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Linear Models
• A model is linear in x if it is based on a weighted sum of the values of x (optionally, 

plus a constant)

𝒘𝒘𝑇𝑇𝒙𝒙 + 𝑏𝑏 = �
𝑖𝑖

𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑏𝑏

• A linear classifier projects the features onto a score that indicates whether the label 
is positive or negative (i.e., one class or the other). We often show the boundary 
where that score is equal to zero.

• A linear regressor finds a linear model that approximates the prediction value for 
each set of features.

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑦𝑦 = 1 = 𝒘𝒘𝑇𝑇𝒙𝒙 + 𝑏𝑏
𝒘𝒘𝑇𝑇𝒙𝒙 + 𝑏𝑏=0
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Today’s Lecture

• Linear logistic regression: maximize likelihood of target labels 
given the features

• SVM: maximize the number of data points with confidently 
correct predictions



Linear Classifiers and Linear Separability

• Linear classifier: y = 1 if 𝒘𝒘𝑇𝑇𝒙𝒙 + 𝑏𝑏 > 0

• Linearly separable: a line (or hyperplane) in feature space can split the two labels

• Which of these are linearly separable?



Linear Classifiers and Linear Separability
• In high dimensions, a lot more things are linearly separable
• If you have D dimensions, you can separate D+1 points with 

any arbitrary labeling
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Linear Classifiers and Linear Separability
• But how do you choose which line is best?
• Different classifiers use different objectives to choose the line



Linear Classifiers and Linear Separability
• Different classifiers use different objectives to choose the line
• Common principles are that you want training samples on the 

correct side of the line (low classification error) by some 
margin (high confidence)

Thick line is better 
classification function than 
thin line because all the 
examples have a good margin



(Linear) Logistic Regression Model

“Logit”

“Logistic function”

* To simplify notation, I may omit 
the “b”, which can be avoided by 
adding a “1” to each feature vector𝒘𝒘𝑇𝑇𝒙𝒙 + 𝑏𝑏 ≈ log

𝑃𝑃(𝑦𝑦 = 1|𝑥𝑥)
𝑃𝑃(𝑦𝑦 = −1|𝑥𝑥)

𝑃𝑃 𝑦𝑦 = −1 𝑥𝑥 = 𝑃𝑃 𝑦𝑦 = 1 𝑥𝑥 =
exp(− 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 )

1 + exp(− 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 ) =
1

1 + exp( 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 )

𝑃𝑃 𝑦𝑦 = �𝑦𝑦 𝑥𝑥 =
1

1 + exp(−�𝑦𝑦 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 )

maximize 𝑃𝑃 𝒚𝒚 𝒙𝒙 ,    𝑦𝑦 ∈ {−1, 1}

where 𝑃𝑃 𝑦𝑦 = 1 𝒙𝒙 =
1

1 + exp(− 𝒘𝒘𝑇𝑇𝒙𝒙 + 𝑏𝑏 )

Note:



Linear Logistic Regression
• The further you are from the line, the more confident in a label

P(triangle|x) is higherP(circle|x) is higher

P(circle|x)=P(triangle|x) on the line



Deriving the loss of logistic regression

𝑤𝑤∗ = argmax
𝑤𝑤

�
𝑛𝑛

𝑃𝑃 𝑦𝑦 = 𝑦𝑦𝑛𝑛 𝑥𝑥𝑛𝑛;𝑤𝑤)

𝑤𝑤∗ = argmax
𝑤𝑤

�
𝑛𝑛

log 𝑃𝑃 𝑦𝑦 = 𝑦𝑦𝑛𝑛 𝑥𝑥𝑛𝑛;𝑤𝑤)

𝑤𝑤∗ = argmin
𝑤𝑤

−�
𝑛𝑛

log 𝑃𝑃 𝑦𝑦 = 𝑦𝑦𝑛𝑛 𝑥𝑥𝑛𝑛;𝑤𝑤)

Maximize probability of correct label 
given features of each data point, 
assuming the data points are 
conditionally independent

Maximizing log 𝑓𝑓 𝑥𝑥  is the same as 
maximizing 𝑓𝑓 𝑥𝑥  because log 𝑥𝑥  
monotonically increases with 𝑥𝑥

Log of product is the sum of logs.

Turn it into a minimization 
problem (as a convention)



Linear Logistic Regression algorithm
• Training

𝑤𝑤∗ = argmin
𝑤𝑤

−∑𝑛𝑛 log 𝑃𝑃 𝑦𝑦 = 𝑦𝑦𝑛𝑛 𝑥𝑥𝑛𝑛;𝑤𝑤) + 𝑟𝑟(𝑤𝑤)

• Prediction
𝑦𝑦 = 1 if 𝑤𝑤𝑇𝑇𝑥𝑥 > 0

𝑃𝑃 𝑦𝑦 = 1 𝑥𝑥 = 1
1+exp −𝑤𝑤𝑇𝑇𝑥𝑥

= exp 𝑤𝑤𝑇𝑇𝑥𝑥
exp 𝑤𝑤𝑇𝑇𝑥𝑥 +1

𝑃𝑃 𝑦𝑦 = 𝑘𝑘 𝑥𝑥 = exp 𝑤𝑤𝑘𝑘
𝑇𝑇𝑥𝑥

∑𝑗𝑗 exp 𝑤𝑤𝑗𝑗
𝑇𝑇𝑥𝑥

regularization

log probability of all labels given features, 
assuming that each example is i.i.d.

Binary (two-class) case

Multiclass case (one w per class)



Training Logistic Regression
𝑤𝑤∗ = argmin

𝑤𝑤
−∑𝑛𝑛 log 𝑃𝑃𝑤𝑤 𝑦𝑦 = 𝑦𝑦𝑛𝑛 𝑥𝑥𝑛𝑛) + 𝑟𝑟(𝑤𝑤)

• L2 regularization: 𝑟𝑟 𝑤𝑤 = 𝜆𝜆 𝑤𝑤 2
2 = 𝜆𝜆∑𝑖𝑖 𝑤𝑤𝑖𝑖2

• L1 regularization: 𝑟𝑟 𝑤𝑤 = 𝜆𝜆 𝑤𝑤 1 = 𝜆𝜆 ∑𝑖𝑖 |𝑤𝑤𝑖𝑖|

L2 strongly penalizes really big weights
L1 penalizes increasing the magnitude of big and small weights the same
L1 leads to a sparse weight vector (many zeros) – why?

L1 regularization can be used to select features!

When is regularization absolutely essential?

There are many optimizers for L2 and L1 logistic regression. You will want to use a library.

https://tminka.github.io/papers/logreg/minka-logreg.pdf


Inspecting weights for digits

Average 
Pixels

L2 weights 

L1 weights 



Logistic Regression Summary
• Key Assumptions

– The log odds ratio log 𝑃𝑃 𝑦𝑦 = 𝑘𝑘 𝑥𝑥
𝑃𝑃 𝑦𝑦 ≠ 𝑘𝑘 𝑥𝑥 can be expressed as a linear 

combination of features
• Model Parameters

– One coefficient per feature per class (plus bias term)
• Designs

– L1 or L2 or elastic (both L1 and L2) regularization weight
• When to Use / Strengths

– Many features, some of which could be irrelevant or redundant
– Provides a good estimate of label likelihood

• When Not to Use / Weaknesses
– Features are low-dimensional (linear function not likely to be expressive 

enough)



Linear logistic regression is typically the last layer of a 
classification neural network



3 minute stretch
Suppose for a spam classifier we have 5K training examples with 100 
feature dimensions.  Which of these is an advantage of linear logistic 
regression, compared to KNN?
• Faster to learn a model
• Faster prediction
• Requires less storage
• More accurate
• Less sensitive to feature scaling
• Can fit more complex decision functions
• Has lower training error
• Has less generalization error



What is the best linear classifier?
• Logistic regression

– Maximize expected likelihood of 
true label given data

– Every example contributes to loss

• SVM
– Make all examples at least 

minimally confident
– Base decision on a minimal set of 

examples
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SVM Terminology

Margin: the distance of 
examples (in feature space) 
from the decision boundary

 𝑚𝑚(𝒙𝒙) = 𝑦𝑦 𝒘𝒘𝑇𝑇𝒙𝒙+𝑏𝑏
𝑤𝑤

𝑦𝑦 ∈ {−1,1} 

Support Vector: an example 
that lies on the margin 
(circled points)



SVMs minimize 𝒘𝒘𝑇𝑇𝒘𝒘 while preserving a margin of 1
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Decision boundary depends only on 
“support vectors” (circled)
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Minimizes the sum of logistic error on all 
samples, so boundary should be further 
from dense regions
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Optimized Linear Logistic Regression Model

wTx+b=0



Why SVMs achieve good generalization

• Maximizing the margin – if all examples are far 
from the boundary, it is less likely that some test 
sample will end up on the wrong side of the 
boundary
– If classes are linearly separable, the scores can be 

arbitrarily increased by scaling w, so optimization is 
expressed as minimize 𝒘𝒘𝑇𝑇𝒘𝒘 while preserving a 
margin of 1

• Dependence on few training samples – most 
training data points could be removed without 
affecting the decision boundary, which gives an 
upper bound on the generalization error

• E.g., expected test error is <= than the smaller of:
a. % of training samples that are support vectors
b. D2/m2/N, the diameter of the data compared to 

the margin divided by the number of examples
(see proof)

https://ocw.mit.edu/courses/18-465-topics-in-statistics-statistical-learning-theory-spring-2007/0d49e3d6b669cbbb13ef85b0e21357a8_l4.pdf


SVM in Linearly Separable Case

Optimization

𝑤𝑤∗ = argmin
𝒘𝒘

𝑤𝑤 2 

subject to 
𝑦𝑦𝑛𝑛 𝒘𝒘𝑇𝑇𝑥𝑥𝑛𝑛 + 𝑏𝑏 ≥ 1 for all 𝑛𝑛

Prediction

𝑦𝑦𝑛𝑛 = sign 𝒘𝒘𝑇𝑇𝑥𝑥𝑛𝑛 + 𝑏𝑏

Here, 𝑦𝑦 ∈ {−1,1} which is a common convention that simplifies notation for binary classifiers



SVM in Non-Linearly Separable Case

Optimization

Prediction

𝑦𝑦𝑛𝑛 = sign 𝒘𝒘𝑇𝑇𝑥𝑥𝑛𝑛 + 𝑏𝑏

Here, 𝑦𝑦 ∈ {−1,1} which is a common convention that simplifies notation for binary classifiers

𝑤𝑤∗ = argmin
𝒘𝒘

𝑤𝑤 2+𝐶𝐶�
𝑛𝑛

𝑁𝑁

max(0, 1 −𝑦𝑦𝑛𝑛 𝒘𝒘𝑇𝑇𝑥𝑥𝑛𝑛 + 𝑏𝑏 ) 

Known as “hinge loss”
Penalty is paid if margin is less than 1



Fig source

https://towardsdatascience.com/a-definitive-explanation-to-hinge-loss-for-support-vector-machines-ab6d8d3178f1


Slide credit: Zisserman [link]

Pays a “slack” penalty for 
violating the margin

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf


Representer theorem
Optimal weights for many L2-regularized classification and 
regression functions can be expressed as a weighted 
combination of training examples

So linear SVM is a kind of weighted nearest neighbor with dot 
product similarity

𝒘𝒘∗ = �
𝑛𝑛

𝛼𝛼𝑛𝑛𝑦𝑦𝑛𝑛𝒙𝒙𝑛𝑛

Conditions apply, e.g. function must be regularized in a Reproducing Kernel Hilbert Space (details)
Does not apply to L1 weight regularization because that can’t be expressed as a dot product of weights

𝛼𝛼𝑛𝑛 ≥ 0,𝑦𝑦𝑛𝑛∈ {−1,1}

https://davidrosenberg.github.io/mlcourse/Archive/2018/Lectures/04c.representer-theorem.pdf


Primal vs. Dual Formulations of SVM

Prediction

Primal
𝑓𝑓 𝑥𝑥 = 𝒘𝒘𝑇𝑇𝒙𝒙 + 𝑏𝑏 

Dual
𝑓𝑓 𝒙𝒙 = ∑𝑛𝑛𝛼𝛼𝑛𝑛𝑦𝑦𝑛𝑛 𝒙𝒙𝑛𝑛𝑇𝑇𝒙𝒙 + 𝑏𝑏 

𝑤𝑤∗ = argmin
𝒘𝒘

𝑤𝑤 2+𝐶𝐶�
𝑛𝑛

𝑁𝑁

max(0, 1 −𝑦𝑦𝑛𝑛 𝒘𝒘𝑇𝑇𝑥𝑥𝑛𝑛 + 𝑏𝑏 ) 

𝜶𝜶∗ = argmax
𝜶𝜶

∑𝑖𝑖 𝛼𝛼𝑖𝑖 −
1
2
∑𝑗𝑗𝑗𝑗 𝛼𝛼𝑗𝑗𝛼𝛼𝑘𝑘𝑦𝑦𝑗𝑗𝑦𝑦𝑘𝑘(𝒙𝒙𝑗𝑗𝑇𝑇𝒙𝒙𝑘𝑘)  

s.t. 0 ≤ 𝛼𝛼𝑖𝑖 ≤ 𝐶𝐶 ∀𝑖𝑖 and   ∑𝑖𝑖 𝛼𝛼𝑖𝑖 𝑦𝑦𝑖𝑖 = 0

Training Objective 

Primal: parameter for each feature
Dual: parameter for each training example



For SVM, 𝛼𝛼 is sparse (most values are zero)

Slide credit: Zisserman [link]

In dual, 𝛼𝛼𝑖𝑖 > 0 only for 
support vectors

𝛼𝛼𝑖𝑖 = 0 for all others

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf


Non-linear SVMs use a different similarity measure, called 
a “kernel function”, than dot product

• Linear: 𝑘𝑘(𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗) = 𝒙𝒙𝑖𝑖𝑇𝑇𝒙𝒙𝑗𝑗

• Polynomial: 𝑘𝑘(𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗) = 1 + 𝒙𝒙𝑖𝑖𝑇𝑇𝒙𝒙𝑗𝑗
𝑑𝑑

• Gaussian: 𝑘𝑘(𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗) = exp(− 𝒙𝒙𝑖𝑖−𝒙𝒙𝑗𝑗
2

2𝜎𝜎2
)



Slide credit: Zisserman [link]

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf


Decreasing sigma makes it more like nearest neighbor

Fig credit: Zisserman [link]
SVM with RBF Kernel Shown

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf


If you were to remove a support vector from the training set, 
would the decision boundary change?
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Example application of SVM: Dalal-Triggs 2005

• Detection by scanning window
• Resize image to multiple scales and extract overlapping windows
• Classify each window as positive or negative

• Very highly cited (40,000+) paper, mainly for HOG 
• One of the best pedestrian detectors for several years

https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf 

https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf


Example application of SVM: Dalal-Triggs 2005

• Very highly cited (40,000+) paper, mainly for HOG 
• One of the best pedestrian detectors for several years



Example application of SVM: Dalal-Triggs 2005



Using SVMs
• Good broadly applicable classifier

– Strong foundation in statistical learning theory
– Works well with many weak features
– Requires parameter tuning for C 
– Non-linear SVM requires defining a kernel, and slower optimization/prediction

• RBF: related to neural networks, nearest neighbor (requires additional tuning)
• Chi-squared, histogram intersection: good for histograms (but slower, esp. chi-squared)
• Can learn a kernel function

• Negatives
– Feature learning is not part of the framework (vs trees and neural nets)
– Slow training (especially for kernels) – until Pegasos!



Recap
• Nearest neighbor is widely used

– Super-powers: can instantly learn new classes and predict from one or many examples

• Logistic Regression is widely used
– Super-powers: Effective prediction from high-dimensional features

• Linear Regression is widely used
– Super-powers: Can extrapolate, explain relationships, and predict continuous values 

from many variables

• Almost all algorithms involve nearest neighbor, logistic regression, or linear 
regression
– The main learning challenge is typically feature learning



Things to remember
• Linear logistic regression and linear SVM are 

classification techniques that aims to split features 
between two classes with a linear model
– Predict categorical values with confidence

• Logistic regression maximizes confidence in the 
correct label, while SVM just tries to be confident 
enough

• Non-linear versions of SVMs can also work well and 
were once popular (but almost entirely replaced by 
deep networks)

• Nearest neighbor and linear models are the final 
predictors of most ML algorithms – the complexity 
lies in finding features that work well with NN or 
linear models



Next class
• Probabilities and Naïve Bayes
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