
Linear
Classifiers:
Logistic
Regression
and SVM
Applied Machine Learning
Derek Hoiem

Dall-E

Linear Models
• A model is linear in x if it is based on a weighted sum of the values of x (optionally,

plus a constant)

𝒘𝒘𝑇𝑇𝒙𝒙 + 𝑏𝑏 = �
𝑖𝑖

𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑏𝑏

• A linear classifier projects the features onto a score that indicates whether the label
is positive or negative (i.e., one class or the other). We often show the boundary
where that score is equal to zero.

• A linear regressor finds a linear model that approximates the prediction value for
each set of features.

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑦𝑦 = 1 = 𝒘𝒘𝑇𝑇𝒙𝒙 + 𝑏𝑏
𝒘𝒘𝑇𝑇𝒙𝒙 + 𝑏𝑏=0

..
.

.

Feature (𝒙𝒙)

Ta
rg

et
 (𝑦𝑦

)

𝑦𝑦 = 𝒘𝒘𝑇𝑇𝒙𝒙 + 𝑏𝑏

Today’s Lecture

• Linear logistic regression: maximize likelihood of target labels
given the features

• SVM: maximize the number of data points with confidently
correct predictions

Linear Classifiers and Linear Separability

• Linear classifier: y = 1 if 𝒘𝒘𝑇𝑇𝒙𝒙 + 𝑏𝑏 > 0

• Linearly separable: a line (or hyperplane) in feature space can split the two labels

• Which of these are linearly separable?

Linear Classifiers and Linear Separability
• In high dimensions, a lot more things are linearly separable
• If you have D dimensions, you can separate D+1 points with

any arbitrary labeling

x o

xo o

1D 2D

xo

o

xo

o
x

Separable

Not
Separable

Separable Not Separable

Linear Classifiers and Linear Separability
• But how do you choose which line is best?
• Different classifiers use different objectives to choose the line

Linear Classifiers and Linear Separability
• Different classifiers use different objectives to choose the line
• Common principles are that you want training samples on the

correct side of the line (low classification error) by some
margin (high confidence)

Thick line is better
classification function than
thin line because all the
examples have a good margin

(Linear) Logistic Regression Model

“Logit”

“Logistic function”

* To simplify notation, I may omit
the “b”, which can be avoided by
adding a “1” to each feature vector𝒘𝒘𝑇𝑇𝒙𝒙 + 𝑏𝑏 ≈ log

𝑃𝑃(𝑦𝑦 = 1|𝑥𝑥)
𝑃𝑃(𝑦𝑦 = −1|𝑥𝑥)

𝑃𝑃 𝑦𝑦 = −1 𝑥𝑥 = 𝑃𝑃 𝑦𝑦 = 1 𝑥𝑥 =
exp(− 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏)

1 + exp(− 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏) =
1

1 + exp(𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏)

𝑃𝑃 𝑦𝑦 = �𝑦𝑦 𝑥𝑥 =
1

1 + exp(−�𝑦𝑦 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏)

maximize 𝑃𝑃 𝒚𝒚 𝒙𝒙 , 𝑦𝑦 ∈ {−1, 1}

where 𝑃𝑃 𝑦𝑦 = 1 𝒙𝒙 =
1

1 + exp(− 𝒘𝒘𝑇𝑇𝒙𝒙 + 𝑏𝑏)

Note:

Linear Logistic Regression
• The further you are from the line, the more confident in a label

P(triangle|x) is higherP(circle|x) is higher

P(circle|x)=P(triangle|x) on the line

Deriving the loss of logistic regression

𝑤𝑤∗ = argmax
𝑤𝑤

�
𝑛𝑛

𝑃𝑃 𝑦𝑦 = 𝑦𝑦𝑛𝑛 𝑥𝑥𝑛𝑛;𝑤𝑤)

𝑤𝑤∗ = argmax
𝑤𝑤

�
𝑛𝑛

log 𝑃𝑃 𝑦𝑦 = 𝑦𝑦𝑛𝑛 𝑥𝑥𝑛𝑛;𝑤𝑤)

𝑤𝑤∗ = argmin
𝑤𝑤

−�
𝑛𝑛

log 𝑃𝑃 𝑦𝑦 = 𝑦𝑦𝑛𝑛 𝑥𝑥𝑛𝑛;𝑤𝑤)

Maximize probability of correct label
given features of each data point,
assuming the data points are
conditionally independent

Maximizing log 𝑓𝑓 𝑥𝑥 is the same as
maximizing 𝑓𝑓 𝑥𝑥 because log 𝑥𝑥
monotonically increases with 𝑥𝑥

Log of product is the sum of logs.

Turn it into a minimization
problem (as a convention)

Linear Logistic Regression algorithm
• Training

𝑤𝑤∗ = argmin
𝑤𝑤

−∑𝑛𝑛 log 𝑃𝑃 𝑦𝑦 = 𝑦𝑦𝑛𝑛 𝑥𝑥𝑛𝑛;𝑤𝑤) + 𝑟𝑟(𝑤𝑤)

• Prediction
𝑦𝑦 = 1 if 𝑤𝑤𝑇𝑇𝑥𝑥 > 0

𝑃𝑃 𝑦𝑦 = 1 𝑥𝑥 = 1
1+exp −𝑤𝑤𝑇𝑇𝑥𝑥

= exp 𝑤𝑤𝑇𝑇𝑥𝑥
exp 𝑤𝑤𝑇𝑇𝑥𝑥 +1

𝑃𝑃 𝑦𝑦 = 𝑘𝑘 𝑥𝑥 = exp 𝑤𝑤𝑘𝑘
𝑇𝑇𝑥𝑥

∑𝑗𝑗 exp 𝑤𝑤𝑗𝑗
𝑇𝑇𝑥𝑥

regularization

log probability of all labels given features,
assuming that each example is i.i.d.

Binary (two-class) case

Multiclass case (one w per class)

Training Logistic Regression
𝑤𝑤∗ = argmin

𝑤𝑤
−∑𝑛𝑛 log 𝑃𝑃𝑤𝑤 𝑦𝑦 = 𝑦𝑦𝑛𝑛 𝑥𝑥𝑛𝑛) + 𝑟𝑟(𝑤𝑤)

• L2 regularization: 𝑟𝑟 𝑤𝑤 = 𝜆𝜆 𝑤𝑤 2
2 = 𝜆𝜆∑𝑖𝑖 𝑤𝑤𝑖𝑖2

• L1 regularization: 𝑟𝑟 𝑤𝑤 = 𝜆𝜆 𝑤𝑤 1 = 𝜆𝜆 ∑𝑖𝑖 |𝑤𝑤𝑖𝑖|

L2 strongly penalizes really big weights
L1 penalizes increasing the magnitude of big and small weights the same
L1 leads to a sparse weight vector (many zeros) – why?

L1 regularization can be used to select features!

When is regularization absolutely essential?

There are many optimizers for L2 and L1 logistic regression. You will want to use a library.

https://tminka.github.io/papers/logreg/minka-logreg.pdf

Inspecting weights for digits

Average
Pixels

L2 weights

L1 weights

Logistic Regression Summary
• Key Assumptions

– The log odds ratio log 𝑃𝑃 𝑦𝑦 = 𝑘𝑘 𝑥𝑥
𝑃𝑃 𝑦𝑦 ≠ 𝑘𝑘 𝑥𝑥 can be expressed as a linear

combination of features
• Model Parameters

– One coefficient per feature per class (plus bias term)
• Designs

– L1 or L2 or elastic (both L1 and L2) regularization weight
• When to Use / Strengths

– Many features, some of which could be irrelevant or redundant
– Provides a good estimate of label likelihood

• When Not to Use / Weaknesses
– Features are low-dimensional (linear function not likely to be expressive

enough)

Linear logistic regression is typically the last layer of a
classification neural network

3 minute stretch
Suppose for a spam classifier we have 5K training examples with 100
feature dimensions. Which of these is an advantage of linear logistic
regression, compared to KNN?
• Faster to learn a model
• Faster prediction
• Requires less storage
• More accurate
• Less sensitive to feature scaling
• Can fit more complex decision functions
• Has lower training error
• Has less generalization error

What is the best linear classifier?
• Logistic regression

– Maximize expected likelihood of
true label given data

– Every example contributes to loss

• SVM
– Make all examples at least

minimally confident
– Base decision on a minimal set of

examples

x x

x x

x

x
x

x

o
o

o

o

o

x2

x1

SVM Terminology

Margin: the distance of
examples (in feature space)
from the decision boundary

 𝑚𝑚(𝒙𝒙) = 𝑦𝑦 𝒘𝒘𝑇𝑇𝒙𝒙+𝑏𝑏
𝑤𝑤

𝑦𝑦 ∈ {−1,1}

Support Vector: an example
that lies on the margin
(circled points)

SVMs minimize 𝒘𝒘𝑇𝑇𝒘𝒘 while preserving a margin of 1

x x

x x
x

x
x

x

o
o

o

o

o

x2

x1

Decision boundary depends only on
“support vectors” (circled)

xxxxxxxx
oo o

Optimized SVM Model

wTx+b=0

x x

x x
x

x
x

x

o
o

o

o

o

x2

x1

Minimizes the sum of logistic error on all
samples, so boundary should be further
from dense regions

xxxxxxxx
oo o

Optimized Linear Logistic Regression Model

wTx+b=0

Why SVMs achieve good generalization

• Maximizing the margin – if all examples are far
from the boundary, it is less likely that some test
sample will end up on the wrong side of the
boundary
– If classes are linearly separable, the scores can be

arbitrarily increased by scaling w, so optimization is
expressed as minimize 𝒘𝒘𝑇𝑇𝒘𝒘 while preserving a
margin of 1

• Dependence on few training samples – most
training data points could be removed without
affecting the decision boundary, which gives an
upper bound on the generalization error

• E.g., expected test error is <= than the smaller of:
a. % of training samples that are support vectors
b. D2/m2/N, the diameter of the data compared to

the margin divided by the number of examples
(see proof)

https://ocw.mit.edu/courses/18-465-topics-in-statistics-statistical-learning-theory-spring-2007/0d49e3d6b669cbbb13ef85b0e21357a8_l4.pdf

SVM in Linearly Separable Case

Optimization

𝑤𝑤∗ = argmin
𝒘𝒘

𝑤𝑤 2

subject to
𝑦𝑦𝑛𝑛 𝒘𝒘𝑇𝑇𝑥𝑥𝑛𝑛 + 𝑏𝑏 ≥ 1 for all 𝑛𝑛

Prediction

𝑦𝑦𝑛𝑛 = sign 𝒘𝒘𝑇𝑇𝑥𝑥𝑛𝑛 + 𝑏𝑏

Here, 𝑦𝑦 ∈ {−1,1} which is a common convention that simplifies notation for binary classifiers

SVM in Non-Linearly Separable Case

Optimization

Prediction

𝑦𝑦𝑛𝑛 = sign 𝒘𝒘𝑇𝑇𝑥𝑥𝑛𝑛 + 𝑏𝑏

Here, 𝑦𝑦 ∈ {−1,1} which is a common convention that simplifies notation for binary classifiers

𝑤𝑤∗ = argmin
𝒘𝒘

𝑤𝑤 2+𝐶𝐶�
𝑛𝑛

𝑁𝑁

max(0, 1 −𝑦𝑦𝑛𝑛 𝒘𝒘𝑇𝑇𝑥𝑥𝑛𝑛 + 𝑏𝑏)

Known as “hinge loss”
Penalty is paid if margin is less than 1

Fig source

https://towardsdatascience.com/a-definitive-explanation-to-hinge-loss-for-support-vector-machines-ab6d8d3178f1

Slide credit: Zisserman [link]

Pays a “slack” penalty for
violating the margin

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf

Representer theorem
Optimal weights for many L2-regularized classification and
regression functions can be expressed as a weighted
combination of training examples

So linear SVM is a kind of weighted nearest neighbor with dot
product similarity

𝒘𝒘∗ = �
𝑛𝑛

𝛼𝛼𝑛𝑛𝑦𝑦𝑛𝑛𝒙𝒙𝑛𝑛

Conditions apply, e.g. function must be regularized in a Reproducing Kernel Hilbert Space (details)
Does not apply to L1 weight regularization because that can’t be expressed as a dot product of weights

𝛼𝛼𝑛𝑛 ≥ 0,𝑦𝑦𝑛𝑛∈ {−1,1}

https://davidrosenberg.github.io/mlcourse/Archive/2018/Lectures/04c.representer-theorem.pdf

Primal vs. Dual Formulations of SVM

Prediction

Primal
𝑓𝑓 𝑥𝑥 = 𝒘𝒘𝑇𝑇𝒙𝒙 + 𝑏𝑏

Dual
𝑓𝑓 𝒙𝒙 = ∑𝑛𝑛𝛼𝛼𝑛𝑛𝑦𝑦𝑛𝑛 𝒙𝒙𝑛𝑛𝑇𝑇𝒙𝒙 + 𝑏𝑏

𝑤𝑤∗ = argmin
𝒘𝒘

𝑤𝑤 2+𝐶𝐶�
𝑛𝑛

𝑁𝑁

max(0, 1 −𝑦𝑦𝑛𝑛 𝒘𝒘𝑇𝑇𝑥𝑥𝑛𝑛 + 𝑏𝑏)

𝜶𝜶∗ = argmax
𝜶𝜶

∑𝑖𝑖 𝛼𝛼𝑖𝑖 −
1
2
∑𝑗𝑗𝑗𝑗 𝛼𝛼𝑗𝑗𝛼𝛼𝑘𝑘𝑦𝑦𝑗𝑗𝑦𝑦𝑘𝑘(𝒙𝒙𝑗𝑗𝑇𝑇𝒙𝒙𝑘𝑘)

s.t. 0 ≤ 𝛼𝛼𝑖𝑖 ≤ 𝐶𝐶 ∀𝑖𝑖 and ∑𝑖𝑖 𝛼𝛼𝑖𝑖 𝑦𝑦𝑖𝑖 = 0

Training Objective

Primal: parameter for each feature
Dual: parameter for each training example

For SVM, 𝛼𝛼 is sparse (most values are zero)

Slide credit: Zisserman [link]

In dual, 𝛼𝛼𝑖𝑖 > 0 only for
support vectors

𝛼𝛼𝑖𝑖 = 0 for all others

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf

Non-linear SVMs use a different similarity measure, called
a “kernel function”, than dot product

• Linear: 𝑘𝑘(𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗) = 𝒙𝒙𝑖𝑖𝑇𝑇𝒙𝒙𝑗𝑗

• Polynomial: 𝑘𝑘(𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗) = 1 + 𝒙𝒙𝑖𝑖𝑇𝑇𝒙𝒙𝑗𝑗
𝑑𝑑

• Gaussian: 𝑘𝑘(𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗) = exp(− 𝒙𝒙𝑖𝑖−𝒙𝒙𝑗𝑗
2

2𝜎𝜎2
)

Slide credit: Zisserman [link]

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf

Decreasing sigma makes it more like nearest neighbor

Fig credit: Zisserman [link]
SVM with RBF Kernel Shown

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf

If you were to remove a support vector from the training set,
would the decision boundary change?

x x

x x

x

x
x

x

o
o

o

o

o

x2

x1

Example application of SVM: Dalal-Triggs 2005

• Detection by scanning window
• Resize image to multiple scales and extract overlapping windows
• Classify each window as positive or negative

• Very highly cited (40,000+) paper, mainly for HOG
• One of the best pedestrian detectors for several years

https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf

https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf

Example application of SVM: Dalal-Triggs 2005

• Very highly cited (40,000+) paper, mainly for HOG
• One of the best pedestrian detectors for several years

Example application of SVM: Dalal-Triggs 2005

Using SVMs
• Good broadly applicable classifier

– Strong foundation in statistical learning theory
– Works well with many weak features
– Requires parameter tuning for C
– Non-linear SVM requires defining a kernel, and slower optimization/prediction

• RBF: related to neural networks, nearest neighbor (requires additional tuning)
• Chi-squared, histogram intersection: good for histograms (but slower, esp. chi-squared)
• Can learn a kernel function

• Negatives
– Feature learning is not part of the framework (vs trees and neural nets)
– Slow training (especially for kernels) – until Pegasos!

Recap
• Nearest neighbor is widely used

– Super-powers: can instantly learn new classes and predict from one or many examples

• Logistic Regression is widely used
– Super-powers: Effective prediction from high-dimensional features

• Linear Regression is widely used
– Super-powers: Can extrapolate, explain relationships, and predict continuous values

from many variables

• Almost all algorithms involve nearest neighbor, logistic regression, or linear
regression
– The main learning challenge is typically feature learning

Things to remember
• Linear logistic regression and linear SVM are

classification techniques that aims to split features
between two classes with a linear model
– Predict categorical values with confidence

• Logistic regression maximizes confidence in the
correct label, while SVM just tries to be confident
enough

• Non-linear versions of SVMs can also work well and
were once popular (but almost entirely replaced by
deep networks)

• Nearest neighbor and linear models are the final
predictors of most ML algorithms – the complexity
lies in finding features that work well with NN or
linear models

Next class
• Probabilities and Naïve Bayes

	Linear Classifiers: Logistic Regression and SVM
	Linear Models
	Today’s Lecture
	Linear Classifiers and Linear Separability
	Linear Classifiers and Linear Separability
	Linear Classifiers and Linear Separability
	Linear Classifiers and Linear Separability
	(Linear) Logistic Regression Model
	Linear Logistic Regression
	Deriving the loss of logistic regression
	Linear Logistic Regression algorithm
	Training Logistic Regression
	Inspecting weights for digits
	Logistic Regression Summary
	Linear logistic regression is typically the last layer of a classification neural network
	3 minute stretch
	What is the best linear classifier?
	SVM Terminology
	SVMs minimize 𝒘 𝑇 𝒘 while preserving a margin of 1
	Why SVMs achieve good generalization
	SVM in Linearly Separable Case
	SVM in Non-Linearly Separable Case
	Slide Number 23
	Slide Number 25
	Representer theorem
	Primal vs. Dual Formulations of SVM
	For SVM, 𝛼 is sparse (most values are zero)
	Non-linear SVMs use a different similarity measure, called a “kernel function”, than dot product
	Slide Number 30
	Decreasing sigma makes it more like nearest neighbor
	Slide Number 32
	Example application of SVM: Dalal-Triggs 2005
	Example application of SVM: Dalal-Triggs 2005
	Example application of SVM: Dalal-Triggs 2005
	Using SVMs
	Recap
	Things to remember
	Next class

