
Deep Learning
Optimization
and Computer
Vision
Applied Machine Learning
Derek Hoiem

Dall-E

Today’s Lecture

• Other architecture and training tricks
– Batch normalization
– Data augmentation

• Defining and training a deep network w/ PyTorch

• Adopting the network to new tasks
– Fine-tuning
– Linear probe

• Mask RCNN recognition system

Batch Normalization

Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift [Ioffe and Szegedy 2015]

• During training, the feature
distribution at intermediate
layers keep changing as the
network learns
– This destabilizes training

• BatchNorm normalizes features
of each mini-batch according to
its mean and variance and
learned parameters 𝛾𝛾, 𝛽𝛽

• Using BatchNorm often
improves speed and
effectiveness of training

http://arxiv.org/pdf/1502.03167v3.pdf

Example code: ResNet-18 architecture for ImageNet
class Network(nn.Module):

def __init__(self, num_classes=1000):

super().__init__()

resblock = ResBlock

self.layer0 = nn.Sequential(

nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3),

nn.MaxPool2d(kernel_size=3, stride=2, padding=1),

nn.BatchNorm2d(64),

nn.ReLU()

)
self.layer1 = nn.Sequential(

resblock(64, 64, downsample=False),

resblock(64, 64, downsample=False)

)
self.layer2 = nn.Sequential(

resblock(64, 128, downsample=True),

resblock(128, 128, downsample=False)

)
self.layer3 = nn.Sequential(

resblock(128, 256, downsample=True),

resblock(256, 256, downsample=False)

)
self.layer4 = nn.Sequential(

resblock(256, 512, downsample=True),

resblock(512, 512, downsample=False)

)
self.gap = torch.nn.AdaptiveAvgPool2d(1)

self.fc = torch.nn.Linear(512, num_classes)

def forward(self, input):
input = self.layer0(input)
input = self.layer1(input)
input = self.layer2(input)
input = self.layer3(input)
input = self.layer4(input)
input = self.gap(input)
input = torch.flatten(input, 1)
input = self.fc(input)

return input

Pretrained Torch models

Forward applies prediction, going through each layer

Backward applies backpropagation to compute the loss
gradient with respect to parameters in each layer

https://github.com/facebookarchive/fb.resnet.torch/blob/master/pretrained/README.md

Example code: ResBlock
class ResBlock(nn.Module):

def __init__(self, in_channels, out_channels, downsample):
super().__init__()
if downsample:

self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1)
self.shortcut = nn.Sequential(

nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=2),
nn.BatchNorm2d(out_channels)

)
else:

self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.shortcut = nn.Sequential()

self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.bn1 = nn.BatchNorm2d(out_channels)
self.bn2 = nn.BatchNorm2d(out_channels)

def forward(self, input):
shortcut = self.shortcut(input)
input = nn.ReLU()(self.bn1(self.conv1(input)))
input = nn.ReLU()(self.bn2(self.conv2(input)))
input = input + shortcut
return nn.ReLU()(input) This ‘+’ is the skip connection!

If downsampling, do it here too so dimensions match

“channels” = # feature maps
kernel_size = filter size, e.g. 3x3
stride = # pixels to skip when evaluating convolution
padding: to calculate filter values near edge of image/map

Training a deep network
1. Define the network model

(see ResNet example in previous
slides)

Convolutional network for Digits Classification

Training a deep network
1. Define the network model
2. Set the key training parameters: # epochs, initial learning rate

and schedule, optimizer, loss function, data loaders

Training a deep network
1. Define the network model
2. Set the key training parameters
3. Train and track performance

Top-level of training

Training a deep network
1. Define the network model
2. Set the key training parameters
3. Train and track performance

Training Trick: Data Augmentation
• Create virtual training samples

– Horizontal flip
– Random crop
– Color casting
– Geometric distortion

• Simulates a larger training set,
often improves improve
performance

• Idea goes back to Pomerleau
1995 at least (neural net for car
driving)

Deep Image [Wu et al. 2015]

Slide: Jiabin Huang

http://arxiv.org/pdf/1501.02876v2.pdf

Applying Data Augmentation

References:
https://medium.com/dejunhuang/learning-day-23-data-augmentation-in-pytorch-e375e19100c3
https://pytorch.org/vision/main/transforms.html

1. Define transformation sequence
2. Input transform specification to data loader

https://medium.com/dejunhuang/learning-day-23-data-augmentation-in-pytorch-e375e19100c3
https://pytorch.org/vision/main/transforms.html

Training deep networks is a craft
• https://karpathy.github.io/2019/04/25/recipe/
• https://myrtle.ai/learn/how-to-train-your-resnet/

https://karpathy.github.io/2019/04/25/recipe/
https://myrtle.ai/learn/how-to-train-your-resnet/

Questions to check knowledge

https://tinyurl.com/441deep24

https://tinyurl.com/441deep24

Adapting Networks to New Tasks

• Training a deep network from scratch requires a lot of data and
a lot of compute

• Critical concept: We can start with a “pre-trained” network
and adapt it to a new task
– Linear probe
– Fine-tuning

Adapting Networks to New Tasks
• Suppose we’ve trained ImageNet model
• But we want to do something else, e.g. classify flowers or dog

breeds
• We don’t have a huge dataset for that task

Encoder DecoderInput
Image

E.g. weights of
convolutional layers,
trained on ImageNet

E.g. final 1000 class
linear layer weights

Output 1000 Class
Logits

ImageNet Trained Model

Linear probe, a.k.a. Feature extraction

Encoder
(Frozen)

Decoder
(Tuned)

Input
Image

Output Nc Class
Logits

ImageNet Trained Encoder
New Task Decoder

Keep original encoder weights. Replace decoder linear layer
and train its weights on new task without changing encoder.

Equivalently, extract features from encoder and train linear
model on those features

Pre-trained
Model

Target
Model

How to apply linear probe
Pre-compute features method
1. Load pretrained model (many

available)
https://pytorch.org/vision/stable/model
s.html

2. Remove prediction final layer
3. Apply model to each image to get

features; save them with labels
4. Train new linear model (e.g. logistic

regression or SVM) on the features

Freeze encoder method
1. Load pretrained model (many

available)
https://pytorch.org/vision/stable/m
odels.html

2. Set network to not update
weights

3. Replace last layer
4. Retrain network with new

dataset
- Slower than method on left but
does not require storing features,
and can apply data augmentation

Source

https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html
https://jimmy-shen.medium.com/pytorch-freeze-part-of-the-layers-4554105e03a6

Pre-trained networks can provide very good features, as shown in
“CNN Features off-the-shelf: an Astounding Baseline for Recognition”

Razavian et al. CVPR 2014

Fine-tuning

Encoder
(Fine-tuned)

Decoder
(Tuned)

Input
Image

Output Nc Class
Logits

New Task Encoder
New Task Decoder

1. Initialize with original encoder weights.
2. Replace decoder linear layer.
3. Use 10x smaller learning rate than normal and train

Pre-trained
Model

Target
Model

How to apply fine-tuning
1. Load pre-trained model
2. Replace last layer
3. Set a low learning rate (e.g. lr=e-4)

– Very sensitive to learning rate because you want to improve but not drift too far
from the initial model

– Learning rate is often at least 10x lower than from “scratch” training
– Can “warm start” by freezing earlier layers initially and then unfreezing after a

few epochs when the linear layer is mostly trained (avoids messing up encoder
while classifier is adjusting)

– Can set lower learning rate for earlier layers

Other examples of layer customization (from ‘23 TA Weijie)

In this example, last layer has 512 input features and is called “fc”

https://colab.research.google.com/drive/1x47sniwTl18bZeQEjY9JjHzPnnk7Bo72?usp=sharing

HOG: Dalal-Triggs 2005 DPM: Felzenszwalb et al. 2008-2012 Regionlets: Wang et al. 2013 R-CNN: Girshick et al. 2014

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2005 2007 2008 2009 2010 2012 2013 2014

M
ea

n
Av

er
ag

e
Pr

ec
isi

on
 (V

O
C

20
07

)
Improvements in Object Detection

Deformable Parts Model
(v1-v5)

HOG Template

Regionlets

R-CNN

R-CNN first demonstrated major detection improvement by pre-
training on ImageNet and fine-tuning on PASCAL VOC

Deep learning detection

ResNet18, Err vs # examples / class (in paren)

Green: Train from scratch
Blue: Linear Probe from ImageNet
Purple: Fine-tune from ImageNet

“Learning Curves” (2021) pdf

16 examples per class400+ examples per class

Comparing linear probe, fine-tuning, and training from
scratch, when does each have an advantage and why?

Very little data
• Use linear probe on pre-trained model

Moderate data
• Fine-tune pre-trained model

Very large dataset
• Either fine-tune or train from scratch

https://arxiv.org/abs/2010.11029

Statistical template approach to object detection
Propose
Window

Sliding window: scan
image pyramid

Region proposals:
edge/region-based,
resize to fixed window

Extract
Features

HOG

CNN features

Fast randomized features

Classify

SVM

Boosted stubs

Neural network

Post-
process

Non-max
suppression

Segment or
refine
localization

R-CNN (Girshick et al. CVPR 2014)

• Extract regions using Selective Search method (Uijilings et
al. IJCV 2013)

• Extract rectangles around regions and resize to 227x227
• Extract features with fine-tuned CNN (that was initialized

with network trained on ImageNet before training)
• Classify last layer of network features with SVM

http://arxiv.org/pdf/1311.2524.pdf

http://arxiv.org/pdf/1311.2524.pdf

Fast R-CNN – Girshick 2015

• Compute CNN features for image once
• ROI Pooling: Pool into 7x7 spatial bins for each region proposal,

output class scores and regressed bboxes
• Other refinements: compress classification layer, use network for

final classification, end-to-end training
• 100x speed up of R-CNN (0.02 – 0.1 FPS  0.5-20 FPS) with similar

accuracy

https://arxiv.org/abs/1504.08083

Faster R-CNN – Ren et al. 2016

• Convolutional features used for generating proposals and scoring
– Generate proposals with “objectness” scores and refined bboxes for

each of k “anchors”
– Score proposals in same way as Fast R-CNN

• Similar accuracy to Fast R-CNN with 10x speedup

https://arxiv.org/pdf/1506.01497.pdf

Mask R-CNN – He Gxioxari Dollar Girshick (2017)

• Same network as Faster R-CNN,
except
– Bilinearly interpolate when extracting

7x7 cells of ROI features for better
alignment of features to image

– Instance segmentation: produce a
28x28 mask for each object category

– Keypoint prediction: produce a 56x56
mask for each keypoint (aim is to
label single pixel as correct keypoint)

Example ROI and predicted mask

Example ROI and
predicted mask and
keypoints

https://arxiv.org/pdf/1703.06870.pdf

Top performing object detector, keypoint segmenter,
instance segmenter (at time of release and for a bit after)

Example detections and instance segmentations

Example detections and instance segmentations

Example keypoint detections

U-Net Architecture O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional
networks for biomedical image segmentation. In MICCAI, 2015.

The “U-Net” is an encoder-decoder
with skip connections between
mirrored layers in the encoder and
decoder stacks.

Fig from Isola et al. 2017 Fig src

U-Net style architectures are used to
generate pixel maps (e.g., RGB
images or per-pixel labels)

https://nchlis.github.io/2019_10_30/page.html

What does the CNN learn?

Map activation back to the input pixel space

• What input pattern originally caused a given activation in the
feature maps?

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

https://arxiv.org/abs/1311.2901

Layer 1 (visualization of randomly sampled features)

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

Activations (which pixels caused
the feature to have a high
magnitude)

Image patches that had high
activations

https://arxiv.org/abs/1311.2901

Layer 2

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

https://arxiv.org/abs/1311.2901

Layer 3

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

https://arxiv.org/abs/1311.2901

Layer 4 and 5

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

https://arxiv.org/abs/1311.2901

Things to remember

• Models trained on ImageNet are
used as pretrained “backbones” for
other vision tasks

• Mask-RCNN samples patches in
feature maps and predicts boxes,
object region, and keypoints

• Many image generation and
segmentation methods are based on
U-Net downsamples while
deepening features, then upsamples
with skip connections

	Deep Learning Optimization and Computer Vision
	Today’s Lecture
	Batch Normalization
	Example code: ResNet-18 architecture for ImageNet
	Example code: ResBlock
	Training a deep network
	Training a deep network
	Training a deep network
	Training a deep network
	Training Trick: Data Augmentation
	Applying Data Augmentation
	Training deep networks is a craft
	Questions to check knowledge
	Adapting Networks to New Tasks
	Adapting Networks to New Tasks
	Linear probe, a.k.a. Feature extraction
	How to apply linear probe
	Pre-trained networks can provide very good features, as shown in “CNN Features off-the-shelf: an Astounding Baseline for Recognition”
	Fine-tuning
	How to apply fine-tuning
	Slide Number 27
	Comparing linear probe, fine-tuning, and training from scratch, when does each have an advantage and why?
	Statistical template approach to object detection
	Slide Number 30
	Fast R-CNN – Girshick 2015
	Faster R-CNN – Ren et al. 2016
	Mask R-CNN – He Gxioxari Dollar Girshick (2017)
	Top performing object detector, keypoint segmenter, instance segmenter (at time of release and for a bit after)
	Example detections and instance segmentations
	Example detections and instance segmentations
	Example keypoint detections
	U-Net Architecture
	What does the CNN learn?
	Map activation back to the input pixel space
	Layer 1 (visualization of randomly sampled features)
	Layer 2
	Layer 3
	Layer 4 and 5
	Things to remember

