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Recall from last lecture: What are three ways to mitigate 
problems in bias from AI algorithms?

• Model cards

• Data sheets

• Intersectional performance analysis

• Adversarial algorithm to prevent using 
features that predict sensitive attributes such 
as race or gender

• Multi-task learning to facilitate learning of less 
common classes



We’ve learned a lot about supervised prediction 
algorithms – now we will learn about methods to organize 
and analyze data without labels

• Clustering and retrieval

• EM and missing data

• Estimating probabilities for continuous variables

• Projections for compression and visualization

• Topic modeling

• Anomaly detection



Today’s lecture

• Clustering
– Kmeans

– Hierarchical Kmeans

– Agglomerative Clustering

• Retrieval
– Using Hierarchical Kmeans

– LSH

– Faiss library



Clustering

• Assign a label to each data point based on the 
similarities between points

• Why cluster
– Represent data point with a single integer instead of a 

floating point vector
• Saves space

• Simple to count and estimate probability

– Discover trends in the data

– Make predictions based on groupings



K-means algorithm

Illustration: http://en.wikipedia.org/wiki/K-means_clustering

1. Randomly 

select K centers 

2. Assign each 

point to nearest 

center

3. Compute new 

center (mean) 

for each cluster

http://en.wikipedia.org/wiki/K-means_clustering
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K-means Demo

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html
https://www.naftaliharris.com/blog/visualizing-k-means-clustering/


What is the cost minimized by K means?
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1. Choose ids that minimizes square cost given centers

2. Choose centers that minimize square cost given ids



Implementation issues

• How to choose K?

– Can use MDL (minimum description length) 
principle that minimizes a cost of parameters 
plus cost of negative data log likelihood, but in 
practice K is almost always hand chosen

– Often based on the number of clusters you 
want considering time/space requirements

• How do you initialize

– Randomly choose points

– Iterative furthest point



Evaluating clusters with purity

• We often cluster when there is no definitively correct answer, 
but a purity measure can be used to check the consistency 
with labels

𝑝𝑢𝑟𝑖𝑡𝑦 =

𝑘

max
𝑦



𝑛:𝑖𝑑𝑛=𝑘

𝛿(𝑙𝑎𝑏𝑒𝑙𝑛 = 𝑦) /𝑁

• Purity is the count of data points with the most common label 
in each cluster, divided by the total number of data points (N)

• E.g., labels = {0, 0, 0, 0, 1, 1, 1, 1}, cluster ids = {0, 0, 0, 0, 0, 1, 1, 1}, 
purity = ?

purity = 7/8 

• Purity can be used to select the number of clusters, or to 
compare approaches with a given number of clusters
– A relatively small number of labels can be used to estimate 

purity, even if there are many data points



Kmeans code

https://colab.research.google.com/drive/1tDaNWN9z14oDS89L8s9OBoue-PizID_1?usp=sharing


What are some disadvantages of K-means in terms of 
clustering quality?

• All feature dimensions equally important

• Tends to break data into clusters of similar numbers of points (can be good 
or bad)

• Does not take into account any local structure

• Typically, not an easy way to choose K

• Can be very slow if the number of data points and clusters is large



Hierarchical K-means

• Iteratively cluster points into K groups, then cluster each group 
into K groups



























Advantages of Hierarchical K-Means

• Fast cluster training

– With a branching factor of 10, can cluster into 1M clusters by 
clustering into 10 clusters ~111,111 times, each time using e.g. 10K 
data points

– Vs. e.g. clustering 1B data points into 1M clusters

– Kmeans is O(K*N*D) per iteration so this is a 900,000x speedup!

• Fast lookup

– Find cluster number in O(log(K)*D) vs. O(K*D)

– 16,667x speedup in the example above



Are there any disadvantages of hierarchical Kmeans?

Yes, the assignment might not be quite as good, but often 

usually isn’t a huge deal since K means is used to 

approximate data points with centroid anyway



Agglomerative clustering

• Iteratively merge the two most similar points or clusters
– Can use various distance measures

– Can use different “linkages”, e.g. distance of nearest points in two clusters or the cluster averages

– Ideally the minimum distance between clusters should increase after each merge (e.g. if using 
the distance between cluster centers)

– Number of clusters can be set based on when the cost to merge increases suddenly

https://dashee87.github.io/data%20science/gener

al/Clustering-with-Scikit-with-GIFs/



Agglomerative clustering

• With good choices of linkage, agglomerative clustering can 
reflect the data connectivity structure (“manifold”)

https://dashee87.github.io/data%20science/gener

al/Clustering-with-Scikit-with-GIFs/

Clustering based on distance of 5 

nearest neighbors between clusters



Applications of clustering

• K-means
– Quantization (codebooks for image generation)
– Search 
– Data visualization (show the average image of clusters of images)

• Hierarchical K-means
– Fast search (document / image search)

• Agglomerative clustering
– Finding structures in the data (image segmentation, grouping camera 

locations together)



2 minute break

Are there any times that you’ve used clustering, or that it would 
be useful?



Retrieval

• Given a new sample, find the closest sample in a dataset

• Applications

– Finding information (web search)

– Prediction (e.g. nearest neighbor algorithm)

– Clustering (kmeans)



Vanilla Search

• Compute distance between query and each dataset point and 
return closest point

https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-

library-for-efficient-similarity-search/



Faiss library makes even brute force search very fast

• Multi-threading, BLAS libraries, SIMD vectorization, GPU 
implementations

• KNN for MNIST takes seconds

https://engineering.fb.com/2017/03/29/data-

infrastructure/faiss-a-library-for-efficient-similarity-search/



Inverse document file for retrieval of count-based docs

Applies to text (word counts), images (clustered keypoint counts), and 
other tokenized representations

• Like a book index: keep a list of all the words (tokens) and all the pages 
(documents) that contain them.

• Rank database documents based on summed tf-idf measure for each 
word/token in the query document

tf-idf: Term Frequency – Inverse Document Frequency

# words in document

# times word 

appears in document

#  documents

#  documents that 

contain the word



Locality Sensitive Hashing (LSH)

A fast approximate search method to return similar data points 
to query



A typical hash function aims to place different values in 
separate buckets

https://www.pinecone.io/learn/locality-

sensitive-hashing-random-projection/



LSH aims to put similar keys in the same bucket

https://www.pinecone.io/learn/locality-

sensitive-hashing-random-projection/



Basic LSH process

1. Convert each data point into an array of bits or integers, using the 
same conversion process/parameters for each

2. Map the arrays into buckets (e.g. with 10 bits, you have 2^10 
buckets)

– Can use subsets of arrays to create multiple sets of buckets

3. On query, return points in the same bucket(s)
– Can check additional buckets by flipping bits to find points within hash 

distances greater than 0



Random Projection LSH

Data Preparation

Given data {X} with dimension d:

1. Center data on origin (subtract mean)

2. Create b random vectors hb of length d

3. Convert each Xn to b bits: Xnh
T > 0

Query

1. Convert Xq to bits using h

2. Check buckets based on bit vector and similar bit vectors to return 
most similar data points

h= np.random.rand(nbits, d) - .5



Key parameter: nbits

• Example with 1M 128-bit SIFT vectors

More bits returns more similar vectors

Recall vs. exact nearest neighborSimilarity of LSH-returned vector



Key parameter: nbits

• Example with 1M 128-bit SIFT vectors

But more bits takes more time to query because it needs to 

search more buckets to find a collision 

Recall vs. exact nearest neighbor Time compared to brute force search



Key parameter: nbits

• Rule of thumb: nbits = dim is a decent choice (1 bit per feature dimension)

• Optionally, can retrieve K closest data points and then use brute force search on 
those

Recall vs. exact nearest neighbor Time compared to brute force search



Nice video about LSH in faiss: 
https://youtu.be/ZLfdQq_u7Eo

which is part of this very detailed and helpful post:
https://www.pinecone.io/learn/locality-sensitive-hashing-
random-projection/

https://youtu.be/ZLfdQq_u7Eo
https://www.pinecone.io/learn/locality-sensitive-hashing-random-projection/
https://www.pinecone.io/learn/locality-sensitive-hashing-random-projection/






Things to remember

• Clustering groups similar data points

• K-means is the must-know method, 
but there are many others

• TF-IDF is used for similarity of 
tokenized documents and used with 
index for fast search

• Approximate search methods like LSH 
can be used to find similar points 
quickly

• Use highly optimized libraries like 
FAISS
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