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Machine learning optimization

Optimization Solution Depends on 
Initialization or Randomized 
Optimization?

Optimization Strategy is 
Important to Effectiveness?

KNN N/A No No

K-means Coordinate Descent Yes No

Linear Regression Iterative No No

Logistic Regression Iterative No No

Linear SVM Iterative No No

Kernelized SVM Iterative No No

EM Algorithm Coordinate Descent Yes No

Decision Tree Greedy selection No No

• For methods we learned so far, one optimizer may be faster or more memory efficient than other, but they 

will generally be able to achieve similar solutions.  



Machine learning optimization
Optimization Solution Depends on 

Initialization or Randomized 
Optimization?

Optimization Strategy is 
Important to Effectiveness?

KNN N/A No No

K-means Coordinate Descent Yes No

Linear Regression Iterative No No

Logistic Regression Iterative No No

Linear SVM Iterative No No

Kernelized SVM Iterative No No

EM Algorithm Coordinate Descent Yes No

Decision Tree Greedy selection No No

MLPs, Deep 
Networks

Iterative Yes Yes

• For methods we learned so far, one optimizer may be faster or more memory efficient than other, but they 

will generally be able to achieve similar solutions.  

• For MLPs and deep networks, optimization is an important part of design.



This lecture

1. Batch gradient descent

2. PEGASOS: Stochastic Gradient Descent for SVM

3. Perceptrons



Gradient descent

gradient_descent(f’(x), x0, lr, niter)

x = x0

for t in range(niter):

x = x – lr*f’(x)

return x



Gradient descent

gradient_descent(f’(x), x0, lr, niter)

x = x0

for t in range(niter):

x = x – lr*f’(x)

return x

Example: https://towardsdatascience.com/gradient-descent-

algorithm-a-deep-dive-cf04e8115f21 

Example: 

𝑓 𝑥 =  𝑥2 − 4𝑥 + 1
f ′ 𝑥 = 2𝑥 − 4

https://towardsdatascience.com/gradient-descent-algorithm-a-deep-dive-cf04e8115f21
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Gradient descent challenge cases

Saddle points (gradient = 0 in some parts of solution space)

Fig: https://www.mltut.com/stochastic-gradient-descent-a-super-easy-complete-guide/ Example: https://towardsdatascience.com/gradient-descent-algorithm-a-deep-dive-cf04e8115f21 

Multiple local minima

Many models we’ve learned so far (e.g., SVM, logistic regression, linear regression) are convex, so 

they don’t have these challenges.

https://www.mltut.com/stochastic-gradient-descent-a-super-easy-complete-guide/
https://towardsdatascience.com/gradient-descent-algorithm-a-deep-dive-cf04e8115f21


Gradient Descent Visualization with Local Minima

Figure source

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c


Learning rates and learning schedules

• Learning rate = step size that is multiplied by gradient 
direction/magnitude

– Large rate allows big movements toward optimum but might over-step

– Small rate is less likely to over-step but could take longer

• Learning schedule: change learning rate over time

– Constant

– Exponential decay, e.g. lr = lr * 0.95

– Linear, e.g. lr = lr0 *(1 – iter / max_iter)



SVM Formulation

Optimization

Prediction

𝑦𝑛 = sign 𝒘𝑇𝑥𝑛 + 𝑏

Here, 𝑦 ∈ {−1,1} which is a common convention that simplifies notation for binary classifiers

𝑤∗ = argmin
𝒘

𝑤 2+𝐶 ෍

𝑛

𝑁

max(0, 1 − 𝑦𝑛 𝒘𝑇𝑥𝑛 + 𝑏 ) 

Known as “hinge loss”

Penalty is paid if margin is less than 1



Gradient descent with SVM

gradient_descent(f’(w,i,x,y), lr, niter)

w = zeros(x.shape[1],)

for t in range(niter):

for i in range(len(w)):

w[i] = w[i] – lr*f’(w,i,x,y)

return x

𝑓 𝒘, 𝒙, 𝒚 = 𝒘 2 +𝐶 ෍

𝑛

𝑁

max(0, 1 − 𝑦𝑛 𝒘𝑇𝒙𝑛 )

𝑓′ 𝒘, 𝑖, 𝒙, 𝒚 = 2𝑤𝑖 + 𝐶 ෍

𝑛

−𝛿(𝑦𝑛 𝒘𝑇𝒙𝑛 < 1)𝑦𝑛𝑥𝑛𝑖

Only examples with score 

of correct answer less 

than 1 contribute to the 

gradient



Pegasos: Primal Estimated sub-GrAdient SOlver for SVM 
(2011)

https://home.ttic.edu/~nati/Publications/PegasosMPB.pdf 

SVM problem that we want to solve
(Minimize weights square + sum of 
hinge losses on all samples)

Problem in terms of one sample

Gradient in terms of one sample
- Direction to move to improve solution

https://home.ttic.edu/~nati/Publications/PegasosMPB.pdf


Pegasos algorithm: Stochastic Gradient Descent (SGD)

Notation

𝑆: training set

𝜆: regularization weight

𝑇: number iterations

𝒘𝑡: model weights

𝒙𝑖𝑡
: features for example 𝑖𝑡

𝑦𝑖𝑡
: label for example 𝑖𝑡

𝜂𝑡: step size (“learning rate”)



Pegasos with mini-batch

• Calculating gradient based on multiple examples reduces 
variance of gradient estimate

𝑘: batch size
𝑚: number of training samples
𝐴𝑡: batch of examples
𝐴𝑡

+: examples within margin

𝑆: training set
𝜆: regularization weight
𝑇: number iterations
𝒘𝑡: model weights
𝒙𝑖: features for example 𝑖
𝑦𝑖: label for example 𝑖
𝜂𝑡: step size (“learning rate”)



SGD applies to many losses

SVM (hinge loss)

Logistic regression / sigmoid loss

z is the score 

for y=1

Hinge L1 regression

Margin loss between scores of 

most likely and correct label

Variant of a logistic loss



SGD is fast compared to other optimization approaches

SDCA = stochastic dual 

coordinate descent, another form 

of sub-gradient optimization that 

chooses learning rate 

dynamically



Experiments with Linear SVM

Training time and test error



Effect of mini-batch size



Effect of sampling procedure: randomly ordered  epochs is best

Sampling with replacement

Use different random order for each “epoch”

Use same order for each epoch

Epoch: one run through the training set



Mini-Batch SGD vs. Full Batch Gradient Descent

• Mini-batch is faster
– Time to compute gradient is 𝑂(𝐵) for 

batch size B, but standard error of 
gradient direction is 𝑂 1/ 𝐵

– E.g. batch size of 10000 vs 100 will 
take 100 times longer but reduce 
standard deviation by factor of 10

• Full batch is more stable, but the 
instability of SGD can help escape 
local minima

• We’ll discuss enhancements to SGD, 
such as momentum later

• SGD training is highly parallelizable 
(good for GPU processing)

https://medium.com/analytics-vidhya/gradient-descent-

vs-stochastic-gd-vs-mini-batch-sgd-fbd3a2cb4ba4



Pegasos: take-ways and surprising facts

• SGD is very simple and effective optimization algorithm – step 
toward better solution based on a small sample of training data

• Not very sensitive to mini-batch size (but larger batches can be 
much faster with GPU parallel processing)

• The same learning schedule is effective across several problems

• A larger training set makes it faster to obtain the same test 
performance



Review questions

True or False:
• Unlike SVM, linear logistic regression loss always adds a non-zero penalty over all training

data points.

• The PEGASUS algorithm computes the gradient for the optimization algorithm using only

one sample out of the training data points – instead of using the whole dataset – thus
increasing its computational efficiency.

• PEGASUS has the disadvantage that the larger the training dataset, the slower it can be

optimized to reach a particular test error.

Which of these algorithms’ objective functions have a single local optimum?
– Logistic regression, linear regression, linear SVM, kernelized SVM, EM algorithm, K-means

http://tinyurl.com/cs441sgd 
(participation in all remaining forms worth total of 20 points)

http://tinyurl.com/cs441sgd


Perceptron

Fig source: CS 440

Perceptron = thresholded linear prediction model for 

classification

Very similar to linear logistic regression, though perceptron does 

not imply a particular error or training objective

sgn returns -1 for negative inputs and +1 

for positive inputs

https://courses.grainger.illinois.edu/cs440/fa2019/Lectures/lect26.html


Perceptron Update Rule

Prediction: 𝑓 𝒙 = 𝑤0𝑥0 + 𝑤1𝑥1 + … 𝑤𝑚𝑥𝑚 + 𝑏

Error: 𝐸 𝒙 = 𝑓 𝒙 − 𝑦 2

Update 𝑤𝑖: take a step to decrease 𝐸 𝒙
𝜕𝐸 𝒙

𝜕𝑤𝑖
= 2 𝑓 𝒙 − 𝑦 [

𝜕 𝑓 𝒙 −𝑦

𝜕𝑤𝑖
]

𝜕𝐸 𝒙

𝜕𝑤𝑖
= 2 𝑓 𝒙 − 𝑦 𝑥𝑖

𝑤𝑖 = 𝑤𝑖 − 𝜂 𝑓 𝒙 − 𝑦 𝑥𝑖

prediction target

Chain Rule:

ℎ 𝑥 = 𝑓(𝑔 𝑥 ), then

ℎ′ 𝑥 = 𝑓′ 𝑔 𝑥 𝑔′(𝑥) 

Learning rateMake error lower

(the 2 is folded into the learning rate)



Perceptron Optimization by SGD

Randomly initialize weights, e.g. w ~ Gaus(mu=0, std=0.05)

For each iteration 𝑡:

Split data into batches

𝜂 = 0.1/𝑡

For each batch 𝑋𝑏:

For each weight 𝑤𝑖: 

𝑤𝑖 = 𝑤𝑖 − 𝜂
1

𝑋𝑏
σ𝒙𝑛∈𝑋𝑏

𝑓 𝒙𝑛 − 𝑦𝑛 𝑥𝑛𝑖



With different loss, the update changes accordingly

Logistic loss:

𝑓 𝒙 = 𝑤0𝑥0 + 𝑤1𝑥1 + … 𝑤𝑚𝑥𝑚 + 𝑏

𝑃 𝑦|𝒙 =
1

1+exp −𝑦𝑓 𝑥
, 𝑦 ∈ {−1,1}

𝐸 𝒙 = −log 𝑃 𝑦|𝒙

𝑤𝑖 = 𝑤𝑖 + 𝜂
1

𝑋𝑏
σ𝒙𝑛∈𝑋𝑏

𝑦𝑛𝑥𝑛𝑖 1 − 𝑃(𝑦 = 𝑦𝑛|𝑥𝑛)

decrease –logP(y|x) → increase logP(y|x)



Is a perceptron enough?

Which of these can a perceptron solve (fit with zero training error)?



Demo

https://colab.research.google.com/drive/1nKNJyolqgzW53Rz59
M2BZtyQM8bbrExb?usp=sharing

https://colab.research.google.com/drive/1nKNJyolqgzW53Rz59M2BZtyQM8bbrExb?usp=sharing
https://colab.research.google.com/drive/1nKNJyolqgzW53Rz59M2BZtyQM8bbrExb?usp=sharing


Perceptron is often not enough

• Perceptron is linear, but we often need a non-linear prediction 
function

Which of these can a perceptron solve (fit with zero training error)?

Yes No Not even close



Review questions

• Which of these are true about gradient descent or SGD?
– Full-batch gradient descent (GD) guarantees an improvement in the 

objective at every step

– GD offers more stable progression toward the objective than mini-
batch SGD

– SGD is able to reach better solutions for linear models than GD

– SGD optimization tends to be faster than GD

– SGD is better at escaping local minima than GD

– Understanding SGD is critical for deep learning, even if you don’t care 
about efficiency

http://tinyurl.com/cs441sgd 

http://tinyurl.com/cs441sgd


Next week

• Tuesday: Recap and review for midterm

• Thursday: Exam – no lecture
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