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Let’s talk about 𝑿𝑿

𝜃𝜃∗ = argmin
𝜃𝜃

𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜(𝑓𝑓 𝑿𝑿;𝜃𝜃 ,𝒚𝒚)



What is data?

• Information that helps us make decisions

• Numbers (bits)



How do we represent data?
• As humans: media we can see, read, and hear

– Words, imagery, sounds, tables, plots

https://www.rd.com/list/funny-photos/

https://www.canto.com/blog/audio-file-types/

https://fileinfo.com/extension/txt



Sometimes, we can transform the data while preserving 
much or all of the information

• Resize an image

• Rephrase a paragraph

• 1.5x an audio book 



Sometimes, we can even transform the data so that it is 
more informative

• Perform denoising on an image

• Identify key points and insights in a document

• Remove background noise from audio

• None of these operations add information to the data, but they 
re-organize and/or remove distracting information



In computers, data are numbers

• The numbers do not “mean” anything by themselves

• The meaning comes from the way the numbers were produced 
and how they can inform

• The meaning can be contained in each number by itself, or 
commonly by patterns in groups of numbers



Sometimes, we can transform the data while preserving 
much or all of the information

• Add or multiply by a constant value

• Represent as a 16-bit or 32-bit float or integer

• Compress a document, or store in a different file format



Sometimes, we can even transform the data so that it is 
more informative

• Center and rescale images of digits so they are easier to 
compare to each other

• Normalize (subtract means and divide by standard deviations) 
cancer cell measurements to make simple similarity measures 
better reflect malignancy

• Select features or create new ones out of combinations of 
inputs



Sometimes, we change the structure of data to make it 
easier to process

This does not change the information in 
the data, but it makes it harder to 
understand by people and more/less 
convenient for certain kinds of 
processing
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Images are represented as 3D matrices (row, col, color)



Text can be represented as a sequence of integers
• Each character can map to a byte value, and then we have a 

sequence of bytes
“Dog ate”  [4 15 7 27 1 20 5]

• Each complete word can map to an integer value, and we have 
a sequence of integers
“Dog ate”  [437 1256]

• Common groups of letters can be mapped to subwords and 
then to integers
“Bedroom 1521”  [bed-room- -1-5-2-1][125 631 27 28 32 29 27]



Audio can be represented as a waveform or spectrum

Fig source

Amplitude vs Time

Frequency-Amplitude vs Time

http://musicandcomputersbook.com/chapter3/03_01.php


Other kinds of data

• Measurements and continuous values typically represented as 
floating point numbers 
– Temperature, length, area, dollars

• Categorical values represented as integers
- Happy/Indifferent/Sad  0/1/2
- Red/Green/Blue/Orange  0/1/2/3/4

• Different kinds of values (text, images, measurements) can be 
reshaped and concatenated into a long feature vector



The same information content can be represented in many ways.  
If the original numbers can be recovered, then a change in 
representation does not change the information content.

All types of data can be stored as 1D vectors/arrays. 

Matrices and other data structures make code easier to program 
and read.



From data point to data set

𝒙𝒙 = {𝑥𝑥0, … 𝑥𝑥𝑀𝑀}~𝐷𝐷: x is an M-dimensional vector drawn from some distribution 𝐷𝐷

We can sample many 𝒙𝒙 (e.g. download documents from the Internet, take pictures, take 
measurements) to get 
𝑿𝑿 = 𝒙𝒙𝟎𝟎, … ,𝒙𝒙𝑵𝑵

We may repeat this collection multiple times, or collect one large dataset and randomly sample 
it to get
𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕,𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕

Typically, we assume that all of the data samples within 𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 and 𝑿𝑿𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 come from the same 
distribution and are independent of each other.  That means, e.g. that 𝒙𝒙𝟎𝟎 does not tell us 
anything about 𝒙𝒙𝟏𝟏 if we already know the sampling distribution 𝐷𝐷



Consider an example from the penguins dataset

https://colab.research.google.com/drive/1URvf7625flfDV5BlZYNbIL0C8Y8b1Zdz#scrollTo=LL39c5bR4Z0i


Convert the data into numbers
df_penguins = pd.read_csv(datadir + 'penguins_size.csv')
df_penguins.head(10)

# convert features with multiple string values to binary features so they can be used by sklearn
def get_penguin_xy(df_penguins):
data = np.array(df_penguins[['island', 'culmen_length_mm', 'culmen_depth_mm', 'flipper_length_mm’, \

'body_mass_g', 'sex']])
y = df_penguins['species']
ui = np.unique(data[:,0]) # unique island
us = np.unique(data[:,-1]) # unique sex
X = np.zeros((len(y), 10))
for i in range(len(y)):
f = 0
for j in range(len(ui)): # replace island name with three indicator variables
if data[i, f]==ui[j]:
X[i, f+j] = 1

f = f + len(ui)
X[i, f:(f+4)] = data[i, 1:5] # copy original measurement features
f=f+4
for j in range(len(us)): # replace sex with three indicator variables (male/female/unknown)
if data[i, 5]==us[j]:
X[i, f+j] = 1

feature_names = ['island_biscoe', 'island_dream', 'island_torgersen', 'culmen_length_mm’, \
'culmen_depth_mm', 'flipper_length_mm', 'body_mass_g', 'sex_female', 'sex_male', 'sex_unknown'

X = pd.DataFrame(X, columns=feature_names)
return(X, y, feature_names, np.unique(y))



How do we measure 𝑿𝑿?
• We can check the number of samples and dimensions

• We can measure the distribution with statistics



Different samples will give us different measurements of the distribution

The estimates from larger sample sizes will vary less



How do we measure 𝑿𝑿?
• We can measure the entropy of a particular variable: 

𝐻𝐻 𝑥𝑥 = −∑𝑘𝑘 𝑃𝑃 𝑥𝑥 = 𝑘𝑘 log𝑃𝑃 𝑥𝑥 = 𝑘𝑘 (if x is discrete, i.e. finite number of possible values)



How do we measure 𝑿𝑿?
• We can measure the entropy of a particular variable: 

𝐻𝐻 𝑥𝑥 = −∫𝑝𝑝 𝑥𝑥 log(𝑝𝑝 𝑥𝑥 )𝑑𝑑𝑥𝑥 (if x is continuous)



How do we measure 𝑿𝑿?
• We can measure the entropy of a particular variable: 
𝐻𝐻 𝑥𝑥 = −∫𝑝𝑝 𝑥𝑥 log(𝑝𝑝 𝑥𝑥 ) (if x is continuous)

But probability densities and entropy of continuous variables are 
tricky to estimate

Step = 1 Step = 0.1



Entropy measures how many bits are required to store an element of data

Does this mean that entropy is a measure of information?

Does a random array contain information?



Information gain: IG(y|x) = H(y)-H(y|x)
• Information gain 

measures how much a 
variable x reduces the 
entropy of y when 
known, i.e. how many 
fewer bits are needed 
to encode y given the 
value of x

Knowing the island is Biscoe tells us very little about whether a penguin is likely to be male or female



Information gain: IG(y|x) = H(y)-H(y|x)
• Also applies when x is 

continuous

Knowing the culmen length tells us a lot whether a penguin is likely to be male or female. Large 
culmens are always male, but smaller ones could be male (maybe young) or female.

IG(y|x) = 0.304



Information gain: IG(y|x) = H(y)-H(y|x)
• Again, details on how continuous distribution is estimated can lead to 

different information gains

IG(y|x) = 0.304 IG(y|x) = 0.1904

Step=1 Step=3



How can the information gain be different depending our 
step size? 

• We have only an empirical estimate (based on observed samples) of probabilities 
used to compute information gain

• With more data, we could obtain a better estimate
• With continuous variables, there is a trade-off between over-smoothing or 

simplifying the distribution and making overly confident predictions based on small 
data samples 

• This is another example of the bias-variance trade-off
– The step size we choose would likely depend on the amount of data available

• The true probability distributions and information gain cannot be known. We can 
only try to make our best estimate

IG(y|x) = 0.304
IG(y|x) = 0.190

Step=1 Step=3



Coming back to

• The aim is to automatically find a model that predicts y given X
• Probabilistically, this can be viewed as maximizing the information gain of y given X, with 

constraints/priors to improve robustness to limited data
𝜃𝜃∗ = argmin

𝜃𝜃
[𝐻𝐻 𝑦𝑦 𝑥𝑥;𝜃𝜃 − 𝐻𝐻 𝑦𝑦 + 𝑅𝑅 𝜃𝜃 ]

𝐻𝐻 𝑦𝑦 𝑥𝑥;𝜃𝜃 = −�𝑝𝑝 𝑥𝑥 log𝑝𝑝 𝑦𝑦 𝑥𝑥 𝑑𝑑𝑥𝑥 ≈ �
(𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛)∈X,𝒚𝒚

− log𝑝𝑝(𝑦𝑦𝑛𝑛|𝑥𝑥𝑛𝑛)

• Manually (computer-assisted), we can at most identify how to extract the information from one or 
two variables for y

• This is why we have machine learning: 
– Encode: automatically transform X into a representation that makes it easier to extract information about y 

(Often, humans do this part, especially if there is limited data available for learning)
– Decode: automatically extract information about y from X 

𝜃𝜃∗ = argmin
𝜃𝜃

𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜(𝑓𝑓 𝑿𝑿;𝜃𝜃 ,𝒚𝒚)



The most powerful ML algorithms smoothly combine 
encoding (feature extraction) with decoding (prediction) 
and offer controls or protections against overfitting

Random Forests
• Deep trees partition

the feature space by
optimizing 
information gain for 
a subset of features 
(individually low 
bias, high variance)

• Vote averaging 
reduces 
variance/overfitting

Boosted Trees
• Shallow trees partition the 

feature space by optimizing 
information gain (high bias, 
low variance)

• Each tree is trained on 
weighted sample to focus on 
previous mispredictions, so 
combination reduces bias
(but may increase variance if 
there are many deeper 
trees, as eventually all the 
weight will be on the few 
hardest examples)

Deep Networks
• End-to-end learning

(gradient flow from
prediction to input) enables
joint optimization of 
features and prediction

• Intermediate layers 
represent transformations 
of the data that are more 
easily re-usable than tree 
partitions

• The structure of the
network (max feature width) 
controls overfitting

• Massive datasets further
reduce variance when
training “from scratch”



Deep network optimization
• The long-standing challenge in deep (many-layer) neural networks is how to optimize them
• Optimization is by stochastic gradient descent (SGD) and back-propagation

– where weight updates are computed by summing products of error gradients from input of the weight to 
the network’s output

– SGD is performed efficiently using back-propagation, a dynamic program that re-uses weight gradient 
computations at each layer to compute the gradients for the previous layer 

• Deep networks are composed of layers and activations
– Sigmoid activations, traditionally used, have gradients less than 1 everywhere, and often much less than 1, 

so gradients “vanish” in earlier layers, due to a product of many values less than 1
– ReLU activations have gradients of 0 or 1 everywhere, so they do not have this problem as much, but you 

can have “dead” (gradient=0 for input of all/most samples) ReLUs that can hinder optimization 
– Skip connections add the output of one layer to the output of a later layer (gradient=1), enabling error 

gradients to flow through the entire network
• SGD has many variants and tricks to improve speed and stability of optimization

– Momentum accelerates the steps when sequential batches produce similar error gradients
– Gradient path length normalizations prevent focusing too much on a small number of weights
– Gradient clipping (for example, g = max(min(g, g_max), -gmax)) prevents gradients from “exploding” and 

improves stability of optimization
– SGD+momentum and Adam (SGD+momentum+normalization) are most widely used, but more advanced 

methods are available, such as RANGER (Rectified Adam with gradient centering and look-ahead)



Whose job is ML – human or machine?

• Problem definition: human

• Objective (Loss): human (with automatic validation)

• Data collection/curation (X, y): mainly human, but less supervised 
approaches becoming popular to reduce requirements

• Feature encoding (X): human or machine, depending on f

• Model definition (f): human

• Parameters (𝜃𝜃): machine

𝜃𝜃∗ = argmin
𝜃𝜃

𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜(𝑓𝑓 𝑿𝑿;𝜃𝜃 ,𝒚𝒚)

Shake hands fig

https://eandt.theiet.org/content/articles/2019/09/book-review-humanmachine-the-future-of-our-partnership-with-machines/


Midterm Exam Logistics
• Mar 9 (exam will be open for most of the day)
• Exam will be 75 minutes long (or longer for those with DRES 

accommodations)
• Mainly multiple choice / multiple select

– No coding or complex calculations; mainly tests conceptual understanding
• You take it at home (open book) on PrairieLearn
• Not cheating

– Consult notes, practice questions/answers, slides, internet, etc.
• Cheating

– Talking to a classmate about the exam after one (but not both) of you has taken it
– Getting help from another person during the exam 

• You will not have time to look up all the answers, so do prepare by reviewing 
slides, lectures, AML book, and practice questions



Midterm Exam Central Topics
• How does train/test error depend on 

– Number of training samples
– Complexity of model

• Bias-variance trade-off, including meaning of “bias” and
“variance” for ML models and “overfitting”

• Basic function/form/assumptions of classification/regression 
models (KNN, NB, linear/logistic regression, trees, SVMs, 
boosted trees, random forests, ensembles

• Entropy/Information gain
• SGD and activation layers



Bias-Variance Trade-off

See this for derivation Fig Sources

Variance: due to limited data
Different training samples will give different models that vary in predictions for the same test sample

“Noise”: irreducible error due to data/problem

Bias: error when optimal model is learned from infinite data

Above is for regression.  
But same error = variance + noise + bias2 holds for classification error and logistic regression.

https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote12.html
http://scott.fortmann-roe.com/docs/BiasVariance.html




Performance vs training size
As we get more training data:

1. The same model has more difficulty 
fitting the data

2. But the test error becomes closer to 
training error (reduced generalization 
error)

3. Overall test performance improvesTesting

Training
Number of Training Examples

Er
ro

r

Fixed model

Test error with infinite training examples

Train error with infinite training examples
Due to difference in P(y|x) in 
training and test (function shift)

Due to limited training data 
(model variance) and 
distribution shift

Due to limited power of model 
(model bias) and unavoidable 
intrinsic error (Bayes optimal 
error)



Questions
• What are ways to reduce model bias?

– More complex model
– Boosting ensemble

• What are ways to reduce model variance?
– More training examples
– Averaging ensemble
– Simpler model

• Which models are linear (in terms of input features)?
1. KNN
2. Linear regression
3. Linear SVM
4. SVM with RBF kernel
5. Decision tree
6. Random forest
7. Naïve bayes with Gaussian/multinomial
8. Perceptron
9. MLP
2,3,7,8



Upcoming schedule
• Thursday: CNNs and Vision
• Next week (Feb 27+)

– HW 2 due, HW3 released
– Word representations and language models
– Transformers in vision and language

• Following week (Mar 7+)
– Foundation models
– Exam

• Spring break
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