
Clustering and
Retrieval

Applied Machine Learning
Derek Hoiem

Dall-E

Recall from last lecture: What are three ways to mitigate
problems in bias from AI algorithms?

• Model cards

• Data sheets

• Intersectional performance analysis

• Adversarial algorithm to prevent using
features that predict sensitive attributes such
as race or gender

• Multi-task learning to facilitate learning of less
common classes

We’ve learned a lot about supervised prediction
algorithms – now we will learn about methods to organize
and analyze data without labels

• Clustering and retrieval

• EM and missing data

• Estimating probabilities for continuous variables

• Projections for compression and visualization

• Topic modeling

• Anomaly detection

Today’s lecture

• Clustering
– Kmeans

– Hierarchical Kmeans

– Agglomerative Clustering

• Retrieval
– Using Hierarchical Kmeans

– LSH

– Faiss library

Clustering

• Assign a label to each data point based on the
similarities between points

• Why cluster
– Represent data point with a single integer instead of a

floating point vector
• Saves space

• Simple to count and estimate probability

– Discover trends in the data

– Make predictions based on groupings

K-means algorithm

Illustration: http://en.wikipedia.org/wiki/K-means_clustering

1. Randomly

select K centers

2. Assign each

point to nearest

center

3. Compute new

center (mean)

for each cluster

http://en.wikipedia.org/wiki/K-means_clustering

K-means algorithm

Illustration: http://en.wikipedia.org/wiki/K-means_clustering

1. Randomly

select K centers

2. Assign each

point to nearest

center

3. Compute new

center (mean)

for each cluster

Back to 2

http://en.wikipedia.org/wiki/K-means_clustering

K-means Demo

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html
https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

What is the cost minimized by K means?

𝑖𝑑
∗
, 𝑐𝑒𝑛𝑡𝑒𝑟𝑠

∗
= 𝑎𝑟𝑔𝑚𝑖𝑛𝑖𝑑,𝑐𝑒𝑛𝑡𝑒𝑟𝑠

𝑛

𝑐𝑒𝑛𝑡𝑒𝑟𝑠𝑖𝑑𝑛 − 𝑋𝑛
2

1. Choose ids that minimizes square cost given centers

2. Choose centers that minimize square cost given ids

Implementation issues

• How to choose K?

– Can use MDL (minimum description length)
principle that minimizes a cost of parameters
plus cost of negative data log likelihood, but in
practice K is almost always hand chosen

– Often based on the number of clusters you
want considering time/space requirements

• How do you initialize

– Randomly choose points

– Iterative furthest point

Evaluating clusters with purity

• We often cluster when there is no definitively correct answer,
but a purity measure can be used to check the consistency
with labels

𝑝𝑢𝑟𝑖𝑡𝑦 =

𝑘

max
𝑦

𝑛:𝑖𝑑𝑛=𝑘

𝛿(𝑙𝑎𝑏𝑒𝑙𝑛 = 𝑦) /𝑁

• Purity is the count of data points with the most common label
in each cluster, divided by the total number of data points (N)

• E.g., labels = {0, 0, 0, 0, 1, 1, 1, 1}, cluster ids = {0, 0, 0, 0, 0, 1, 1, 1},
purity = ?

purity = 7/8

• Purity can be used to select the number of clusters, or to
compare approaches with a given number of clusters
– A relatively small number of labels can be used to estimate

purity, even if there are many data points

Kmeans code

https://colab.research.google.com/drive/1tDaNWN9z14oDS89L8s9OBoue-PizID_1?usp=sharing

What are some disadvantages of K-means in terms of
clustering quality?

• All feature dimensions equally important

• Tends to break data into clusters of similar numbers of points (can be good
or bad)

• Does not take into account any local structure

• Typically, not an easy way to choose K

• Can be very slow if the number of data points and clusters is large

Hierarchical K-means

• Iteratively cluster points into K groups, then cluster each group
into K groups

Advantages of Hierarchical K-Means

• Fast cluster training

– With a branching factor of 10, can cluster into 1M clusters by
clustering into 10 clusters ~111,111 times, each time using e.g. 10K
data points

– Vs. e.g. clustering 1B data points into 1M clusters

– Kmeans is O(K*N*D) per iteration so this is a 900,000x speedup!

• Fast lookup

– Find cluster number in O(log(K)*D) vs. O(K*D)

– 16,667x speedup in the example above

Are there any disadvantages of hierarchical Kmeans?

Yes, the assignment might not be quite as good, but often

usually isn’t a huge deal since K means is used to

approximate data points with centroid anyway

Agglomerative clustering

• Iteratively merge the two most similar points or clusters
– Can use various distance measures

– Can use different “linkages”, e.g. distance of nearest points in two clusters or the cluster averages

– Ideally the minimum distance between clusters should increase after each merge (e.g. if using
the distance between cluster centers)

– Number of clusters can be set based on when the cost to merge increases suddenly

https://dashee87.github.io/data%20science/gener

al/Clustering-with-Scikit-with-GIFs/

Agglomerative clustering

• With good choices of linkage, agglomerative clustering can
reflect the data connectivity structure (“manifold”)

https://dashee87.github.io/data%20science/gener

al/Clustering-with-Scikit-with-GIFs/

Clustering based on distance of 5

nearest neighbors between clusters

Applications of clustering

• K-means
– Quantization (codebooks for image generation)
– Search
– Data visualization (show the average image of clusters of images)

• Hierarchical K-means
– Fast search (document / image search)

• Agglomerative clustering
– Finding structures in the data (image segmentation, grouping camera

locations together)

2 minute break

Are there any times that you’ve used clustering, or that it would
be useful?

Retrieval

• Given a new sample, find the closest sample in a dataset

• Applications

– Finding information (web search)

– Prediction (e.g. nearest neighbor algorithm)

– Clustering (kmeans)

Vanilla Search

• Compute distance between query and each dataset point and
return closest point

https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-

library-for-efficient-similarity-search/

Faiss library makes even brute force search very fast

• Multi-threading, BLAS libraries, SIMD vectorization, GPU
implementations

• KNN for MNIST takes seconds

https://engineering.fb.com/2017/03/29/data-

infrastructure/faiss-a-library-for-efficient-similarity-search/

Inverse document file for retrieval of count-based docs

Applies to text (word counts), images (clustered keypoint counts), and
other tokenized representations

• Like a book index: keep a list of all the words (tokens) and all the pages
(documents) that contain them.

• Rank database documents based on summed tf-idf measure for each
word/token in the query document

tf-idf: Term Frequency – Inverse Document Frequency

words in document

times word

appears in document

documents

documents that

contain the word

Locality Sensitive Hashing (LSH)

A fast approximate search method to return similar data points
to query

A typical hash function aims to place different values in
separate buckets

https://www.pinecone.io/learn/locality-

sensitive-hashing-random-projection/

LSH aims to put similar keys in the same bucket

https://www.pinecone.io/learn/locality-

sensitive-hashing-random-projection/

Basic LSH process

1. Convert each data point into an array of bits or integers, using the
same conversion process/parameters for each

2. Map the arrays into buckets (e.g. with 10 bits, you have 2^10
buckets)

– Can use subsets of arrays to create multiple sets of buckets

3. On query, return points in the same bucket(s)
– Can check additional buckets by flipping bits to find points within hash

distances greater than 0

Random Projection LSH

Data Preparation

Given data {X} with dimension d:

1. Center data on origin (subtract mean)

2. Create b random vectors hb of length d

3. Convert each Xn to b bits: Xnh
T > 0

Query

1. Convert Xq to bits using h

2. Check buckets based on bit vector and similar bit vectors to return
most similar data points

h= np.random.rand(nbits, d) - .5

Key parameter: nbits

• Example with 1M 128-bit SIFT vectors

More bits returns more similar vectors

Recall vs. exact nearest neighborSimilarity of LSH-returned vector

Key parameter: nbits

• Example with 1M 128-bit SIFT vectors

But more bits takes more time to query because it needs to

search more buckets to find a collision

Recall vs. exact nearest neighbor Time compared to brute force search

Key parameter: nbits

• Rule of thumb: nbits = dim is a decent choice (1 bit per feature dimension)

• Optionally, can retrieve K closest data points and then use brute force search on
those

Recall vs. exact nearest neighbor Time compared to brute force search

Nice video about LSH in faiss:
https://youtu.be/ZLfdQq_u7Eo

which is part of this very detailed and helpful post:
https://www.pinecone.io/learn/locality-sensitive-hashing-
random-projection/

https://youtu.be/ZLfdQq_u7Eo
https://www.pinecone.io/learn/locality-sensitive-hashing-random-projection/
https://www.pinecone.io/learn/locality-sensitive-hashing-random-projection/

Things to remember

• Clustering groups similar data points

• K-means is the must-know method,
but there are many others

• TF-IDF is used for similarity of
tokenized documents and used with
index for fast search

• Approximate search methods like LSH
can be used to find similar points
quickly

• Use highly optimized libraries like
FAISS

	Slide 1: Clustering and Retrieval
	Slide 2: Recall from last lecture: What are three ways to mitigate problems in bias from AI algorithms?
	Slide 3: We’ve learned a lot about supervised prediction algorithms – now we will learn about methods to organize and analyze data without labels
	Slide 4: Today’s lecture
	Slide 5: Clustering
	Slide 6: K-means algorithm
	Slide 7: K-means algorithm
	Slide 8: K-means Demo
	Slide 9: What is the cost minimized by K means?
	Slide 10: Implementation issues
	Slide 11: Evaluating clusters with purity
	Slide 12: Kmeans code
	Slide 13: What are some disadvantages of K-means in terms of clustering quality?
	Slide 14: Hierarchical K-means
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Advantages of Hierarchical K-Means
	Slide 28: Are there any disadvantages of hierarchical Kmeans?
	Slide 29: Agglomerative clustering
	Slide 30: Agglomerative clustering
	Slide 31: Applications of clustering
	Slide 32: 2 minute break
	Slide 33: Retrieval
	Slide 34: Vanilla Search
	Slide 35: Faiss library makes even brute force search very fast
	Slide 36: Inverse document file for retrieval of count-based docs
	Slide 37: Locality Sensitive Hashing (LSH)
	Slide 38: A typical hash function aims to place different values in separate buckets
	Slide 39: LSH aims to put similar keys in the same bucket
	Slide 40: Basic LSH process
	Slide 41: Random Projection LSH
	Slide 42: Key parameter: nbits
	Slide 43: Key parameter: nbits
	Slide 44: Key parameter: nbits
	Slide 45: Nice video about LSH in faiss: https://youtu.be/ZLfdQq_u7Eo which is part of this very detailed and helpful post: https://www.pinecone.io/learn/locality-sensitive-hashing-random-projection/
	Slide 46
	Slide 47
	Slide 48: Things to remember

