
Dimensionality
Reduction: PCA
and low-D
embeddings

Applied Machine Learning
Derek Hoiem

McInnes et al. (UMAP, 2000): Visualization of 30,000,000 integers as represented by
binary vectors of prime divisibility, colored by integer value of the point

Last class: PDF Estimation

• Several methods to estimate 1D densities
– Parametric models (least flexible)
– Mixture of Gaussian
– Histograms and kernel density estimation (most flexible)

• Kernel density estimation won the decathlon of 1-D data fits, even performing
similarly to Gaussian when the data was Gaussian

• N-D probability estimation can be achieved by
– Assuming independence or modeling small groups of dependent variables
– Discretizing using K-means or multi-dimensional binning (for low-D)
– Projecting into a lower dimension and then estimating, e.g. with PCA, manifold fitting, or

autoencoding

This class – dimensionality reduction
• Goal: We want to represent high dimensional data with fewer dimensions, e.g.

for:
– Compression: reduced storage, faster retrieval
– Visualization: plot in two dimensions

• A good dimensionality reduction can be defined in different ways
– Be able to reproduce the original data
– Preserve discriminative features
– Preserve the neighborhood structure

• One main strategy is linear projection, e.g. a street map projects everything onto
the 2D ground dimensions and ignores height

• Another strategy is embedding or manifold fitting, where we try to preserve
relationships in the data

PDF = probability density function

This class – PCA and manifolds

• Linear projection
– PCA: Principal Components Analysis
– Reduce dimension while preserving variance of data

• Embedding/manifold learning
– MDS (multidimensional scaling), IsoMap and t-SNE
– Preserve point distances and/or local structure

3D Data

Key terms
• Vectors and matrices
• Translation
• Projection
• Scaling
• Rotation
• Rank
• Eigenvectors/eigenvalues
• SVD

Key terms
Vector can represent a data point 𝒙𝒙 or a projection 𝒘𝒘 onto a
coordinate
• 𝒘𝒘𝑇𝑇𝒙𝒙 projects data point 𝒙𝒙 onto the axis defined by 𝒘𝒘
• E.g. suppose 𝑑𝑑 = 2

• 𝒘𝒘 = 1
0 selects the first value of 𝒙𝒙

• 𝒘𝒘 = 1
1 adds the two values of 𝒙𝒙 together

Matrix can represent a set of data points or a set of projection
vectors

Key terms
Translation is a transformation that adds a constant value to each
vector
• E.g. centering is 𝒙𝒙𝑐𝑐 = 𝒙𝒙 –𝝁𝝁𝑥𝑥, where 𝝁𝝁𝑥𝑥 is the mean of 𝒙𝒙

Scaling is a transformation that multiplies each coordinate by a
constant value

• E.g. 𝑾𝑾 =
2

1
1

will double the value of the first coordinate

of 𝒙𝒙 when applied as 𝑾𝑾𝒙𝒙 (blanks are assumed to be zero)

Key terms
Rotation is a set of projections that preserves the distances
between points and distances to the origin
• Each row and column represents a basis vector
• The basic vectors must have a unit norm and be orthogonal to

each other: 𝒓𝒓𝑖𝑖𝑇𝑇𝒓𝒓𝑖𝑖 = 1, 𝒓𝒓𝑖𝑖𝑇𝑇𝒓𝒓𝑗𝑗 = 0, ∀(𝑖𝑖, 𝑗𝑗 ≠ 𝑖𝑖)

Key terms
Rank of matrix 𝑴𝑴 is the number of linearly independent vectors
in the rows or columns of 𝑴𝑴
• 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑴𝑴) is at most the smaller of the number of rows and

columns in 𝑴𝑴

• 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝟏𝟏 𝟎𝟎
𝟎𝟎 𝟏𝟏 = 2

• 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝟏𝟏 𝟐𝟐
𝟐𝟐 𝟒𝟒 = 1 because one of the rows (or columns) can

be composed of a weighted sum of the others

Key terms
Eigenvector 𝒗𝒗 and corresponding eigenvalue 𝜆𝜆 of matrix 𝑴𝑴 are
defined by having the special property 𝑴𝑴𝒗𝒗 = 𝜆𝜆𝒗𝒗
• Eigenvectors characterize matrices, and appear as part of a solution

to many linear algebra problems

SVD (singular value decomposition) is a factorization of a matrix 𝑨𝑨
into 𝑼𝑼𝚺𝚺𝑽𝑽𝑇𝑇, where:
• Columns of 𝑼𝑼 are eigenvectors of 𝑨𝑨𝑨𝑨𝑇𝑇
• Columns of 𝑽𝑽 are eigenvectors of 𝑨𝑨𝑇𝑇𝑨𝑨
• 𝚺𝚺 is a diagonal (scaling) matrix of singular values, which are square

roots of the eigenvalues of both 𝑨𝑨𝑨𝑨𝑇𝑇 and 𝑨𝑨𝑇𝑇𝑨𝑨

PCA

• General dimensionality reduction technique
• Finds major orthogonal directions of variation

• Preserves most of variance with a much more
compact representation
– Lower storage requirements
– Faster matching/retrieval
– Easier to work in low dimensions, e.g. for

probability estimation

Principal Component Analysis
• Given a point set , in an M-dim

space, PCA finds a basis such that
– The most variation is in the first basis vector
– The second most, in the second vector that is

orthogonal to the first vector
– The third…

x1

x0

x1

x0

1st principal
component

2nd principal
component

1st principal component
2nd principal
component

Principal Component Analysis (PCA)
• Given: N data points x1, … ,xN in Rd

• We want to find a new set of features that are
linear combinations of original ones:

u(xi) = uT(xi – µ)
(µ: mean of data points)

• Choose unit vector u in Rd that captures the
most data variance

Principal Component Analysis
Direction that maximizes the variance of the projected data:

Projection of data point

Covariance matrix of data

The direction that maximizes the variance is the eigenvector associated with the largest
eigenvalue of Σ (can be derived using Raleigh’s quotient or Lagrange multiplier)

N

N

1/N

Maximize
subject to ||u||=1

PCA in Python

Compute PCA components
as eigenvectors of
covariance matrix

Compute PCA using the
PCA function

Printout shows that eigenvalues
are the same as the explained
variance, and the first component
is identical (up to numerical
precision)

Principal Component Analysis

Choosing subspace dimension r:
• look at decay of the

eigenvalues as a function of r
• Larger r means lower

expected error in the subspace
data approximation

r M1

eigenvalues

First r < M principal component vectors provide an approximate
basis that minimizes the mean-squared-error (MSE) of
reconstructing the original points

Example on aligned faces
x1,…,xN are pixel
values of each face

PCA of aligned face images (called “eigenfaces”)

Top eigenvectors: u1,…uk

Mean: μ

Visualization of eigenfaces (appearance variation)

Principal component (eigenvector) uk

μ + 3σkuk

μ – 3σkuk

Representation and reconstruction
• Face x in “face space” coordinates:

=

Representation and reconstruction
• Face x in “face space” coordinates:

• Reconstruction:

= +

µ + w1u1+w2u2+w3u3+w4u4+ …

=

x̂ =

P = 4

P = 200

P = 400

Reconstruction

After computing eigenfaces using 400 face
images from ORL face database

Note
Preserving variance (minimizing MSE) does not necessarily lead to
qualitatively good reconstruction.

P = 200

Plot of eigenvalues for each
eigenvector of the covariance
matrix, equivalent to the variance
contained along each principal
component

Another example, representing MNIST 4’s
Variance per component

Cumulative % variance explained

0 1 5 10 20

50 100 200 400 768

Reconstructions with varying # PCs

Two minute break (3 questions)

If X consists of N data
points of d
dimensions, what is
the maximum number
of PCA components
that would be needed
to perfectly reconstruct
the data?

Rank(X) <= min(N, d)

For each plot of data, what is the direction of the first principal component?

PCA: MNIST at 2 dimensions

Note: I’m only plotting the ‘s’
data in this lecture (500 points)

Non-Linear Scaling and Manifold Estimation

We may care less about being able to reconstruct each data point
than representing the relationships between data points

• MDS: Preserve Euclidean pairwise distances

• Non-metric MDS: Preserve distance orderings

• ISOMAP: Define distances in terms of “geodesic” (graph-based)
similarity

MultiDimensional Scaling (MDS)
• For all data points, solve for

new coordinate positions
that preserve some input
set of pairwise distances

• Classic case (equations on
right) uses Euclidean
distance and has closed
form solution

• More generally, distance
can be defined arbitrarily
(e.g. from user surveys)

• Major drawback is that the
solution is most influenced
by points that are far from
each other

See Forsyth AML 6.2 for details

Solve for y that minimizes

where

MDS on MNIST
• 30 PCA

components
• MDS to 2

dimensions

Note: For MDS and others,
manifolds are fit on only ‘x’ data
for speed (500 pts)

MDS on MNIST

Pre-process with PCA to 30 dim No PCA

Non-metric MDS
• Optimize position of data points so

that Euclidean distance preserves the
ordering of input pairwise distances

• Requires only an order of
dissimilarities

• Slow because this is a complicated
optimization

ISOMAP
• Same as MDS but define

distance in a graph
– Compute adjacency graph

(e.g. 5 nearest neighbors)
– Distance is shortest path

in graph between two
points

MNIST Iso (PCA: 30)

MNIST MDS
(PCA: 30)

t-SNE
Map to 2 or 3 dimensions while
preserving similarities of nearby
points
1. Assign probability 𝑝𝑝𝑖𝑖𝑗𝑗 that pairs

of points are similar, e.g. with
Gaussian weighted distance

2. Define similarity 𝑞𝑞𝑖𝑖𝑗𝑗 in new
coordinates

3. Minimize KL divergence between
p and q (i.e. they should have
similar distributions) using
gradient descent

t-SNE
• In high dimensions, each point

tends to be similarly distant to
many points, so we often use
PCA before applying t-SNE

t-SNE on 30 PCA dimensions of MNIST

Comparison

https://scikit-learn.org/stable/auto_examples/manifold/plot_compare_methods.html

https://scikit-learn.org/stable/auto_examples/manifold/plot_compare_methods.html

Comparison on MNIST

tSNEIsoMapMDS

PCA

UMAP (McInnes, 2020)
• Assumes data is uniformly distributed on an underlying

manifold that is locally connected. Goal is to preserve that local
structure.

• Algorithm: relatively complicated, incorporates many ideas
from other methods, has strong mathematical foundations

• Hyperparameters:
– number of neighbors to consider
– dimension of target embedding
– desired separation between close points
– number of training epochs

https://arxiv.org/abs/1802.03426

https://arxiv.org/abs/1802.03426

UMAP on MNIST

‘m’ (5000 points), 100 neighbors, 34s ‘s’ (500 pts), 10 neighbors

UMAP on MNIST

‘all’ (50,000 points), 100 neighbors, 200s

Things to remember
• PCA reduces dimensions by linear projection

– Preserves variance to reproduce data as well as
possible, according to mean squared error

– May not preserve local structure or discriminative
information

• Other methods try to preserve relationships
between points
– MDS: preserve pairwise distances
– IsoMap: MDS but using a graph-based distance
– t-SNE: preserve a probabilistic distribution of

neighbors for each point (also focusing on closest
points)

– UMAP: incorporates k-nn structure, spectral
embedding, and more to achieve good embeddings
relatively quickly

Next class: Topic Modeling

Topic Modeling
• LDA
• LSA
• BertTopic

– https://blog.deepgram.com/python-topic-modeling-with-a-bert-
model/

– https://www.pinecone.io/learn/bertopic/ (also covers umap)

https://blog.deepgram.com/python-topic-modeling-with-a-bert-model/
https://blog.deepgram.com/python-topic-modeling-with-a-bert-model/
https://www.pinecone.io/learn/bertopic/

	Dimensionality Reduction: PCA and low-D embeddings�
	Last class: PDF Estimation
	This class – dimensionality reduction
	This class – PCA and manifolds
	Key terms
	Key terms
	Key terms
	Key terms
	Key terms
	Key terms
	PCA
	Principal Component Analysis
	Principal Component Analysis (PCA)
	Principal Component Analysis
	PCA in Python
	Principal Component Analysis
	Example on aligned faces
	PCA of aligned face images (called “eigenfaces”)
	Visualization of eigenfaces (appearance variation)
	Representation and reconstruction
	Representation and reconstruction
	Reconstruction
	Note
	Another example, representing MNIST 4’s
	Two minute break (3 questions)
	PCA: MNIST at 2 dimensions
	Non-Linear Scaling and Manifold Estimation
	MultiDimensional Scaling (MDS)
	MDS on MNIST
	MDS on MNIST
	Non-metric MDS
	ISOMAP
	t-SNE
	t-SNE
	Comparison
	Comparison on MNIST
	UMAP (McInnes, 2020)
	Slide Number 40
	UMAP on MNIST
	UMAP on MNIST
	Things to remember
	Next class: Topic Modeling
	Topic Modeling

