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Recap of approaches we’ve seen so far

* Nearest neighbor is widely used
— Super-powers: can instantly learn new classes and predict from one or many examples

* Logistic Regression is widely used
— Super-powers: Effective prediction from high-dimensional features

* Linear Regression is widely used

— Super-powers: Can extrapolate, explain relationships, and predict continuous values
from many variables

* Almost all algorithms involve nearest neighbor, logistic regression, or linear
regression
— The main learning challenge is typically feature learning



Today’s Lecture

Introduce probabilistic models
Review of probability

Naive Bayes Classifier

— Assumptions / model

— How to estimate from data

— How to predict given new features

“Semi-naive Bayes” object detector



Probabilistic model

y* = argmax P(y|x)
y



Joint and conditional probability

P(x,y) = P(x|y)P(y) = P(y|x)P(x)

P(a,b,c) = P(alb,c)P(b|c)P(c)

Plx,y) _P(ylx)P(x)
P(y) P(y)

Bayes Rule: P(x|y) =



Law of total probability
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Marginalization Z P(x =v,y)| =P(y)

For continuous variables, replace sum over possible values with integral over domain



Estimate probabilities of discrete variables by counting

1
P(x =v) = WE O(x, = v)



Example

x: Larger than 10 Ibs?

FoooT P(y = Cat) =
Y Cat |15 25
Dog |5 40

P(y = Cat|x =F) =

P(x = F|y = Cat) =



A is independent of B if (and only if)

P(A,B) = P(A)P(B)

P(A|B) = P(4), P(B|A) = P(B)



What if you have 100 variables? How can you count all
combinations?

Fully modeling dependencies between many variables (more
than 3 or 4) is challenging and requires a lot of data



Probabilistic model

y* = argmax P(y|x)
y

Or equivalently...

y* = argmax P(x|y)P(y)
y

argmax P(y|x) = argmax P(y|x)P(x) = argmax P(y,x) = argmaxP (x|y)P(y)
y y y y



Notation

* Xx;is the ith feature variable
— I indicates the feature index

* x, is the nth feature vector
— n indicates the sample index
— vy, is the nth label
* x,; is the ith feature of the nth sample

* 0(x,; = V) returns 1if x,;; = v; 0 otherwise
— v indicates a feature value
— J is an indicator function, mapping from true/false to 1/0



Naive Bayes Model

Assume features x,..x_, are independent given the label y:

Pixly) = | | Pely)

Then

y* = argmax 1_[ P(x;ly)P(y)
Y i



Examples

* Digit classification: choose
the label that maximizes
the product of likelihoods
of each pixel intensity
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Naive Bayes Algorithm

* Training
1. Estimate parameters for P(x,|y) for each i
2. Estimate parameters for P(y)
* Prediction
1. Solve for y that maximizes P(x,y) ¥V = arg;naxn P(x;|y)P(y)



How to estimate P(x;|y) from data?

e Basic principles of fitting likelihood parameters from data

— MLE (maximum likelihood estimation): Choose the parameter that
maximizes the likelihood of the data

— MAP (maximum a priori): Choose the parameter that maximizes the
data likelihood and its own prior

* As Warren Buffet says, it’s not just about maximizing expected return —it’s
about making sure there are no zeros.



How to estimate P(x,|y) from data?

e Bernoulli (x is binary, y is discrete)
P(xily = k) = 6}/ (1 — Oy;) ™

04 %’S Ly, k)/ZS

theta ki[k,1i] = np.sum/( i]l==1) & (y==k)) / np.sum(y==k)

e Categorical (x is has multiple discrete values, y is discrete)

Oy = zu > (Xﬁi:‘/r Yn:k)/zn: g(y'\:k>



How to estimate P(x;|y) fromdata?

* X is Gaussian (aka Normal), y is discrete
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How to estimate P(x,|y) from data?

* (y — xi) is Gaussian

F(Y X\ ﬁm Q\A})(-- (Y- ;- AJ”)
2(y~%) /N
0_% (‘I*XL-A;T /N
mul[i] = np.mean(y-X[:,1i], axis=0)

std[1] = np.std(y-X[:,1], axis=0)



How to estimate P(x;|y) from data?

* x. and y are jointly Gaussian

F’(Xi\)’7 = /V(Cx:,ﬂ; {_(EJZE_{)/N (y , A,,Oﬂ

— N(.) stands for normal distribution with given value, mean, and (co-)variance



How to estimate P(x;|y) from data?

* X; is continuous (non-Gaussian), y is discrete

— First turn x into discrete (e.g. if values range [0, 1), assign
x=floor (x*10)

— Now can estimate as categorical



How to estimate P(x;|y) from data?

7

e |f xis text, e.g. “blue”, “orange”, “green”

— Map each possible text value into an integer and solve as categorical



How to estimate P(y)?

Three options:

* Assume that y is “uniform” (every value is equally likely) and ignore
* If yis discrete, count

* |f yis continuous, model as Gaussian or convert to discrete and count



Stretch break: Simple Naive Bayes example

e Suppose | want to classify a fruit based on description
— Features: weight, color, shape, whether it’s hard
— E.g.

* 0.51b, “red”, “round”, yes

n

* 15 1b, “green”, “oval”, yes
e 0.01 Ib, “purple”, “round”, no

Q1: What are these three fruit?

Q2: How might you model P(x | fruit) for each of
these four features?



Simple Naive Bayes example

e Suppose | want to classify a fruit based on description

— Features: weight, color, shape, whether it’s hard

— E.g.
* 0.51b, “red”, “round”, yes Apple
* 15 Ib, “green”, “oval”, yes Watermelon
e 0.01 Ib, “purple”, “round”, no Grape
— Model P(weight | fruit) as a Gaussian
— Model P(color | fruit) as a discrete distribution (multinomial)
— Model P(shape | fruit) as a categorical
— Model P(is_hard | fruit) as a Bernoulli (binary)




How to predict y from x?

V¥= b TTP(x; )y7 P(y)
= Ocgray Z log PO Iy sy Py)

If y is discrete:
1. Compute P(x,y) for each value of y
2. Choose value with maximum likelihood

Turning product into sum of logs is an important frequently
used trick for argmax/argmin!




How to predict y from x when (y — x;) is Gaussian
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Using priors
* Priors on the likelihood parameters prevent a single feature
from having zero or extremely low likelihood due to insufficient

training data

e Discrete: initialize counts with a (e.g. « = 1)

P(x.=v|y=k) = (a + count(x.=v, y=k)) / sum [a + count(x.=v, y=k)]

theta kiv([k,1i,v] = (np.sum((X[:,1]==v) & (y==k))+alpha) / (np.sum(y==k)+alpha*num v)

* Continuous: add some € to the variance (e.g. ¢ = 0.1/N)

— For multivariate, add to diagonal of covariance

std[i] = np.std(y-X[:,1], axis=0)+np.sqgrt(0.1/1len (X))



MLE and MAP estimates of binary variable likelihoods

 MLE (maximize data likelihood)
dnb(xn =1y, =1)
Zn5(xn =0,y, = 1) +Zn5(xn =1y, = 1)

Px=1ly=1) =

e MAP (maximum a posteriori) with prior a
a+2n6(, =1y, =1)

P = ) 5,560 = 0 = D) T (@ + 2,8 = Ly = 1)

 This is a Bayesian prior that implies P(x = 0|y) = P(x = 1]y), unless data tells us differently
e Similar concept to regularization that we saw in linear regression and classification

* Important because it avoids zeros that could dominate the overall likelihood and provides a
more stable estimate with limited data

* With more data, the prior has less effect



Example: estimate joint probability under Naive Bayes

assumption

xl‘xz‘y
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P(x1|y)

P(x2]y)

x1

P(y)

Py=0,x1=1,x2=1) =7
Py=1x1=1,x2=1)=?

P(y=0|x1=1x2=1)=7



H x1.‘>cz ‘y
1 (1 1 1
2 |10 1 |1
3 11 0 |0
4 (0 1 O
5 11 1 |1
6 |1 0 O
7 |11 0 |1
8 |10 1 |0

P(x1|y)

P(x2]y)

x1 y=0 y=1
2/4 1/4
1 2/4 3/4

X2 y=0 y=1
0 2/4 1/4
1 2/4 3/4

y=0 y=1
P(y) (2/4  2/4

P(y=0,x1=1x2=1)=1/8
P(y=1x1=1x2=1)=9/32

P(y =0|x1=1,x2=1) = 4/13



Prior over parameters: initialize each count with «

a=1
x1 y=0y=1 x1 y=0y=1
# | x1 ‘ 2 ‘
X X Y P(Xlly) 0 2/4 1/4 — 0 3/6 2/6
1 /1 1 1 1 2/4  3/4 1 3/6  4/6
2 [0 1 1
3 11 O O
X2 y=0 y=1 X2 y=0 y=1
P(x2 —
5 11 1 1 1 2/4  3/4 1 3/6  4/6
6 |1 O O
/7 |11 0 |1
y y
8 |10 1 0 P(y) |2/4 2/4 2/4 2/4




Use case: “Semi-naive Bayes” object detection

A Statistical Method for 3D Object Detection Applied to Faces and Cars

Henry Schneiderman and Takeo Kanade

* Best performing
face/car detector in
2000-2005

 Model probabilities of
small groups of features
(wavelet coefficients)

* Search for groupings,

discretize features, '
. Pu(patrerny(x, v), x, v|object)
estimate parameters - .

17
I1 | [T Piparrerny(x, y). x, ¥ |non-object)

X,V € reglonj — |

https://www.cs.cmu.edu/afs/cs.cmu.edu/user/hws/www/CVPRO0O.pdf



https://www.cs.cmu.edu/afs/cs.cmu.edu/user/hws/www/CVPR00.pdf

Naive Bayes Summary

* Key Assumptions
— Features are independent, given the labels

 Model Parameters

— Parameters of probability functions P(x;|y) and P(y)
* Designs

— Choice of probability function
* When to Use

— Limited training data

— Features are not highly interdependent

— Want something fast to code, train, and test

e When Not to Use

— Logistic or linear regression will usually work better if there is sufficient data
(more flexible / fewer assumptions than Naive Bayes)

— Does not provide a good confidence estimate because it “overcounts” influence
of dependent variables



Naive Bayes

* Pros
— Easy and fast to train
— Fast inference
— Can be used with continuous, discrete, or mixed features

e Cons
— Does not account for feature interactions
— Does not provide good confidence estimate

* Notes

— Best when used with discrete variables, variables that are well fit by
Gaussian, or kernel density estimation



Things to remember

* Probabilistic models are a large class of
machine learning methods

* Naive Bayes assumes that features are

independent given the label P(x,y) = 1_[ P(x;|y)P(y)
l

— Easy/fast to estimate parameters
— Less risk of overfitting when data is limited

* You can look up how to estimate parameters
for most common probability models

— Or take partial derivative of total data/label
likelihood given parameter

* Prediction involves finding y that maximizes

P(x,y), either by trying all y or solving ’Yk - o_(smaL TI P(,)(, )Y) P(\/)
!

partial derivative

« Maximizing log P(x, y) is equivalent to = O(SV;“’L Z; ){j P(.XC 2‘{) t I“& P(y)

maximizing P(x, y) and often much easier



Next week

* EM and Density Estimation
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