Building an ML Application and Transfer Learning

Applied Machine Learning
Derek Hoiem
Today’s lecture

• Review a few exam questions

• Example of building an ML application

• Transfer learning
Exam

- Well done!
False: It’s possible (and common) for a method to achieve low/zero training error, but still perform badly in testing, especially if the training examples are few compared to the model size
(a): The parameters optimize the objective for the training data, so evaluation on the training data is a strongly biased optimistic estimate of performance, and is not a good indicator of expected performance for future examples.
(c) The trees are independently trained

(a) All features are used to train each tree
(b) $x=3 \Rightarrow y \approx 3$ for regression and nearest neighbor

The plot above shows a linear regression from x to y based on five data points. For which of these values of x would the 1-nearest neighbor prediction be closest to the linear regression prediction? [choose one]

- (a) 1
- (b) 3
- (c) 4
- (d) 5
- (e) Cannot be determined from the plot
False: The weight update is not sampled randomly from a uniform distribution, but computed from a random sample of data. Also, SGD does not proceed by checking whether an update decreases the loss -- it just takes a step according to the loss gradient for that mini-batch.
False: Sigmoid activations are very non-linear. The problem is that the gradient is always less than 1 and often very small, so with many layers, the gradient becomes negligible.
We’ve covered a lot of ground in deep networks

• ReLU activations, residual connections, and improved optimization techniques enabled training arbitrarily large and deep models

• Transformers provide a general and scalable way to process many kinds of data

• Training on large annotated datasets or even larger unannotated datasets yields impressive models that are useful for many applications
How do you make your own ML application?

Example: Safety inspector wants to know what fraction of workers are wearing helmets, gloves, and boots on each job site

- PPE use is low (e.g., 60% use in a study in Egypt; frequent lack of use in US and other countries too)
- 1,008 fatal and 174,100 non-fatal injuries in US construction in 2020
- Consistently using PPE would significantly reduce injury and sometimes death
Step 1: Propose a solution in more technical terms

Proposed solution: Process images from the job site to detect the workers and count what fraction of detected workers are wearing each item

- Left Glove: No
- Right Glove: No
- Hard hat: Yes
- Vest: Yes
- Boots: Yes
Step 1: Propose a solution in more technical terms

Main ML problem: Given an image, detect each worker and whether each detected worker is wearing: (a) glove on left hand; (b) glove on right hand; (c) boots; (d) hard hat; (e) vest

Note: There are lots of other aspects to the problem that we won’t consider in this example
• How to get images onto a server where we can process them
• How to avoid duplicate counts when the same person is in more than one image on the same day
• How to summarize results and report them to the safety inspector
Step 2: Decide how to measure success

• What matters?
 – We want the overall estimate of fraction of workers wearing each item to be accurate
 – We want to report specific instances of workers not wearing an item, so that they can be checked as problematic or not
Step 2: Decide how to measure success

• Key aspects of performance
 – Human detection performance
 • Do we care about “small” or heavily occluded workers?
 • What counts as correct? (maybe high overlap in bounding boxes)
 • Measure precision (fraction of detections that are correct) and recall (fraction of workers that are detected)
 • Can measure Precision and Recall for each level of confidence and generate a P-R curve
 • Common overall performance measure is average precision
 • We may care about recall at a high precision value because we don’t care about counting the number of workers, just knowing how likely a worker is to wear PPE
Step 2: Decide how to measure success

- Key aspects of performance
 - Human detection performance
 - Apparel classification performance, for correctly detected humans and each item:
 - TP rate: fraction of actual items that are detected
 - FP rate: fraction of item detections that are false
 - Summarize with equal error rate, accuracy when confidence is set so that FP rate = (1 - detection rate)
Step 2: Decide how to measure success

• Key aspects of performance
 – Human detection performance
 – Apparel detection performance, for correctly detected humans and each item
 – Overall: Deviance between the estimated fraction of workers wearing equipment from the true fraction over a set of images
 • Difference in fractions
 • Bias: tends to overcount or undercount
 • Variance: how much could the difference be expected to vary, given a particular number of images
Step 3: collect and annotate validation/test images

1. Collect images
 – Should be the same kind of images that will be processed in deployment
 – Collect from a variety of sites and different dates. Try to get representative diversity

2. Annotate
 – Draw boxes around each worker, even very small and hard to detect ones
 – For each PPE item, label “present”, “absent”, or “not visible”
 – How to get annotations
 • In house:
 – Use open source tool, such as VGG image annotator, or commercial tool like LabelBox
 – Develop custom tool (e.g. to process 360 images or fully integrate into existing application)
 • Outsource:
 – Amazon Mechanical Turk or other crowdsourcing tool
 – Commercial service
 • In this case, creating a small initial development validation set in-house and larger set by outsourcing could make sense

3. Split into a validation set and test set
Step 4: Determine technical details of approach

• For this example, we’ll base the approach on Mask-RCNN

Detects objects and person keypoints

Includes additional branch to detect person keypoints

Modifications
• Remove bounding box detections and masks for non-person objects
• Add classification layer to keypoint branch to classify
 • Wearing left glove
 • Wearing right glove
 • Wearing hard hat
 • Wearing boots
 • Wearing safety vest
Step 5: Collect training data

• Consider combination of existing data (with applicable licenses) and new data

• Existing
 – Papers with code
 – Google for existing papers/datasets, e.g.

• Collect own data
 – similar to collecting test/validation, but not quite as much concern about being representative or reflecting actual use cases
 – E.g., could ask job sites to send photos of workers wearing and not wearing PPE (on purpose, briefly) while in natural poses
Step 6: Develop model

- Whenever possible, start with a pretrained model

- Alternatively, you could use unsupervised pretraining to initialize your model (e.g. Masked Autoencoder)

(from Chat GPT)

There are several places where you can find pre-trained Mask R-CNN models, depending on your specific needs. Here are a few options:

1. Matterport Mask R-CNN: Matterport provides a number of pre-trained models for various datasets, including COCO, Kitti, and Cityscapes. You can find the models on their GitHub page: https://github.com/matterport/Mask_RCNN.

2. Detectron2: Detectron2 is an open-source object detection library developed by Facebook AI Research. They provide pre-trained models for several datasets, including COCO, LVIS, and Cityscapes. You can find the models on their GitHub page: https://github.com/facebookresearch/detectron2.

3. TensorFlow Object Detection API: TensorFlow also provides pre-trained Mask R-CNN models for several datasets, including COCO and Kitti. You can find the models on their GitHub page: https://github.com/tensorflow/models/tree/master/research/object_detection.

4. Hugging Face Transformers: Hugging Face offers a collection of pre-trained models for various tasks, including object detection. You can find pre-trained Mask R-CNN models on their model hub: https://huggingface.co/models?pipeline_tag=object-detection&task_mask=1.

Note that these are just a few options, and there may be other sources of pre-trained Mask R-CNN models available online as well.

https://huggingface.co/models
Step 6a: Develop model: establish baselines

• Run the model as-is on your validation data and measure human detection performance

• Train a linear probe for classifying PPE item presence and measure all performance metrics

• Manually validate your evaluation code by displaying images and detections and checking against metrics
Step 6b: Develop model: refine model

- Fine-tune the model on your data
- Train using mix of existing and application-specific data
 - Apply only the losses that are applicable (e.g. detection or pose only for some datasets)
- Use tools like TensorBoard or Weights and Biases to monitor training and compare results
 - Always plot validation and training loss, and measure validation performance at training milestones

https://huggingface.co/autotrain
Step 7: Evaluate on test set

• Measure performance metrics and characterize when it works and doesn’t
 – As function of occlusion, person size, camera viewpoint, etc
Step 8: Integrate into application

• Beta test in complete workflows

• Write guides for when it works and doesn’t

• Improve efficiency, refine approach
Summary of how to build a new ML application

1. Identify problem and general approach to solution
 – This also involves thinking ahead to metrics, available models, data, and more, to ensure viability

2. Specify success metrics
 – Check with product managers and/or users to ensure these metrics reflect important performance characteristics
 – Often, the metrics can’t be optimized directly

3. Create evaluation sets
 – Achieving targets for success metrics on these sets should indicate high likelihood of application success

4. Select model, objectives, and other design details
 – Usually this involves finding an analogous approach that has been successful

5. Collect data for training
 – Custom data and labeling is expensive and time-consuming, so exploit available data sources where available, and as allowed by license terms

6. Develop model, starting with baselines and simple approaches
 – Starting simple is critical so that it is easier to debug and validate changes

7. Evaluate on your test set
 – It’s not just about the performance number, but about predictability and effectiveness within the application

8. Integrate into the application
 – This requires a lot of work and testing
2 minute break
Thank you to Yuxiong Wang for following slides on domain adaptation and transfer learning!
Challenge for Machine Learning Models

• Development and real-world application may face different scenarios

• Limiting model performance and reliability
Types of Shifts

• Mainly two types of shifts from one scenario to another:

 Task shift **Domain** shift
Task Shift: Changed Model Objectives

Classifying **dogs and cats**
Source (Old) Task

Classifying **squirrels and birds**
Target (New) Task

Slide credit: Yuxiong Wang
Domain Shift: Changed Input Data Distributions

Classifying dogs and cats in studio
Source (Old) Domain

Classifying dogs and cats on grass
Target (New) Domain

Slide credit: Yuxiong Wang
Types of Shifts: Task or Domain?

• Task shift
 – **Objective** of model is changed
 – But data distributions are usually assumed similar or related

• Domain shift
 – Input data come from changed **distributions**
 – But model task usually remains the same
Overcoming Task/Domain Shift

Curated Dataset for Development → Trained ML Model → Real-world Setting → Questionable Performance

Adapted ML Model → Real-world Setting → Improved Performance

Slide credit: Yuxiong Wang
Overcoming Task/Domain Shift

• Task shift
 – Changed task objective

• Domain shift
 – Changed data distribution

• Task adaptation
 – Transfer learning
 – Meta-learning

• Domain adaptation
 – Instance translation
 – Domain adversarial training

• Some adaptation ideas may be applicable for both (e.g., Meta-learning)
Application: Autonomous Driving

• Adapt to different weather conditions, lighting conditions, or driving environments

Images from Sakaridis et al. IJCV '18
Application: Robotics

• Adapt from simulated environment to real-world robotic systems, or adapt from one learned task to another
Application: Speech recognition

• Adapt to different accents, speaking styles, or environmental conditions

• Example: Model trained with American English could be adapted to British English by fine-tuning on new domain

Slide credit: Yuxiong Wang
Methods for Task Adaptation

• Transfer learning: Pre-training and fine-tuning

• Meta-learning: Model-Agnostic Meta-Learning (MAML) and variants
Transfer Learning

• Goal: To **reuse knowledge** learned from one task (which usually has abundant supervisory information), to another related task

• Implementation is simple
 – "Pre-train" model on source task
 – Copy learned weights from learned model
 – "Fine-tune" new model on target task
Transfer Learning

Model 1

Task 1 Data → Backbone → Head → Task 1 Outputs

Model 2

Task 2 Data → Backbone → New Head → Task 2 Outputs

Initialize weights
Transfer Learning

- Step 1: Pre-train Model 1 on Task 1
Transfer Learning

• Step 2: Initialize weights using learned Model 1
Transfer Learning

• Step 3: Fine-tune Model 2 on Task 2
 – Backbone may use a smaller learning rate or even be "frozen"

Slide credit: Yuxiong Wang
Model-Agnostic Meta-Learning (MAML)

• Proposed by Finn et al. ICML '17

• Goal: To learn a good parameter initialization that can be quickly adapted to new tasks

• Model-agnostic: Can be applied to any differentiable model
 – Flexible, can be used in a wide range of applications
 – Including computer vision, natural language processing, and robotics
Model-Agnostic Meta-Learning (MAML)

• Assumption and setting
 – Have a pool of various tasks
 – Each task contains a set of training/validation samples

• An example of task pool
 – Classify Dogs into Shepherd, Labrador, Golden, Husky ...
 – Classify Cat into Siamese, Maine, Persian, Shorthair ...
 – Classify Bird into Canary, Parrot, Dove, Sparrow ...
Model-Agnostic Meta-Learning (MAML)

• Meta-learning phase
 – Use pool of tasks to obtain a good parameter initialization
 – Learn from the "experience of learning"

• Adaptation phase
 – Use few samples and optimization steps to adapt to new task
 – New task can be outside the task pool used in meta-learning

Slide credit: Yuxiong Wang
Algorithm 2 MAML for Few-Shot Supervised Learning

Require: \(p(\mathcal{T}) \): distribution over tasks

Require: \(\alpha, \beta \): step size hyperparameters

1: randomly initialize \(\theta \)
2: while not done do
3: Sample batch of tasks \(\mathcal{T}_i \sim p(\mathcal{T}) \)
4: for all \(\mathcal{T}_i \) do
5: Sample \(K \) datapoints \(\mathcal{D} = \{x^{(j)}, y^{(j)}\} \) from \(\mathcal{T}_i \)
6: Evaluate \(\nabla_\theta L_{\mathcal{T}_i}(f_\theta) \) using \(\mathcal{D} \) and \(L_{\mathcal{T}_i} \) in Equation (2) or (3)
7: Compute adapted parameters with gradient descent: \(\theta'_i = \theta - \alpha \nabla_\theta L_{\mathcal{T}_i}(f_\theta) \)
8: Sample datapoints \(\mathcal{D}'_i = \{x^{(j)}, y^{(j)}\} \) from \(\mathcal{T}_i \) for the meta-update
9: end for
10: Update \(\theta \leftarrow \theta - \beta \nabla_\theta \sum_{\mathcal{T}_i \sim p(\mathcal{T})} L_{\mathcal{T}_i}(f_{\theta'_i}) \) using each \(\mathcal{D}'_i \) and \(L_{\mathcal{T}_i} \) in Equation 2 or 3
11: end while

Find gradient step(s) to improve parameters for each few-shot task
Update parameters so that those update steps reduce the loss as much as possible for all tasks
MAML is “learning to learn” – it learns parameters that are close to good parameters for many classification tasks, so that new tasks can be learned from a few examples and optimization steps.
Methods for Domain Adaptation

• Instance translation
 – Transform target-domain data into source-domain

• Domain adversarial training
 – Align source-domain and target-domain feature spaces
Instance Translation

• Use generative models (e.g., CycleGAN by Zhu et al. ICCV '17) to create instances

• Look like source domain but preserve same target domain content

• Then feed source-like instances into source-domain model
Instance Translation

CycleGAN by Zhu et al. ICCV '17

Monet ↔ Photos
Zebras ↔ Horses
Summer ↔ Winter

Monet → photo
zebra → horse
summer → winter

photo → Monet
horse → zebra
winter → summer

Photograph → Monet → Van Gogh → Cezanne → Ukiyo-e
Domain Adversarial Training

• Proposed by Ganin et al. JMLR '17

• Goal: Learn a **domain-invariant** model
 – Model produces features that do not change with domain shift
 – Only reflect contents about labels, but not domain characteristics
Domain Adversarial Training

- Attach a domain classifier network and apply adversarial training
- Aim of domain classifier: To distinguish source vs. target domains
Domain Adversarial Training

• Aim of main network: 1) Correctly predict label of source-domain data;
Domain Adversarial Training

- Aim of main network: 1) Correctly predict label of source-domain data; 2) Using features that cannot distinguish between source and target domains
Domain Adversarial Training

- Adversarial training: Domain classifier θ_d **minimizes** discrimination loss L_d, while main network's feature extractor θ_f **maximizes** L_d

Adversarial training is implemented by reversing gradients here
Domain Adversarial Training

• One mainstream of domain adaptation
 – Various follow-up methods study how to better learn **domain-invariant** models or feature representations

• Other ideas (may be combined with domain adversarial training)
 – Instance translation
 – Pseudo-labeling and self-training
 – Domain randomization
Summary

• Task adaptation for changed task objective
 – Transfer learning
 – Meta-learning

• Domain adaptation for changed data distribution
 – Instance translation
 – Domain adversarial training
Coming up

• Thursday: Ethics and Impact of AI