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McInnes et al. (UMAP, 2000): Visualization of 30,000,000 integers as represented by 
binary vectors of prime divisibility, colored by integer value of the point



Last class: PDF Estimation

• Several methods to estimate 1D densities
– Parametric models (least flexible)
– Mixture of Gaussian
– Histograms and kernel density estimation (most flexible)

• Kernel density estimation won the decathlon of 1-D data fits, even performing 
similarly to Gaussian when the data was Gaussian

• N-D probability estimation can be achieved by
– Assuming independence or modeling small groups of dependent variables
– Discretizing using K-means or multi-dimensional binning (for low-D)
– Projecting into a lower dimension and then estimating, e.g. with PCA, manifold fitting, or 

autoencoding



This class – dimensionality reduction
• Goal: We want to represent high dimensional data with fewer dimensions, e.g. 

for:
– Compression: reduced storage, faster retrieval
– Visualization: plot in two dimensions

• A good dimensionality reduction can be defined in different ways
– Be able to reproduce the original data
– Preserve discriminative features
– Preserve the neighborhood structure

• One main strategy is linear projection, e.g. a street map projects everything onto 
the 2D ground dimensions and ignores height

• Another strategy is embedding or manifold fitting, where we try to preserve 
relationships in the data

PDF = probability density function



This class – PCA and manifolds

• Linear projection
– PCA: Principal Components Analysis
– Reduce dimension while preserving variance of data

• Embedding/manifold learning
– MDS (multidimensional scaling), IsoMap and t-SNE
– Preserve point distances and/or local structure

3D Data



Key terms
• Vectors and matrices
• Translation
• Projection
• Scaling
• Rotation
• Rank
• Eigenvectors/eigenvalues
• SVD



Key terms
Vector can represent a data point 𝒙𝒙 or a projection 𝒘𝒘 onto a 
coordinate
• 𝒘𝒘𝑇𝑇𝒙𝒙 projects data point 𝒙𝒙 onto the axis defined by 𝒘𝒘
• E.g. suppose 𝑑𝑑 = 2

• 𝒘𝒘 = 1
0 selects the first value of 𝒙𝒙

• 𝒘𝒘 = 1
1 adds the two values of 𝒙𝒙 together

Matrix can represent a set of data points or a set of projection 
vectors



Key terms
Translation is a transformation that adds a constant value to each 
vector
• E.g. centering is 𝒙𝒙𝑐𝑐 = 𝒙𝒙 –𝝁𝝁𝑥𝑥, where 𝝁𝝁𝑥𝑥 is the mean of 𝒙𝒙

Scaling is a transformation that multiplies each coordinate by a 
constant value

• E.g. 𝑾𝑾 =
2

1
1

will double the value of the first coordinate 

of 𝒙𝒙 when applied as 𝑾𝑾𝒙𝒙 (blanks are assumed to be zero)



Key terms
Rotation is a set of projections that preserves the distances 
between points and distances to the origin
• Each row and column represents a basis vector
• The basic vectors must have a unit norm and be orthogonal to 

each other:   𝒓𝒓𝑖𝑖𝑇𝑇𝒓𝒓𝑖𝑖 = 1, 𝒓𝒓𝑖𝑖𝑇𝑇𝒓𝒓𝑗𝑗 = 0, ∀(𝑖𝑖, 𝑗𝑗 ≠ 𝑖𝑖)



Key terms
Rank of matrix 𝑴𝑴 is the number of linearly independent vectors 
in the rows or columns of 𝑴𝑴
• 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑴𝑴) is at most the smaller of the number of rows and 

columns in 𝑴𝑴

• 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝟏𝟏 𝟎𝟎
𝟎𝟎 𝟏𝟏 = 2

• 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝟏𝟏 𝟐𝟐
𝟐𝟐 𝟒𝟒 = 1 because one of the rows (or columns) can 

be composed of a weighted sum of the others



Key terms
Eigenvector 𝒗𝒗 and corresponding eigenvalue 𝜆𝜆 of matrix 𝑴𝑴 are 
defined by having the special property 𝑴𝑴𝒗𝒗 = 𝜆𝜆𝒗𝒗
• Eigenvectors characterize matrices, and appear as part of a solution 

to many linear algebra problems

SVD (singular value decomposition) is a factorization of a matrix 𝑨𝑨
into 𝑼𝑼𝚺𝚺𝑽𝑽𝑇𝑇, where:
• Columns of 𝑼𝑼 are eigenvectors of 𝑨𝑨𝑨𝑨𝑇𝑇
• Columns of 𝑽𝑽 are eigenvectors of 𝑨𝑨𝑇𝑇𝑨𝑨
• 𝚺𝚺 is a diagonal (scaling) matrix of singular values, which are square 

roots of the eigenvalues of both 𝑨𝑨𝑨𝑨𝑇𝑇 and 𝑨𝑨𝑇𝑇𝑨𝑨



PCA

• General dimensionality reduction technique
• Finds major orthogonal directions of variation

• Preserves most of variance with a much more 
compact representation
– Lower storage requirements 
– Faster matching/retrieval
– Easier to work in low dimensions, e.g. for 

probability estimation



Principal Component Analysis
• Given a point set                     , in an M-dim 

space, PCA finds a basis such that
– The most variation is in the first basis vector
– The second most, in the second vector that is 

orthogonal to the first vector
– The third…

x1

x0

x1

x0

1st principal 
component

2nd principal 
component

1st principal component
2nd principal 
component



Principal Component Analysis (PCA)
• Given: N data points x1, … ,xN in Rd

• We want to find a new set of features that are 
linear combinations of original ones:

u(xi) = uT(xi – µ)
(µ: mean of data points)

• Choose unit vector u in Rd that captures the 
most data variance



Principal Component Analysis
Direction that maximizes the variance of the projected data:

Projection of data point

Covariance matrix of data

The direction that maximizes the variance is the eigenvector associated with the largest 
eigenvalue of Σ (can be derived using Raleigh’s quotient or Lagrange multiplier)

N

N

1/N

Maximize
subject to ||u||=1



PCA in Python

Compute PCA components 
as eigenvectors of 
covariance matrix

Compute PCA using the 
PCA function

Printout shows that eigenvalues 
are the same as the explained 
variance, and the first component 
is identical (up to numerical 
precision)



Principal Component Analysis

Choosing subspace dimension r:
• look at decay of the 

eigenvalues as a function of  r
• Larger r means lower 

expected error in the subspace 
data approximation

r M1

eigenvalues

First r < M principal component vectors provide an approximate 
basis that minimizes the mean-squared-error (MSE) of 
reconstructing the original points



Example on aligned faces
x1,…,xN are pixel 
values of each face



PCA of aligned face images (called “eigenfaces”)

Top eigenvectors: u1,…uk

Mean: μ



Visualization of eigenfaces (appearance variation)

Principal component (eigenvector) uk

μ + 3σkuk

μ – 3σkuk



Representation and reconstruction
• Face x in “face space” coordinates:

=



Representation and reconstruction
• Face x in “face space” coordinates:

• Reconstruction:

= +

µ       +    w1u1+w2u2+w3u3+w4u4+ …

=

x̂ =



P = 4

P = 200

P = 400

Reconstruction

After computing eigenfaces using 400 face 
images from ORL face database 



Note
Preserving variance (minimizing MSE) does not necessarily lead to 
qualitatively good reconstruction.

P = 200

Plot of eigenvalues for each 
eigenvector of the covariance 
matrix, equivalent to the variance 
contained along each principal 
component



Another example, representing MNIST 4’s
Variance per component

Cumulative % variance explained

0 1 5 10 20

50 100 200 400 768

Reconstructions with varying # PCs



Two minute break (3 questions)

If X consists of N data 
points of d 
dimensions, what is 
the maximum number 
of PCA components 
that would be needed 
to perfectly reconstruct 
the data?

Rank(X) <= min(N, d)

For each plot of data, what is the direction of the first principal component? 



PCA: MNIST at 2 dimensions

Note: I’m only plotting the ‘s’ 
data in this lecture (500 points)



Non-Linear Scaling and Manifold Estimation

We may care less about being able to reconstruct each data point 
than representing the relationships between data points

• MDS: Preserve Euclidean pairwise distances

• Non-metric MDS: Preserve distance orderings

• ISOMAP: Define distances in terms of “geodesic” (graph-based) 
similarity



MultiDimensional Scaling (MDS)
• For all data points, solve for 

new coordinate positions 
that preserve some input 
set of pairwise distances

• Classic case (equations on 
right) uses Euclidean 
distance and has closed 
form solution

• More generally, distance 
can be defined arbitrarily 
(e.g. from user surveys)

• Major drawback is that the 
solution is most influenced 
by points that are far from 
each other

See Forsyth AML 6.2 for details 

Solve for y that minimizes

where



MDS on MNIST 
• 30 PCA 

components
• MDS to 2 

dimensions

Note: For MDS and others, 
manifolds are fit on only ‘x’ data 
for speed (500 pts)



MDS on MNIST 

Pre-process with PCA to 30 dim No PCA



Non-metric MDS
• Optimize position of data points so 

that Euclidean distance preserves the 
ordering of input pairwise distances

• Requires only an order of 
dissimilarities

• Slow because this is a complicated 
optimization



ISOMAP
• Same as MDS but define 

distance in a graph
– Compute adjacency graph 

(e.g. 5 nearest neighbors) 
– Distance is shortest path 

in graph between two 
points

MNIST Iso (PCA: 30)

MNIST MDS 
(PCA: 30)



t-SNE
Map to 2 or 3 dimensions while 
preserving similarities of nearby 
points
1. Assign probability 𝑝𝑝𝑖𝑖𝑗𝑗 that pairs 

of points are similar, e.g. with 
Gaussian weighted distance

2. Define similarity 𝑞𝑞𝑖𝑖𝑗𝑗 in new 
coordinates

3. Minimize KL divergence between 
p and q (i.e. they should have 
similar distributions) using 
gradient descent



t-SNE
• In high dimensions, each point 

tends to be similarly distant to 
many points, so we often use 
PCA before applying t-SNE

t-SNE on 30 PCA dimensions of MNIST



Comparison

https://scikit-learn.org/stable/auto_examples/manifold/plot_compare_methods.html

https://scikit-learn.org/stable/auto_examples/manifold/plot_compare_methods.html


Comparison on MNIST

tSNEIsoMapMDS

PCA



UMAP (McInnes, 2020)
• Assumes data is uniformly distributed on an underlying 

manifold that is locally connected. Goal is to preserve that local 
structure.

• Algorithm: relatively complicated, incorporates many ideas 
from other methods, has strong mathematical foundations

• Hyperparameters:
– number of neighbors to consider
– dimension of target embedding
– desired separation between close points
– number of training epochs

https://arxiv.org/abs/1802.03426

https://arxiv.org/abs/1802.03426




UMAP on MNIST 

‘m’ (5000 points), 100 neighbors, 34s ‘s’ (500 pts), 10 neighbors



UMAP on MNIST 

‘all’ (50,000 points), 100 neighbors, 200s



Things to remember
• PCA reduces dimensions by linear projection

– Preserves variance to reproduce data as well as 
possible, according to mean squared error

– May not preserve local structure or discriminative 
information

• Other methods try to preserve relationships 
between points
– MDS: preserve pairwise distances
– IsoMap: MDS but using a graph-based distance
– t-SNE: preserve a probabilistic distribution of 

neighbors for each point (also focusing on closest 
points)

– UMAP: incorporates k-nn structure, spectral 
embedding, and more to achieve good embeddings 
relatively quickly



Next class: Topic Modeling



Topic Modeling
• LDA
• LSA
• BertTopic

– https://blog.deepgram.com/python-topic-modeling-with-a-bert-
model/

– https://www.pinecone.io/learn/bertopic/ (also covers umap)

https://blog.deepgram.com/python-topic-modeling-with-a-bert-model/
https://blog.deepgram.com/python-topic-modeling-with-a-bert-model/
https://www.pinecone.io/learn/bertopic/
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