbone AP AP50 AP75 APS APMf APL
MNC [10] ResNet-101-C4 24.6 443 24.8 4.7 259 43.6
ECIS [26] +OHEM ResNet-101-C5-dilated | 29.2 495 - 7.1 313 50.0
FCIS+++ [26] +OHEM | ResNet-101-C3-dilated | 33.6 54.5 - - - -
Mask R-CNN ResNet-101-C4 33.1 54.9 34.8 12.1 356 511
Mask R-CNN ResNet-101-FPN 35.7 58.0 37.8 15.5 38.1 524
Mask R-CNN ResNeXt-101-FPN 37.1 60.0 39.4 16.9 39.9 53.5

Table 1. Instance segmentation mask AP on COCO test-dev. MNC [10] and FCIS [26] are the winners of the COCO 2015 and 2016
k kp kp kp kp
APFP AP50 AP7 5 APM AP I

CMU-Pose+++ [6] 61.8 849 675 | 57.1 68.2
G-RMI [31]T 624 840 685 | 59.1 68.1

Mask R-CNN, keypoint-only 6277 870 684 | 574 TI.1
Mask R-CNN, keypoint & mask| 63.1 87.3 68.7 | 578 71.4

Table 4. Keypoint detection AP on COCO test-dev. Ours

Example detections and instance segmentations

donut, 83ionut.89
N -
h]

donut.! Qa nut.99
= donut.96

donut. Q568 — donut.88

| donut.96 s

person.9ersg

handbag.88 : petsgnl97
'|r ‘ e

88
person. 94 Pﬁfmg

e p:rsonQ‘l
'ﬁ‘- mnl@ Clil:mq tﬁE*L

e h 9

dining table. 75.:.4 . ““ﬁ e m-rai
ir.] 4

AL Py 9"’% @ Jlass B =

cup
dining @bl . »

wine giass 91 =
cup.96 wine glass.93

cup.91

" _ghair. 5'5

chair.gy chair.87 chair.94

wine glaas.aé

Example detections and instance segmentations

skateboard.99

%erson_91
Der3anlgiRgg| 99

persgn.98

rson1.00 .99
ersonP@FEoN
¥ peRisAN@P
skateboard.98

penson1.00

couchg®2son. 98
pérson.0

—bar"ggi‘l%
car-%ar.99 *

' car 8
car, 98 ruck. ggﬁlccﬁf@k1 b

-car1l, 00
EAN
car,g5ruck.86 * car.98
oy

biis1.00 car,93 ™
car.97

car.%‘-ggir'gg
pEerson. 99
car. 9. 91car.94

car.98
car.78

person.77

person.87 chajngg g1
| chairB&tee9y
gerson 97 | chefinfi®u) Cgﬁ” 81
chaf By 50
persorhas.71

person.9erson.

person|96 persBﬁf&Q‘f‘s%HQd

person1.00

sports ball.99

tennis racket1 !;90

Example keypoint detections

U-Net Architecture

U-Net

——

The “U-Net” is an encoder-decoder
with skip connections between
mirrored layers in the encoder and
decoder stacks.

Fig from Isola et al. 2017

O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional
networks for biomedical image segmentation. In MICCAI, 2015.

Legend

F
I:' 3x3 Conv, F filters*

|_> 2x2 MaxPooling2D
...... A 2x2 UpSamling2D

I 1x1 Conv, 1 filter

—= Concatenation

*: followed by BatchMNormalization

and Rel

LU

Input
image

UNET

; Output
mask

........

U-Net style architectures are used to
generate pixel maps (e.g., RGB
images or per-pixel labels)

Fig src

https://nchlis.github.io/2019_10_30/page.html

What does the CNN learn?

Map activation back to the input pixel space

 What input pattern originally caused a given activation in the
feature maps?

Layer Above

Reconstruction) Pooled Maps
Switches
i Max Poolin
Max Unpooling @ [W g
Unpooled Maps ‘ Rectified Feature Maps
i

Rectified Linear Rectified Linear
Function L Function

Rectified Unpooled Maps Feature Maps

Convolutional e Convolutional
Filtering {FT}] 7 Filtering {F}

Reconstruction Layer Below Pooled Maps

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

https://arxiv.org/abs/1311.2901

Layer 1 (visualization of randomly sampled features)

Activations (which pixels caused
the feature to have a high
magnitude)

Image patches that had high
activations

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

https://arxiv.org/abs/1311.2901

Layer 2

I [
IR

FER — =
- :

M ”"'HII
LK
- e""*,_,l |
LB

O ‘i
NS
W

Hu%ﬁ
- ‘f—-i-!

').
a8
sl

R N F

] |

m wl S,

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

https://arxiv.org/abs/1311.2901

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

https://arxiv.org/abs/1311.2901

Layer 4 and 5

ﬁ.,...,“'; ‘;' “:_ “.__ _’_‘l 5- . '7“.! & -l
Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

https://arxiv.org/abs/1311.2901

Things to remember

 Models trained on ImageNet are
used as pretrained “backbones” for
other vision tasks

* Mask-RCNN samples patches in
feature maps and predicts boxes,
object region, and keypoints

* Many image generation and
segmentation methods are based on
U-Net downsamples while
deepening features, then upsamples
with skip connections

New Task Encoder

—— New Task Decoder

Input Encoder = | Decoder Output N, Class

Image (Fine-tune d) (Tuned) |™ Logits

UNET

	Deep Learning Optimization and Computer Vision
	Today’s Lecture
	Batch Normalization
	Example code: ResNet-18 architecture for ImageNet
	Example code: ResBlock
	Training a deep network
	Training a deep network
	Training a deep network
	Training a deep network
	Training Trick: Data Augmentation
	Applying Data Augmentation
	Training deep networks is a craft
	Questions to check knowledge
	Adapting Networks to New Tasks
	Adapting Networks to New Tasks
	Linear probe, a.k.a. Feature extraction
	How to apply linear probe
	Pre-trained networks can provide very good features, as shown in “CNN Features off-the-shelf: an Astounding Baseline for Recognition”
	Fine-tuning
	How to apply fine-tuning
	Slide Number 27
	Comparing linear probe, fine-tuning, and training from scratch, when does each have an advantage and why?
	Statistical template approach to object detection
	Slide Number 30
	Fast R-CNN – Girshick 2015
	Faster R-CNN – Ren et al. 2016
	Mask R-CNN – He Gxioxari Dollar Girshick (2017)
	Top performing object detector, keypoint segmenter, instance segmenter (at time of release and for a bit after)
	Example detections and instance segmentations
	Example detections and instance segmentations
	Example keypoint detections
	U-Net Architecture
	What does the CNN learn?
	Map activation back to the input pixel space
	Layer 1 (visualization of randomly sampled features)
	Layer 2
	Layer 3
	Layer 4 and 5
	Things to remember

