
Optimization
and
Stochastic
Gradient
Descent

Applied Machine Learning
Derek Hoiem

Dall-E

Machine learning optimization

Optimization Solution Depends on
Initialization or Randomized
Optimization?

Optimization Strategy is
Important to Effectiveness?

KNN N/A No No

K-means Coordinate Descent Yes No

Linear Regression Iterative No No

Logistic Regression Iterative No No

Linear SVM Iterative No No

Kernelized SVM Iterative No No

EM Algorithm Coordinate Descent Yes No

Decision Tree Greedy selection No No

• For methods we learned so far, one optimizer may be faster or more memory efficient than other, but they

will generally be able to achieve similar solutions.

Machine learning optimization
Optimization Solution Depends on

Initialization or Randomized
Optimization?

Optimization Strategy is
Important to Effectiveness?

KNN N/A No No

K-means Coordinate Descent Yes No

Linear Regression Iterative No No

Logistic Regression Iterative No No

Linear SVM Iterative No No

Kernelized SVM Iterative No No

EM Algorithm Coordinate Descent Yes No

Decision Tree Greedy selection No No

MLPs, Deep
Networks

Iterative Yes Yes

• For methods we learned so far, one optimizer may be faster or more memory efficient than other, but they

will generally be able to achieve similar solutions.

• For MLPs and deep networks, optimization is an important part of design.

This lecture

1. Batch gradient descent

2. PEGASOS: Stochastic Gradient Descent for SVM

3. Perceptrons

Gradient descent

gradient_descent(f’(x), x0, lr, niter)

x = x0

for t in range(niter):

x = x – lr*f’(x)

return x

Gradient descent

gradient_descent(f’(x), x0, lr, niter)

x = x0

for t in range(niter):

x = x – lr*f’(x)

return x

Example: https://towardsdatascience.com/gradient-descent-

algorithm-a-deep-dive-cf04e8115f21

Example:

𝑓 𝑥 = 𝑥2 − 4𝑥 + 1
f ′ 𝑥 = 2𝑥 − 4

https://towardsdatascience.com/gradient-descent-algorithm-a-deep-dive-cf04e8115f21
https://towardsdatascience.com/gradient-descent-algorithm-a-deep-dive-cf04e8115f21

Gradient descent

gradient_descent(f’(x), x0, lr, niter)

x = x0

for t in range(niter):

x = x – lr*f’(x)

return x

Example: https://towardsdatascience.com/gradient-descent-

algorithm-a-deep-dive-cf04e8115f21

Example:

𝑓 𝑥 = 𝑥2 − 4𝑥 + 1
𝑓′ 𝑥 = 2𝑥 − 4

https://towardsdatascience.com/gradient-descent-algorithm-a-deep-dive-cf04e8115f21
https://towardsdatascience.com/gradient-descent-algorithm-a-deep-dive-cf04e8115f21

Gradient descent challenge cases

Saddle points (gradient = 0 in some parts of solution space)

Fig: https://www.mltut.com/stochastic-gradient-descent-a-super-easy-complete-guide/ Example: https://towardsdatascience.com/gradient-descent-algorithm-a-deep-dive-cf04e8115f21

Multiple local minima

Many models we’ve learned so far (e.g., SVM, logistic regression, linear regression) are convex, so

they don’t have these challenges.

https://www.mltut.com/stochastic-gradient-descent-a-super-easy-complete-guide/
https://towardsdatascience.com/gradient-descent-algorithm-a-deep-dive-cf04e8115f21

Gradient Descent Visualization with Local Minima

Figure source

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

Learning rates and learning schedules

• Learning rate = step size that is multiplied by gradient
direction/magnitude

– Large rate allows big movements toward optimum but might over-step

– Small rate is less likely to over-step but could take longer

• Learning schedule: change learning rate over time

– Constant

– Exponential decay, e.g. lr = lr * 0.95

– Linear, e.g. lr = lr0 *(1 – iter / max_iter)

SVM Formulation

Optimization

Prediction

𝑦𝑛 = sign 𝒘𝑇𝑥𝑛 + 𝑏

Here, 𝑦 ∈ {−1,1} which is a common convention that simplifies notation for binary classifiers

𝑤∗ = argmin
𝒘

𝑤 2+𝐶 ෍

𝑛

𝑁

max(0, 1 − 𝑦𝑛 𝒘𝑇𝑥𝑛 + 𝑏)

Known as “hinge loss”

Penalty is paid if margin is less than 1

Gradient descent with SVM

gradient_descent(f’(w,i,x,y), lr, niter)

w = zeros(x.shape[1],)

for t in range(niter):

for i in range(len(w)):

w[i] = w[i] – lr*f’(w,i,x,y)

return x

𝑓 𝒘, 𝒙, 𝒚 = 𝒘 2 +𝐶 ෍

𝑛

𝑁

max(0, 1 − 𝑦𝑛 𝒘𝑇𝒙𝑛)

𝑓′ 𝒘, 𝑖, 𝒙, 𝒚 = 2𝑤𝑖 + 𝐶 ෍

𝑛

−𝛿(𝑦𝑛 𝒘𝑇𝒙𝑛 < 1)𝑦𝑛𝑥𝑛𝑖

Only examples with score

of correct answer less

than 1 contribute to the

gradient

Pegasos: Primal Estimated sub-GrAdient SOlver for SVM
(2011)

https://home.ttic.edu/~nati/Publications/PegasosMPB.pdf

SVM problem that we want to solve
(Minimize weights square + sum of
hinge losses on all samples)

Problem in terms of one sample

Gradient in terms of one sample
- Direction to move to improve solution

https://home.ttic.edu/~nati/Publications/PegasosMPB.pdf

Pegasos algorithm: Stochastic Gradient Descent (SGD)

Notation

𝑆: training set

𝜆: regularization weight

𝑇: number iterations

𝒘𝑡: model weights

𝒙𝑖𝑡
: features for example 𝑖𝑡

𝑦𝑖𝑡
: label for example 𝑖𝑡

𝜂𝑡: step size (“learning rate”)

Pegasos with mini-batch

• Calculating gradient based on multiple examples reduces
variance of gradient estimate

𝑘: batch size
𝑚: number of training samples
𝐴𝑡: batch of examples
𝐴𝑡

+: examples within margin

𝑆: training set
𝜆: regularization weight
𝑇: number iterations
𝒘𝑡: model weights
𝒙𝑖: features for example 𝑖
𝑦𝑖: label for example 𝑖
𝜂𝑡: step size (“learning rate”)

SGD applies to many losses

SVM (hinge loss)

Logistic regression / sigmoid loss

z is the score

for y=1

Hinge L1 regression

Margin loss between scores of

most likely and correct label

Variant of a logistic loss

SGD is fast compared to other optimization approaches

SDCA = stochastic dual

coordinate descent, another form

of sub-gradient optimization that

chooses learning rate

dynamically

Experiments with Linear SVM

Training time and test error

Effect of mini-batch size

Effect of sampling procedure: randomly ordered epochs is best

Sampling with replacement

Use different random order for each “epoch”

Use same order for each epoch

Epoch: one run through the training set

Mini-Batch SGD vs. Full Batch Gradient Descent

• Mini-batch is faster
– Time to compute gradient is 𝑂(𝐵) for

batch size B, but standard error of
gradient direction is 𝑂 1/ 𝐵

– E.g. batch size of 10000 vs 100 will
take 100 times longer but reduce
standard deviation by factor of 10

• Full batch is more stable, but the
instability of SGD can help escape
local minima

• We’ll discuss enhancements to SGD,
such as momentum later

• SGD training is highly parallelizable
(good for GPU processing)

https://medium.com/analytics-vidhya/gradient-descent-

vs-stochastic-gd-vs-mini-batch-sgd-fbd3a2cb4ba4

Pegasos: take-ways and surprising facts

• SGD is very simple and effective optimization algorithm – step
toward better solution based on a small sample of training data

• Not very sensitive to mini-batch size (but larger batches can be
much faster with GPU parallel processing)

• The same learning schedule is effective across several problems

• A larger training set makes it faster to obtain the same test
performance

Review questions

True or False:
• Unlike SVM, linear logistic regression loss always adds a non-zero penalty over all training

data points.

• The PEGASUS algorithm computes the gradient for the optimization algorithm using only

one sample out of the training data points – instead of using the whole dataset – thus
increasing its computational efficiency.

• PEGASUS has the disadvantage that the larger the training dataset, the slower it can be

optimized to reach a particular test error.

Which of these algorithms’ objective functions have a single local optimum?
– Logistic regression, linear regression, linear SVM, kernelized SVM, EM algorithm, K-means

http://tinyurl.com/cs441sgd
(participation in all remaining forms worth total of 20 points)

http://tinyurl.com/cs441sgd

Perceptron

Fig source: CS 440

Perceptron = thresholded linear prediction model for

classification

Very similar to linear logistic regression, though perceptron does

not imply a particular error or training objective

sgn returns -1 for negative inputs and +1

for positive inputs

https://courses.grainger.illinois.edu/cs440/fa2019/Lectures/lect26.html

Perceptron Update Rule

Prediction: 𝑓 𝒙 = 𝑤0𝑥0 + 𝑤1𝑥1 + … 𝑤𝑚𝑥𝑚 + 𝑏

Error: 𝐸 𝒙 = 𝑓 𝒙 − 𝑦 2

Update 𝑤𝑖: take a step to decrease 𝐸 𝒙
𝜕𝐸 𝒙

𝜕𝑤𝑖
= 2 𝑓 𝒙 − 𝑦 [

𝜕 𝑓 𝒙 −𝑦

𝜕𝑤𝑖
]

𝜕𝐸 𝒙

𝜕𝑤𝑖
= 2 𝑓 𝒙 − 𝑦 𝑥𝑖

𝑤𝑖 = 𝑤𝑖 − 𝜂 𝑓 𝒙 − 𝑦 𝑥𝑖

prediction target

Chain Rule:

ℎ 𝑥 = 𝑓(𝑔 𝑥), then

ℎ′ 𝑥 = 𝑓′ 𝑔 𝑥 𝑔′(𝑥)

Learning rateMake error lower

(the 2 is folded into the learning rate)

Perceptron Optimization by SGD

Randomly initialize weights, e.g. w ~ Gaus(mu=0, std=0.05)

For each iteration 𝑡:

Split data into batches

𝜂 = 0.1/𝑡

For each batch 𝑋𝑏:

For each weight 𝑤𝑖:

𝑤𝑖 = 𝑤𝑖 − 𝜂
1

𝑋𝑏
σ𝒙𝑛∈𝑋𝑏

𝑓 𝒙𝑛 − 𝑦𝑛 𝑥𝑛𝑖

With different loss, the update changes accordingly

Logistic loss:

𝑓 𝒙 = 𝑤0𝑥0 + 𝑤1𝑥1 + … 𝑤𝑚𝑥𝑚 + 𝑏

𝑃 𝑦|𝒙 =
1

1+exp −𝑦𝑓 𝑥
, 𝑦 ∈ {−1,1}

𝐸 𝒙 = −log 𝑃 𝑦|𝒙

𝑤𝑖 = 𝑤𝑖 + 𝜂
1

𝑋𝑏
σ𝒙𝑛∈𝑋𝑏

𝑦𝑛𝑥𝑛𝑖 1 − 𝑃(𝑦 = 𝑦𝑛|𝑥𝑛)

decrease –logP(y|x) → increase logP(y|x)

Is a perceptron enough?

Which of these can a perceptron solve (fit with zero training error)?

Demo

https://colab.research.google.com/drive/1nKNJyolqgzW53Rz59
M2BZtyQM8bbrExb?usp=sharing

https://colab.research.google.com/drive/1nKNJyolqgzW53Rz59M2BZtyQM8bbrExb?usp=sharing
https://colab.research.google.com/drive/1nKNJyolqgzW53Rz59M2BZtyQM8bbrExb?usp=sharing

Perceptron is often not enough

• Perceptron is linear, but we often need a non-linear prediction
function

Which of these can a perceptron solve (fit with zero training error)?

Yes No Not even close

Review questions

• Which of these are true about gradient descent or SGD?
– Full-batch gradient descent (GD) guarantees an improvement in the

objective at every step

– GD offers more stable progression toward the objective than mini-
batch SGD

– SGD is able to reach better solutions for linear models than GD

– SGD optimization tends to be faster than GD

– SGD is better at escaping local minima than GD

– Understanding SGD is critical for deep learning, even if you don’t care
about efficiency

http://tinyurl.com/cs441sgd

http://tinyurl.com/cs441sgd

Next week

• Tuesday: Recap and review for midterm

• Thursday: Exam – no lecture

	Slide 1: Optimization and Stochastic Gradient Descent
	Slide 2: Machine learning optimization
	Slide 3: Machine learning optimization
	Slide 4: This lecture
	Slide 5: Gradient descent
	Slide 6: Gradient descent
	Slide 7: Gradient descent
	Slide 8: Gradient descent challenge cases
	Slide 9: Gradient Descent Visualization with Local Minima
	Slide 10: Learning rates and learning schedules
	Slide 11: SVM Formulation
	Slide 12: Gradient descent with SVM
	Slide 13: Pegasos: Primal Estimated sub-GrAdient SOlver for SVM (2011)
	Slide 14: Pegasos algorithm: Stochastic Gradient Descent (SGD)
	Slide 15: Pegasos with mini-batch
	Slide 16: SGD applies to many losses
	Slide 17: SGD is fast compared to other optimization approaches
	Slide 18: Experiments with Linear SVM
	Slide 20: Effect of mini-batch size
	Slide 21: Effect of sampling procedure: randomly ordered epochs is best
	Slide 23: Mini-Batch SGD vs. Full Batch Gradient Descent
	Slide 24: Pegasos: take-ways and surprising facts
	Slide 25: Review questions
	Slide 26: Perceptron
	Slide 27: Perceptron Update Rule
	Slide 28: Perceptron Optimization by SGD
	Slide 29: With different loss, the update changes accordingly
	Slide 30: Is a perceptron enough?
	Slide 31: Demo
	Slide 32: Perceptron is often not enough
	Slide 33: Review questions
	Slide 34: Next week

