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Previously, we learned…

• Ensembles improve accuracy 
by reducing bias and/or 
variance

• Boosted trees and random 
forests are powerful and 
widely applicable ensemble 
methods



Support Vector Machines (SVMs)
• Developed in the 1990’s by Vapnik and colleagues at Bell Labs 

based on statistical learning theory
• One of the most popular learning techniques until deep 

learning resurgence
• What is interesting about SVMs

– Generalization properties, including achieving a margin and 
structural risk minimization

– Extension to non-linear classifier via kernels
– Dual form that shows how linear classifiers can be seen as a 

weighted average of training examples
– Optimization via stochastic gradient descent, also used for neural 

networks



This lecture
1. Linear SVM

2. Kernels and Non-Linear SVM

3. SVM Optimization with Stochastic Gradient Descent



What is the best linear classifier?
• Logistic regression

– Maximize expected likelihood of 
label given data

– Every example contributes to loss

• SVM
– Make all examples at least 

minimally confident
– Base decision on a minimal set of 

examples
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SVM Terminology

Margin: the distance of 
examples (in feature space) 
from the decision boundary

𝑚𝑚(𝒙𝒙) = 𝑦𝑦 𝒘𝒘𝑇𝑇𝒙𝒙+𝑏𝑏
𝑤𝑤

𝑦𝑦 ∈ {−1,1}

Support Vector: an example 
that lies on the margin 
(circled points)



SVMs minimize 𝒘𝒘𝑇𝑇𝒘𝒘 while preserving a margin of 1
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Decision boundary depends only on 
“support vectors” (circled)
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Optimized SVM Model

wTx+b=0
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Minimizes the sum of logistic error on all 
samples, so boundary should be further 
from dense regions
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Optimized Linear Logistic Regression Model

wTx+b=0



Why SVMs achieve good generalization

• Maximizing the margin – if all examples are far 
from the boundary, it is less likely that some test 
sample will end up on the wrong side of the 
boundary
– If classes are linearly separable, the scores can be 

arbitrarily increased by scaling w, so optimization is 
expressed as minimize 𝒘𝒘𝑇𝑇𝒘𝒘 while preserving a 
margin of 1

• Dependence on few training samples – most 
training data points could be removed without 
affecting the decision boundary, which gives an 
upper bound on the generalization error

• E.g., expected test error is <= than the smaller of:
a. % of training samples that are support vectors
b. D2/m2/N, the diameter of the data compared to 

the margin divided by the number of examples
(see proof)

https://ocw.mit.edu/courses/18-465-topics-in-statistics-statistical-learning-theory-spring-2007/0d49e3d6b669cbbb13ef85b0e21357a8_l4.pdf


SVM in Linearly Separable Case

Optimization

𝑤𝑤∗ = argmin
𝒘𝒘

𝑤𝑤 2

subject to 
𝑦𝑦𝑛𝑛 𝒘𝒘𝑇𝑇𝑥𝑥𝑛𝑛 + 𝑏𝑏 ≥ 1 for all 𝑛𝑛

Prediction

𝑦𝑦𝑛𝑛 = sign 𝒘𝒘𝑇𝑇𝑥𝑥𝑛𝑛 + 𝑏𝑏

Here, 𝑦𝑦 ∈ {−1,1} which is a common convention that simplifies notation for binary classifiers



SVM in Non-Linearly Separable Case

Optimization

Prediction

𝑦𝑦𝑛𝑛 = sign 𝒘𝒘𝑇𝑇𝑥𝑥𝑛𝑛 + 𝑏𝑏

Here, 𝑦𝑦 ∈ {−1,1} which is a common convention that simplifies notation for binary classifiers

𝑤𝑤∗ = argmin
𝒘𝒘

𝑤𝑤 2+𝐶𝐶�
𝑛𝑛

𝑁𝑁

max(0, 1 −𝑦𝑦𝑛𝑛 𝒘𝒘𝑇𝑇𝑥𝑥𝑛𝑛 + 𝑏𝑏 )

Known as “hinge loss”
Penalty is paid if margin is less than 1



Fig source

https://towardsdatascience.com/a-definitive-explanation-to-hinge-loss-for-support-vector-machines-ab6d8d3178f1


Sometimes non-linear optimization is written in terms of 
“slack variables”

𝑤𝑤∗ = argmin
𝒘𝒘

𝑤𝑤 2+𝐶𝐶�
𝑛𝑛

𝑁𝑁

max(0, 1 −𝑦𝑦𝑛𝑛 𝒘𝒘𝑇𝑇𝑥𝑥𝑛𝑛 + 𝑏𝑏 )

is equivalent to  

Pay slack penalty

slack 
variables



Slide credit: Zisserman [link]

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf


Representer theorem
Optimal weights for many L2-regularized classification and 
regression functions can be expressed as a weighted 
combination of training examples

𝒘𝒘∗ = �
𝑛𝑛

𝛼𝛼𝑛𝑛𝑦𝑦𝑛𝑛𝒙𝒙𝑛𝑛

Conditions apply, e.g. function must be regularized in a Reproducing Kernel Hilbert Space (details)

Does not apply to L1 weight regularization because that can’t be expressed as a dot product of weights

𝛼𝛼𝑛𝑛 ≥ 0,𝑦𝑦𝑛𝑛∈ {−1,1}

https://davidrosenberg.github.io/mlcourse/Archive/2018/Lectures/04c.representer-theorem.pdf


Primal vs. Dual Formulations of SVM

Prediction

Primal
𝑓𝑓 𝑥𝑥 = 𝒘𝒘𝑇𝑇𝒙𝒙 + 𝑏𝑏

Dual
𝑓𝑓 𝒙𝒙 = ∑𝑛𝑛𝛼𝛼𝑛𝑛𝑦𝑦𝑛𝑛 𝒙𝒙𝑛𝑛𝑇𝑇𝒙𝒙 + 𝑏𝑏

𝑤𝑤∗ = argmin
𝒘𝒘

𝑤𝑤 2+𝐶𝐶�
𝑛𝑛

𝑁𝑁

max(0, 1 −𝑦𝑦𝑛𝑛 𝒘𝒘𝑇𝑇𝑥𝑥𝑛𝑛 + 𝑏𝑏 )

𝜶𝜶∗ = argmax
𝜶𝜶

∑𝑖𝑖 𝛼𝛼𝑖𝑖 −
1
2
∑𝑗𝑗𝑗𝑗 𝛼𝛼𝑗𝑗𝛼𝛼𝑗𝑗𝑦𝑦𝑗𝑗𝑦𝑦𝑗𝑗(𝒙𝒙𝑗𝑗𝑇𝑇𝒙𝒙𝑗𝑗)

s.t. 0 ≤ 𝛼𝛼𝑖𝑖 ≤ 𝐶𝐶 ∀𝑖𝑖 and   ∑𝑖𝑖 𝛼𝛼𝑖𝑖 𝑦𝑦𝑖𝑖 = 0

Training Objective 

Primal: parameter for each feature
Dual: parameter for each training example



For SVM, 𝛼𝛼 is sparse (most values are zero)

Slide credit: Zisserman [link]

In dual, 𝛼𝛼𝑖𝑖 > 0 only for 
support vectors

𝛼𝛼𝑖𝑖 = 0 for all others

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf


But what if the decision boundary is not even close to linear?

Slide credit: Zisserman [link]

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf


Slide credit: Zisserman [link]

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf


Slide credit: Zisserman [link]

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf


Slide credit: Zisserman [link]

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf


Slide credit: Zisserman [link]

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf


Slide credit: Zisserman [link]

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf


Slide credit: Zisserman [link]

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf


Slide credit: Zisserman [link]

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf


Slide credit: Zisserman [link]

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf


Slide credit: Zisserman [link]

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf


Decreasing C gives a wider soft margin

Fig credit: Zisserman [link]
SVM with RBF Kernel Shown

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf


Decreasing sigma makes it more like nearest neighbor

Fig credit: Zisserman [link]
SVM with RBF Kernel Shown

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf


Slide credit: Zisserman [link]

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf


Stretch break

• If you were to remove a support vector from the training set, 
would the decision boundary change?

• After break
– Application example
– Pegasos – SGD optimization
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Example application of SVM: Dalal-Triggs 2005

• Detection by scanning window
• Resize image to multiple scales and extract overlapping windows
• Classify each window as positive or negative

• Very highly cited (40,000+) paper, mainly for HOG 
• One of the best pedestrian detectors for several years

https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf

https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf


Example application of SVM: Dalal-Triggs 2005

• Very highly cited (40,000+) paper, mainly for HOG 
• One of the best pedestrian detectors for several years



Example application of SVM: Dalal-Triggs 2005



Using SVMs
• Good broadly applicable classifier

– Strong foundation in statistical learning theory
– Works well with many weak features
– Requires parameter tuning for C 
– Non-linear SVM requires defining a kernel, and slower optimization/prediction

• RBF: related to neural networks, nearest neighbor (requires additional tuning)
• Chi-squared, histogram intersection: good for histograms (but slower, esp. chi-squared)
• Can learn a kernel function

• Negatives
– Feature learning is not part of the framework (vs trees and neural nets)
– Slow training (especially for kernels) – until Pegasos!



Pegasos: Primal Estimated sub-GrAdient SOlver for SVM 
(2011)

https://home.ttic.edu/~nati/Publications/PegasosMPB.pdf

SVM problem that we want to solve
(Minimize weights square + sum of 
hinge losses on all samples)

Problem in terms of one sample

Gradient in terms of one sample
- Direction to move to improve solution

https://home.ttic.edu/%7Enati/Publications/PegasosMPB.pdf


Gradient Descent Visualization

Figure source

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c


Pegasos algorithm: Stochastic Gradient Descent (SGD)

Notation

𝑆𝑆: training set
𝜆𝜆: regularization weight
𝑇𝑇: number iterations
𝒘𝒘𝑡𝑡: model weights
𝒙𝒙𝑖𝑖𝑡𝑡: features for example 𝑖𝑖𝑡𝑡
𝑦𝑦𝑖𝑖𝑡𝑡: label for example 𝑖𝑖𝑡𝑡
𝜂𝜂𝑡𝑡: step size (“learning rate”)



Pegasos with mini-batch
• Calculating gradient based on multiple examples reduces 

variance of gradient estimate
𝑘𝑘: batch size
𝑚𝑚: number of training samples
𝐴𝐴𝑡𝑡: batch of examples
𝐴𝐴𝑡𝑡+: examples within margin

𝑆𝑆: training set
𝜆𝜆: regularization weight
𝑇𝑇: number iterations
𝒘𝒘𝑡𝑡: model weights
𝒙𝒙𝑖𝑖: features for example 𝑖𝑖
𝑦𝑦𝑖𝑖: label for example 𝑖𝑖
𝜂𝜂𝑡𝑡: step size (“learning rate”)



SGD applies to many losses

SVM (hinge loss)

Logistic regression / sigmoid loss

z is the score 
for y=1

Hinge L1 regression

Margin loss between scores of 
most likely and correct label

Variant of a logistic loss



SGD is fast compared to other optimization approaches

SDCA = stochastic dual 
coordinate descent, another form 
of sub-gradient optimization that 
chooses learning rate 
dynamically



Experiments with Linear SVM

Training time and test error



Experiments using Gaussian kernel SVM (see paper for kernelized Pegasos algorithm)



Effect of mini-batch size



Effect of sampling procedure: randomly ordered  epochs is best

Sampling with replacement

Use different random order for each “epoch”

Use same order for each epoch

Epoch: one run through the training set



Learning rate comparison

Zhang uses fixed learning rate 

Plots show error over iterations for 
several rates



Pegasos: take-ways and surprising facts

• SGD is very simple and effective optimization algorithm – step 
toward better solution based on a small sample of training data

• Not very sensitive to mini-batch size (but larger batches can be 
much faster with parallel processing)

• The same learning schedule is effective across several problems

• A larger training set makes it faster to obtain the same test 
performance



Next week
• Neural networks

– Multi-layer perceptrons (MLP)
– Deep networks
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