Dall-E

CNNs and Key
Ingredients of
Deep
Learning

Applied Machine Learning
Derek Hoiem

lastclass

* Perceptrons are linear prediction
models

 MLPs are non-linear prediction models,
composed of multiple linear layers with
non-linear activations B

Stage

sl Output

0.6

“Probability of
beingAlive”

* MLPs can model more complex
functions, but are harder to optimize

* Optimization is by stochastic gradient
descent

Figure source

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

Another application example: mapping position/rays to color

 o-f E
,l,f i é -
Il
¥(Vv) E e
1 £ =
QD
SELT
FT0 i3
i
= i
NI R
YO0 i
g
e =y
FX/ =2 |
y (&)(&) 5B
(a) Coordinate-based MLP (b) Image regression (c) 3D shape regression (d) MRI reconstruction (e) Inverse rendering

(z,y)— RGB (z,y,2)— occupancy (z.y,z)— density (z,y,z)— RGB, density
A network can be trained to serve as a query function, for compression and interpolation
— E.g.,mlp(x,y) - (r,g,b) or mlp(x,y,z) = (r, g, b, density)
 Fourier features: instead of using [x, y] directly as input, use [sin(wyx), cos(wgx) , sin(wqx), ...]

Fourier Features (Tancik et al. 2020) NeRF (Mildenhall et al. 2020)

https://arxiv.org/pdf/2006.10739.pdf
https://arxiv.org/abs/2003.08934

Generalized insight from “Fourier Features”

* |nput matters —it’s best to represent data in a way that makes it
linearly predictive, even if you have a non-linear model

fgx y) = R, G, B requires a complex network to model because
X;

X is a bad similarity function (maximized when x; is large,
mstead of similar to x;)

* Representing x with a Fourier encoding, e.g. y(x) =
sin(x), cos(x),sin(2x),cos(2x), ...] enables a simpler network

pecause y(xl-)Ty(xj) falls off smoothly as x; moves away from x;

— This means the initial network layer can model similarity to different
positions with each hidden unit

HW 4

2,

MLPs with MNIST [40 pts]

For this part, you will want to use a GPU to improve runtime. Google Colab provides limited free
GPU acceleration to all users. It can be run with CPU, but will be a few times slower. See Tips
for detailed guidance on this problem. Note that this problem may require tens of minutes of
computation.

First, use PyTorch to implement a Multilayer Perceptron network with one hidden layer (size 64)
with RelLU activation. Set the network to minimize cross-entropy loss, which is the negative log
probability of the training labels given the training features. This objective function takes
unnormalized logits as inputs. Do not use MLP in sklearn for this HW - use Torch.

a.

4a.

Finally, see if you can improve the model by adjusting the learning rate, the hidden layer size,
adding a hidden layer, or trying a different optimizer such as Adam (recommended). Report the

Using the train/val split provided in the starter code, train your network for 100 epochs with
learning rates of 0.01, 0.1, and 1. Use a batch size of 256 and the 5GD optimizer. After
each epoch, record the mean training and validation loss and compute the validation error of
the final model. The mean validation loss should be computed after the epoch is complete.
The mean training loss can either be computed after the epoch is complete, or, for efficiency,
computed using the losses accumulated during the fraining of the epoch. Plot the training
and validation losses using the display error curves function.

Based on the loss curves, select the learning rate and number of epochs that minimizes the
validation loss. Retrain that model (if it's not stored), and report training loss, validation loss,
training error, validation error, and test error. You should be able to get test error lower than
2.5%.

Improve MNIST Classification Performance using MLPs [up to 30 pts]

train/val/test loss and the train/valftest classification error for the best model. Report your

hyperparameters (network layers/size, optimizer type, learning rate, data augmentation, etc.).
You can also use an ensemble of networks to achieve lower error for this part. Describe your
method and repart your valftest error. You must select a model using the validation set and then
test your selected model with the test set. Points are awarded as follows: +10 for test error <

2.2%, +10 for test error < 2.0%, +10 for test error < 1.8%.

c. Positional encoding [30 pts]
Advanced

Because linear functions are easier to represent in MLPs, it can help to represent features in a
way that makes them more useful linearly. An example is the use of positional encoding to
represent a pixel position, as described in hitps //arxiv org/pdi/2006 10739 pdf.

For this problem, use positional encoding to predict RGB values given pixel coordinate of this
image. You can resize the image to a smaller size for speed (e.g. 64 pixels on a side). In this
problem, the network is acting as a kind of encoder — you train it on the same pixels that you
will use for prediction.

1. Create an MLP that predicts the RGB values of a pixel from its position (x,y). Display
the RGB image generated by the network when it receives each pixel position as an
input.

2. \Write code to extract a sinusoidal positional encoding of (¥, y). See this page for details.

Create an MLP that predicts a pixel's RGB values from its positional encoding of (x, y).

Display the RGB image generated by the network when it receives each pixel position as

an input.

E

The paper uses these MLP design parameters: L2 loss, RelLU MLP with 4 layers and 256
channels (nodes per layer), sigmoid activation on output, and 256 frequencies.

https://docs.google.com/document/d/1_9ZUFL7gi7Mq0-isQOcwDxhhmlDKVgdZg9mDaKokHEA/edit

Today’s Lecture

* Deep learning history
* Residual Networks

e SGD++

Brief history of deep learning

e 1958: neural nets (perceptron and MLP) invented by Rosenblatt
 1967: First use of SGD in deep-learning network (Amari)

e 1980’s/1990’s: Neural nets are popularized and then abandoned as being
interesting idea but too difficult to optimize or “unprincipled”, supplanted by
SVM

deep learning

 1990’s: LeCun and colleagues achieve state-of-art performance on character
recognition with convolutional network

machine learning "

e 2000’s: Hinton, Bottou, Bengio, LeCun, Ng, and others keep trying stuff with
deep networks but without much traction/acclaim in most areas

e 2010-2011: Substantial progress in some areas, but vision community still
unconvinced

e 2012:shock at ECCV 2012 with ImageNet challenge

neural networks "

Google Book Ngram Plot

1940 1950 1960 1970 1980 1990 2000 2010

Slide: Lazebnik

The Perceptron

Weights

Output: sgn(w-x + b)

>

Xp

Rosenblatt, Frank (1958), The Perceptron: A Probabilistic Model for Information Storage and Organization
in the Brain, Cornell Aeronautical Laboratory, Psychological Review, v65, No. 6, pp. 386—408.

NEW NAVY DEVICE
LEARNS BY DOING

Psychologist Shows Embryo
of Computer Designed to
Read and Grow Wiser

WASHINGTON, July-7 (UPI)
—The Navy revealed the em-
bryo of an electronic computer
today that it expects will be
abla to walk, talk, see, write,
reproduce itself and be .con-
scious of its existence,

The embryo—the Weather
Bureau's $2,000,000 “704" com-
puter—Ilearned to differentiate
between right and left after
fifty aftempts in the Navy's
demonstration for newsmen.,

The service said it would use
this principle to build the first
of its Perceptron thinking ma-
chines that will be able to read
and write, It is expected to be
finished in about a year at a
cost of $100,000.

Dr. Frank Rosenblatt, de-
‘signer of the Perceptron, con-
ducted the demonstration, He
said ‘the machine would be the
first device to think as the hu-
man brain. As do human be-

ings, Perceptron will make mis-
takeg at first, but will grow
wiser as it gains experience, he
said, '

Dr. Rosenblatt, a research
psychologist at the -Cornell
Aeronautical Laboratory, Buf-
falo, said Perceptrons might be
fired to the planets as mechani-
cal space explorers, -

Without Human Controls
. The Navy said the perceptron
would be the. first non-living
mechanism “capable of receiv-
ing, recognizing and identifying

its surroundings without -any
human training or control.” |

The “brain” is designed to
remember images and informa-
tion it has perceived jtself. Ordi-
nary computers remember only
what ig fed into them on punch
cards or magnetic tape. . |

Later Perceptrons will be able
to recognize people and call out
‘their names and instantly trans-
late speech in one language to’
speech or writing in another
language, it was predicted.

Mr. Rosenblatt said in prin-
ciple it would be possible to
build brains that could repro-
duce themselves on an assembly

!

line and which would be con-
scious of their existence. ‘

Slide: Lazebnik

1958 New York
Times...

In today’s demonstration, the
“704" was fed two cards, one
with squares marked on the left
side and the other with squares
on the right side.

Learng by Doing

In the first fifty trials, the
machine made no distinction be-
tween them. It then started
registering a “Q"” for the left
squares and “O" for the right

squares. v
Dr. Rosenblatt said he could
explain why the machine

learned only in highly technical
terms. But he said the computer
had undergone a ‘‘self-induced
change in the wiring diagram.”

The first Perceptron will
have about 1,000 electronic
“association cells” recelving
electrical impulses from an eye-
like scanning device with 400
photo-cells. The human brain
has 10,000,000,000 responsive
cells, including 100,000,000 con-
nections with the eyes.

ically learn
ions of complex functions but

Deeper neural networks could theoret

compositional representat

were hard to opt

iImize

nt

hidden laver 3

|

3

=

&)
=

B

-
-
—_—

e

=
=

—

3

=

a)
=
2 T
= o
L% \
— N

input laver

i
LT
.

=
o

¥ 5
LAt e Tty
L
T4 3 A Sl e ¥y)
el 2 Tl] e Lt ...?u.....

T iy B

LR

ll,ﬁﬁtmrr
NN

-~ A ‘

=l

gt e,
el

F A
= . A
o :

T £
s ;5
o 2
. g

Pure MLPs are not great for images

hidden layer 1 hidden layer 2 hidden layer 3

input layer

You could treat the image
like a vector of values and
add fully connected layers
(which we do in HW4)

But this doesn’t take
Image Fully connected layer advantage of the 2D

structure of images

Slide: Lazebnik

mages have local patterns that can appear at different
nositions

093 | 094 | 097 | 0.62 | 0.37 | 0.85 [0.97 | 0.93 [0.92 | 0.99
-':_'j' . 0.89 | 0.82 | 0.89 | 0.56 | 0.31 | 0.75 [0.92 | 0.81 [0.95 | 0.91
4 0.72 | 0.51 | 055 | 0.51 | 0.42 | 0.57 | 0.41 | 0.49 [0.91 | 0.92
= 0.95 [0.88 | 0.94 | 0.56 | 0.46 | 0.91 | 0.87 | 0.90 | 0.97 | 0.95
0.81 [0.81 | 0.87 [0.57 | 0.37 | 0.80 | 0.88 | 0.89 | 0.79 | 0.85
‘ 0.62 [0.60 | 0.58 [0.50 | 0.60 | 0.58 | 0.50 | 0.61 | 0.45 | 0.33
0.84 [0.74 | 0.58 [0.51 | 0.39 | 0.73 | 0.92 | 0.91 | 0.49 | 0.74
0.67 | 0.54 | 0.85 | 0.48 | 0.37 | 0.88 | 0.90 [0.94 | 0.82 | 0.93
A 0.49 [0.56 | 0.66 [0.43 | 0.42 | 0.77 | 0.73 | 0.71 | 0.90 | 0.99
0.73 | 0.90 | 0.67 | 0.33 | 0.61 | 0.69 | 0.79 [0.73 | 0.93 | 0.97
094 (0.89 | 049 [041 | 0.78 | 0.78 | 0.77 | 0.89 | 0.99 | 0.93

= - S —-. -,;--ﬂ

e 4 7 o S|
'fhé‘ N .:5'_:'1'

Linear filtering is a foundation of image processing
- Smoothing Filter

* Linear image filtering: at each pixel, output a
weighted sum of pixels in surrounding patch

— E.g. Gaussian-weighted smoothing filter (right), edge
detection (below), local pattern detection

2 3x3
| i [Aok

o

Ll

w
wlo|n|ale s
winfN]ele|
ofele]e]-]=

6x6

Ix1+1x%1+2x14+0x0+5%x04+7%x0+1%x-14+8x-1+2x-1=-5

Animation: https://datahacker.rs/004-how-to-smooth-and-sharpen-an-image-in-opencv/

https://datahacker.rs/004-how-to-smooth-and-sharpen-an-image-in-opencv/

A CNN (convolutional network) learns filter weights to
create grids of features (“feature map”)

feature map
learned

weights

\ AT (
\

image Convolutional layer
Slide: Lazebnik

Convolution as feature extraction

Feature Map

Slide: Lazebnik

Multiple filters are learned, producing a map of

feature vectors

learned
weights

\
\\

feature map

/

image

Convolutional layer

Slide: Lazebnik

Following layers operate on the feature map from
the previous layer

next layer
image Convolutional layer

Slide: Lazebnik

Key operations in a CNN

g

Feature maps }

i

[Spatial pooling J

=

)

[Input Image]

Feature Map

Source: R. Fergus, Y. LeCun Slide: Lazebnik

Key operations

i

[Feature maps]

i

Rectified Linear Unit (ReLU)

[Spatial pooling }

Convolution
(Learned)

3

Input Image ' S »

Source: R. Fergus, Y. LeCun Slide: Lazebnik

Key operations

g

Feature maps

Spatial pooling

)
—

Max

[

Input Image]

Source: R. Fergus, Y. LeCun Slide: Lazebnik

Key idea: learn features and classifier that work
well together (“end-to-end training”)

Label

»E’H%

Convolution/pool
Convolution/pool
Convolution/pool

Convolution/pool

Convolution/pool

i

LeNet-5 for character/digit recognition

C3: f. maps 16@10x10

INPUT g{g;gige maps S54:1. maps 16@5x5
S52: f. maps

32x32

CS:layer gg:jayer OUTPUT
120 a4 o 10

l Full C{:-nrlpect'r{}n | (Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection MNIST
, results
* Average pooling Error Rate (%) (~1% test
* Sigmoid or tanh nonlinearity . error)
* Fully connected layers at the end
 Trained on MNIST digit dataset with 60K training examples = Test
ok *—t—t—as Training

o ! E 1z 1 z4a

Training set Iterations

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document
recognition, Proc. IEEE 86(11): 2278-2324, 1998.

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

Fast forward to the arrival of big visual data...

* Images gathered from Internet

::I:-"'l:':. ;:.:i = .“—#.I
I M A G E INLC ~14 million labeled images, 20k classes
 Human labels via Amazon MTurk
* ImageNet Large-Scale Visual Recognition

Challenge (ILSVRC):
1.2 million training images, 1000 classes

www.image-net.org/challenges/LSVRC/

Slide: Lazebnik

http://www.image-net.org/challenges/LSVRC/

2012 ImageNet 1K

(Fall 2012)

40
35

30

2

1

1
0

|*?‘\P‘ o* ,‘0‘6
1&

Error
N
o (0] o (6]

(S,]

3
\F«P‘% & P‘“s‘e(

v-©

Slide: Jia-bin Huang

2012 ImageNet 1K '

(Fall 2012)

40
35 g
30
25

S 20

5
15
10
5
0
»‘a“?\’*%i N“S"e& *@C‘“‘\\A@P 0t

Slide: Jia-bin Huang

AlexNet: ILSVRC 2012 winner

R T s 3| LAY RN 7
e 3| e M |) . — \dense
\ o, P 192 192 128 2048 204
57 128 e e a
I AV E R 13 \ 13
e e, X
; e, E A N T
3 NEE I | X
57 - 3| eSS 13 dense dense
A 1000
192 192 128 Max])
: 2048
Max 128 Max pooling 2 2048
pooling pooling

3 48

e Similar framework to LeNet but:
* Max pooling, ReLU nonlinearity
* More data and bigger model (7 hidden layers, 650K units, 60M params)
 GPU implementation (50x speedup over CPU)
* Trained on two GPUs for a week
* Dropout regularization

A. Krizhevsky, |. Sutskever, and G. Hinton, ImageNet Classification with Deep
Convolutional Neural Networks, NIPS 2012

http://www.cs.toronto.edu/%7Efritz/absps/imagenet.pdf
http://www.cs.toronto.edu/%7Efritz/absps/imagenet.pdf

What enabled the
breakthrough?

1. RelU activation enabled
large models to be
optimized

2. ImageNet provided diverse
and massive annotation to
take advantage of the
models

3. GPU processing made the
optimization practicable

Sigmoid vs. RelLU

Sigmoid

INPUT + — 1 HIDDEN LAYER OUTPUT

Which properties do Test loss 0.020
you want to feed in? T Training loss 0.013

4 meurons

KX This is the output
from one newron. T
Hover fo see it

larger.
sin(x,)
Colors shows a=max(0, 2)
' Lot
¥ data, neuron and . I - .
sin(x.) : 1
o weight values.

[] Showtestdata [] Discretize output

http://playground.tensorflow.org/
Try many layers with sigmoid vs relu

Slide: Lazebnik

http://playground.tensorflow.org/

Even with RelU, it was hard to get very deep networks to
work well

GoogleNet: add bottlenecks and multiple stages of
supervision g

s ¥ ¥ p
& g° 5 2 8
5 5 A P
,
4 7
= " = 2
Eolte EallE ~E =] = gl Go
g 3 : ry E : z : =
L 3 T o [o B 3 i
] g 1 BN BF ol & z = = 3 = = 3
sipm o F e Rl i f R & B s 2 1
B B H B B H BB B 4 E
: 3 N N A3 ;
5 s N
H B
F3 ¥

(N)E+SXS
joodabeiany
(S)IT+IXT
AUOD

OXewyos

Auxiliary classifier

C. Szegedy et al., Going deeper with convolutions, CVPR 2015

https://arxiv.org/abs/1409.4842

What was the problem?

 Were deeper networks
L . 5
overfitting the training data- < 56-layer
S 20-layer
* Or was the problem just that % ol 4
we couldn’t optimize them? 7
 How could we answer this 0

0 1 2

. 3 1
guestion? iter. (1e4)

Look at the training error!

V\LVM

3]
=

X -
— R
2 5 20-layer
Q 10+ g 10F y
o0
= 56-layer =2
- v
R= Q
E S
= 20-layer
% ! 2 5 6 % 1 2 5 6

iter? (1e4)4 iter? (1e4)4
With deeper networks, the training error goes up!?!

Fig: He et al. 2016

https://arxiv.org/abs/1512.03385

Very deep networks, vanishing gradients,
and information propagation :{; |
Vanishing gradients TEE ==
* Early weights have a long path to reach output { |
* Any zeros along that path kill the gradient =————
* Early layers cannot be optimized T
* Multiple stages of supervision can help, but it’s ==
complicated and time-consuming =l

Information propagation

 Networks need to continually maintain and add
to information represented in previous layers

o

!EII
el ¥ ==
Elef LB LIELE
E ="M=
2 E =] |=| 1=] |=

elle| e e

ResNet: the residual module

* Use skip or shortcut
connections around 2-3

layer MLPs .

e Gradients can flow WeigHL dye
quickly back through skip F(x) 'l' b X
connections WElant ‘ayer identity

 Each module needs only F(x) +x
add information to the
previous layers

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun, Deep Residual
Learning for Image Recognition, CVPR 2016 (Best Paper), 200K+ citations

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385

ResNet: Residual Bottleneck Module

Used in 50+ layer networks

I 256-d

!

1x1, 64
l relu

3x3, 64
l relu

1x1, 256

Directly performing 3x3
convolutions with 256 feature
maps at input and output:
256 x 256 x 3 x 3 ~ 600K

operations

Using 1x1 convolutions to
reduce 256 to 64 feature maps,
followed by 3x3 convolutions,
followed by 1x1 convolutions
to expand back to 256 maps:
256 x64x1x1~16K

64 x 64 x 3 x 3~ 36K

64 x 256 x1x1~ 16K

Total: ~70K

Kaiming He, Xiangyu Zhang, Shaoqging Ren, and Jian Sun, Deep Residual
Learning for Image Recognition, CVPR 2016

Slide: Lazebnik

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385

ResNet: going real deep

=)
. =)
Revolution of Depth =
S
AlexNet, 8 layers == VGG, 19 layers E ResNet, 152 layers =
(ILSVRC 2012) (ILSVRC 2014) £S (ILSVRC 2015)

Despite depth, the residual connections enable error
gradients to “skip” all the way back to the beginning

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun, Deep Residual
Learning for Image Recognition, CVPR 2016

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385

Example code: ResBlock

class ResBlock(nn.Module) :

def init (self, in channels, out channels, downsample):
super (). init ()
if downsample:
self.convl = nn.Conv2d(in channels, out channels, kernel size=3, stride=2, padding=1)

self.shortcut = nn.Sequential (
nn.Conv2d(in channels, out channels, kernel size=1, stride=2),
nn.BatchNorm2d (out channels)

)

else:
self.convl = nn.Conv2d(in channels, out channels, kernel size=3, stride=1, padding=1)
self.shortcut = nn.Sequential ()
self.convZ = nn.Conv2d(out channels, out channels, kernel size=3, stride=1l, padding=1)
self.bnl = nn.BatchNorm2d (out channels)
self.bn2 = nn.BatchNorm2d (out channels)

def forward(self, input):
shortcut = self.shortcut (input)
input = nn.RelU() (self.bnl (self.convl (input)))
input = nn.RelU() (self.bn2(self.conv2 (input)))
input = input + shortcut
return nn.ReLU() (input)

Example code: ResNet-18 architecture for ImageNet

class Network (nn.Module) :

def init (self, num classes=37):

super (). init ()
resblock = ResBlock

self.layer0 = nn.
nn.Conv2d (3,

Sequential (

64, kernel size=7, stride=2, padding=3),

nn.MaxPool2d(kernel size=3, stride=2, padding=1l),
nn.BatchNorm2d (64),

nn.RelLU ()
)

self.layerl = nn.
resblock (64,
resblock (64,
)

self.layer2 = nn.
resblock (64,
resblock (128,
)

self.layer3 = nn.
resblock (128,
resblock (256,
)

self.layer4d = nn.
resblock (256,
resblock (512,

)
self.gap = torch.

Sequential (
64, downsample=False),

64, downsample=False)

Sequential (
128, downsample=True),

128, downsample=False)

Sequential (
256, downsample=True),

256, downsample=False)

Sequential (
512, downsample=True),

512, downsample=False)

nn.AdaptiveAvgPool2d (1)

self.fc = torch.nn.Linear (512, num classes)

def forward(self,

input
input
input
input
input
input
input
input

input) :
self.layer0O (input)
self.layerl (input)
self.layer?2 (input)
self.layer3 (input)
self.layer4 (input)
self.gap (input)
torch.flatten (input, 1)
self.fc(input)

return input

ResNet Architectures and Results

layer name | output size 1 8-layer | 34-layer | 50-layer 1 0]-layer 152-layer method lOp—l erT. 'ED]J—f} eIT.
conv | 112112 77, 64, stride 2 — T
33 max pool, stride 2 VGG [41] (ILSVRC 14) - 8.43
comax | 56x56 {3\(3 64] [3 64} [1xl,64] [1x1,64] [1x1,64] GoogleNet [44] (ILSVRC'14) - 7.89
- T T =2 S 3 3x3, 64 | %3 Ix3, 64 |[x3 Ix3, 64 | %3
3 ! r

33, 64 33, 64 i || s | | aer, 250 | VGG [41] (v5) 24.4 7.1
33,128] f 33 128 1 [1x1, 128] [1x1, 128] [11,128 | PReLU-net [13] 21.59 5.71
convi_x 2828 3><3-_ 128 w2 3x3 128 wd 3x3, 128 | =4 3x3, EEE =4 3x3, 128 | =8 BN—iI]CEpﬁOH [16] 21.99 581

- ’ - - . | 1x1,512 | | 1x1,512 | | 1x1,512 | _
T 33256 1 [1x1,256 | [1x1,256 | [1%1,256] ResNet-34 B 21.84 5.71
convd_x 414 3 3:;515 x2 3 _1-2156 ®6 3x3,256 | x6 3x3,256 | =23 3x3,256 | =36 ResNet-34 C 21.53 5.60
e L | 1x1, 1024 | | 1x1,1024 | 11, 1024 | ResNet.50 20,74 s 05

303502] 323,512 [1x1,512] [1x1,512] [1x1,512] esivet ' 2-
conv5_x 7x7 a3 512 |72 || 3x3 512 [¥3 || 3%3.512 | x3 3%3,512 | %3 3%3.512 | %3 ResNet-101 19.87 4.60
- T - R L]x]_.ZIME_ L]X',ZO‘*—"—SJ L lKl.Z':HEJ RESNEt—lﬁz lg 1‘8 449

1x1 average pool, 1000-d fc, softmax - = -

FLOPs 1.8 107 3.6x10° 3.8x107 | 7.6x10¢ | 113107

Table 4. Error rates (%) of single-model results on the ImageNet

validation set (except " reported on the test set).

Improvements to SGD

Great site by Lili Jiang

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-
adagrad-rmsprop-adam-f898b102325c¢

Gradient of loss wrt weights

Basic SGD: /
Awe = —ng(w)
Wep1 = W + Awy

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

SGD + Momentum

SGD + Momentum:

me=p-me+gwy) egfp=.9
Awy = —1n - my

Wep1 = W + Awy

Momentum (magenta)
converges faster and carries
the ball through a local
minimum

Figure source

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

AdaGrad: Adaptive Gradient

AdaGrad:
Isq (t) = YIsq (t—1)+ g(Wt)Z

Aw, = —ng(wi)/./gsq(t) (normalize by path length of all previous updates)
Wep1 = We + Awy

B Step-by-Step

Gradient Arrows
| Adjusted Gradient Arrows
Momentum Arrows
" | Sum of Gradient Squared
Path

Gmadient Descent

Learning Rate: 1e -2

AdaGrad (white) avoids
moving in only one weight
direction, and can lead to
smoother convergence

Figure source

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

RMSProp: Root Mean Squared Propagation

RMSProp:
Jsq(t) = €-gsqt —1) + (1 —¢) - g(wg)? (introducing decay rate turns this into moving avg)

Aw, = —ng(w;)/./gsq(t) (normalize by moving average length of previous updates)

Wep1 = We + Awy

|| Momentum Armows

|| Sum of Gradient Squared
[| Path

' Gradient Descent

Learning Rate:. 1e

| Momentum
Learning Rata: e 2 RMSPrOp (green) mOVGS

Decay rate: ' - faster than AdaGrad (Whlte)

M Adagrad

_ Learning Rate: e :—2 flv
Learning Rate: 1 -3 I~

Decayrate: 0990 |

Figure source

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

Adam: Adaptive Moment Estimation

Adam:
m;=8 -m;+ (1 —p) - gws) [momentum, 8 = 0.9]
gsqt) =€-gsqt—1) + (1 —¢€)- g(w)* [RMSProp, € = 0.999]

Awy = —n 'mt/\/ YIsq (we)

Wep1 = W + Awy

AdamW is a fix on Adam to correctly update weight decay

Videos

AdamW is widely used and easier to
tune than SGD + momentum

Figure source

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

What to use?

« AdamW is less sensitive to hyperparameters (easier to get a
decent solution working)

 Many practitioners say SGD+momentum can achieve the best
performance, if you’re able to optimize over hyperparameters

* | commonly see either one used in research papers

What to remember

* Deep networks provide huge gains in
performance
— Large capacity, optimizable models
— Learn from new large datasets

* RelLU and skip connections simplify
optimization

e SGD+momentum and AdamW are the
most commonly used optimizers

ImageNet

2 AlexNet
85

Y

weight layer

F(x)

relu
A 4

weight layer

F(x) +x

X
identity

Next lecture

* More deep network optimization
— Batch Normalization
— Data Augmentation

* Re-using networks
— Linear probe
— Fine-tuning

e Mask RCNN line of work

	CNNs and Key Ingredients of Deep Learning
	Last class
	Another application example: mapping position/rays to color
	Generalized insight from “Fourier Features”
	HW 4
	Today’s Lecture
	Brief history of deep learning
	Slide Number 8
	Slide Number 9
	Deeper neural networks could theoretically learn compositional representations of complex functions but were hard to optimize
	Pure MLPs are not great for images
	Images have local patterns that can appear at different positions
	Linear filtering is a foundation of image processing
	A CNN (convolutional network) learns filter weights to create grids of features (“feature map”)
	Convolution as feature extraction
	Multiple filters are learned, producing a map of feature vectors
	Following layers operate on the feature map from the previous layer
	Key operations in a CNN
	Key operations
	Key operations
	Key idea: learn features and classifier that work well together (“end-to-end training”)
	LeNet-5 for character/digit recognition
	Fast forward to the arrival of big visual data…
	Slide Number 27
	Slide Number 28
	AlexNet: ILSVRC 2012 winner
	What enabled the breakthrough?
	Sigmoid vs. ReLU
	Even with ReLU, it was hard to get very deep networks to work well
	What was the problem?
	Look at the training error!
	Very deep networks, vanishing gradients, and information propagation
	ResNet: the residual module
	ResNet: Residual Bottleneck Module
	ResNet: going real deep
	Example code: ResBlock
	Example code: ResNet-18 architecture for ImageNet
	ResNet Architectures and Results
	Improvements to SGD
	SGD + Momentum
	AdaGrad: Adaptive Gradient
	RMSProp: Root Mean Squared Propagation
	Adam: Adaptive Moment Estimation
	What to use?
	What to remember
	Next lecture

