
SVMs and
SGD

Applied Machine Learning
Derek Hoiem

Dall-E

Previously, we learned…

• Ensembles improve accuracy
by reducing bias and/or
variance

• Boosted trees and random
forests are powerful and
widely applicable ensemble
methods

Support Vector Machines (SVMs)
• Developed in the 1990’s by Vapnik and colleagues at Bell Labs

based on statistical learning theory
• One of the most popular learning techniques until deep

learning resurgence
• What is interesting about SVMs

– Generalization properties, including achieving a margin and
structural risk minimization

– Extension to non-linear classifier via kernels
– Dual form that shows how linear classifiers can be seen as a

weighted average of training examples
– Optimization via stochastic gradient descent, also used for neural

networks

This lecture
1. Linear SVM

2. Kernels and Non-Linear SVM

3. SVM Optimization with Stochastic Gradient Descent

What is the best linear classifier?
• Logistic regression

– Maximize expected likelihood of
label given data

– Every example contributes to loss

• SVM
– Make all examples at least

minimally confident
– Base decision on a minimal set of

examples

x x

x x

x

x
x

x

o
o

o

o

o

x2

x1

SVM Terminology

Margin: the distance of
examples (in feature space)
from the decision boundary

𝑚𝑚(𝒙𝒙) = 𝑦𝑦 𝒘𝒘𝑇𝑇𝒙𝒙+𝑏𝑏
𝑤𝑤

𝑦𝑦 ∈ {−1,1}

Support Vector: an example
that lies on the margin
(circled points)

SVMs minimize 𝒘𝒘𝑇𝑇𝒘𝒘 while preserving a margin of 1

x x

x x
x

x
x

x

o
o

o

o

o

x2

x1

Decision boundary depends only on
“support vectors” (circled)

xxxxxxxx
oo o

Optimized SVM Model

wTx+b=0

x x

x x
x

x
x

x

o
o

o

o

o

x2

x1

Minimizes the sum of logistic error on all
samples, so boundary should be further
from dense regions

xxxxxxxx
oo o

Optimized Linear Logistic Regression Model

wTx+b=0

Why SVMs achieve good generalization

• Maximizing the margin – if all examples are far
from the boundary, it is less likely that some test
sample will end up on the wrong side of the
boundary
– If classes are linearly separable, the scores can be

arbitrarily increased by scaling w, so optimization is
expressed as minimize 𝒘𝒘𝑇𝑇𝒘𝒘 while preserving a
margin of 1

• Dependence on few training samples – most
training data points could be removed without
affecting the decision boundary, which gives an
upper bound on the generalization error

• E.g., expected test error is <= than the smaller of:
a. % of training samples that are support vectors
b. D2/m2/N, the diameter of the data compared to

the margin divided by the number of examples
(see proof)

https://ocw.mit.edu/courses/18-465-topics-in-statistics-statistical-learning-theory-spring-2007/0d49e3d6b669cbbb13ef85b0e21357a8_l4.pdf

SVM in Linearly Separable Case

Optimization

𝑤𝑤∗ = argmin
𝒘𝒘

𝑤𝑤 2

subject to
𝑦𝑦𝑛𝑛 𝒘𝒘𝑇𝑇𝑥𝑥𝑛𝑛 + 𝑏𝑏 ≥ 1 for all 𝑛𝑛

Prediction

𝑦𝑦𝑛𝑛 = sign 𝒘𝒘𝑇𝑇𝑥𝑥𝑛𝑛 + 𝑏𝑏

Here, 𝑦𝑦 ∈ {−1,1} which is a common convention that simplifies notation for binary classifiers

SVM in Non-Linearly Separable Case

Optimization

Prediction

𝑦𝑦𝑛𝑛 = sign 𝒘𝒘𝑇𝑇𝑥𝑥𝑛𝑛 + 𝑏𝑏

Here, 𝑦𝑦 ∈ {−1,1} which is a common convention that simplifies notation for binary classifiers

𝑤𝑤∗ = argmin
𝒘𝒘

𝑤𝑤 2+𝐶𝐶�
𝑛𝑛

𝑁𝑁

max(0, 1 −𝑦𝑦𝑛𝑛 𝒘𝒘𝑇𝑇𝑥𝑥𝑛𝑛 + 𝑏𝑏)

Known as “hinge loss”
Penalty is paid if margin is less than 1

Fig source

https://towardsdatascience.com/a-definitive-explanation-to-hinge-loss-for-support-vector-machines-ab6d8d3178f1

Sometimes non-linear optimization is written in terms of
“slack variables”

𝑤𝑤∗ = argmin
𝒘𝒘

𝑤𝑤 2+𝐶𝐶�
𝑛𝑛

𝑁𝑁

max(0, 1 −𝑦𝑦𝑛𝑛 𝒘𝒘𝑇𝑇𝑥𝑥𝑛𝑛 + 𝑏𝑏)

is equivalent to

Pay slack penalty

slack
variables

Slide credit: Zisserman [link]

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf

Representer theorem
Optimal weights for many L2-regularized classification and
regression functions can be expressed as a weighted
combination of training examples

𝒘𝒘∗ = �
𝑛𝑛

𝛼𝛼𝑛𝑛𝑦𝑦𝑛𝑛𝒙𝒙𝑛𝑛

Conditions apply, e.g. function must be regularized in a Reproducing Kernel Hilbert Space (details)

Does not apply to L1 weight regularization because that can’t be expressed as a dot product of weights

𝛼𝛼𝑛𝑛 ≥ 0,𝑦𝑦𝑛𝑛∈ {−1,1}

https://davidrosenberg.github.io/mlcourse/Archive/2018/Lectures/04c.representer-theorem.pdf

Primal vs. Dual Formulations of SVM

Prediction

Primal
𝑓𝑓 𝑥𝑥 = 𝒘𝒘𝑇𝑇𝒙𝒙 + 𝑏𝑏

Dual
𝑓𝑓 𝒙𝒙 = ∑𝑛𝑛𝛼𝛼𝑛𝑛𝑦𝑦𝑛𝑛 𝒙𝒙𝑛𝑛𝑇𝑇𝒙𝒙 + 𝑏𝑏

𝑤𝑤∗ = argmin
𝒘𝒘

𝑤𝑤 2+𝐶𝐶�
𝑛𝑛

𝑁𝑁

max(0, 1 −𝑦𝑦𝑛𝑛 𝒘𝒘𝑇𝑇𝑥𝑥𝑛𝑛 + 𝑏𝑏)

𝜶𝜶∗ = argmax
𝜶𝜶

∑𝑖𝑖 𝛼𝛼𝑖𝑖 −
1
2
∑𝑗𝑗𝑗𝑗 𝛼𝛼𝑗𝑗𝛼𝛼𝑗𝑗𝑦𝑦𝑗𝑗𝑦𝑦𝑗𝑗(𝒙𝒙𝑗𝑗𝑇𝑇𝒙𝒙𝑗𝑗)

s.t. 0 ≤ 𝛼𝛼𝑖𝑖 ≤ 𝐶𝐶 ∀𝑖𝑖 and ∑𝑖𝑖 𝛼𝛼𝑖𝑖 𝑦𝑦𝑖𝑖 = 0

Training Objective

Primal: parameter for each feature
Dual: parameter for each training example

For SVM, 𝛼𝛼 is sparse (most values are zero)

Slide credit: Zisserman [link]

In dual, 𝛼𝛼𝑖𝑖 > 0 only for
support vectors

𝛼𝛼𝑖𝑖 = 0 for all others

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf

But what if the decision boundary is not even close to linear?

Slide credit: Zisserman [link]

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf

Slide credit: Zisserman [link]

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf

Slide credit: Zisserman [link]

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf

Slide credit: Zisserman [link]

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf

Slide credit: Zisserman [link]

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf

Slide credit: Zisserman [link]

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf

Slide credit: Zisserman [link]

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf

Slide credit: Zisserman [link]

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf

Slide credit: Zisserman [link]

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf

Slide credit: Zisserman [link]

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf

Decreasing C gives a wider soft margin

Fig credit: Zisserman [link]
SVM with RBF Kernel Shown

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf

Decreasing sigma makes it more like nearest neighbor

Fig credit: Zisserman [link]
SVM with RBF Kernel Shown

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf

Slide credit: Zisserman [link]

https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf

Stretch break

• If you were to remove a support vector from the training set,
would the decision boundary change?

• After break
– Application example
– Pegasos – SGD optimization

x x

x x

x

x
x

x

o
o

o

o

o

x2

x1

Example application of SVM: Dalal-Triggs 2005

• Detection by scanning window
• Resize image to multiple scales and extract overlapping windows
• Classify each window as positive or negative

• Very highly cited (40,000+) paper, mainly for HOG
• One of the best pedestrian detectors for several years

https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf

https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf

Example application of SVM: Dalal-Triggs 2005

• Very highly cited (40,000+) paper, mainly for HOG
• One of the best pedestrian detectors for several years

Example application of SVM: Dalal-Triggs 2005

Using SVMs
• Good broadly applicable classifier

– Strong foundation in statistical learning theory
– Works well with many weak features
– Requires parameter tuning for C
– Non-linear SVM requires defining a kernel, and slower optimization/prediction

• RBF: related to neural networks, nearest neighbor (requires additional tuning)
• Chi-squared, histogram intersection: good for histograms (but slower, esp. chi-squared)
• Can learn a kernel function

• Negatives
– Feature learning is not part of the framework (vs trees and neural nets)
– Slow training (especially for kernels) – until Pegasos!

Pegasos: Primal Estimated sub-GrAdient SOlver for SVM
(2011)

https://home.ttic.edu/~nati/Publications/PegasosMPB.pdf

SVM problem that we want to solve
(Minimize weights square + sum of
hinge losses on all samples)

Problem in terms of one sample

Gradient in terms of one sample
- Direction to move to improve solution

https://home.ttic.edu/%7Enati/Publications/PegasosMPB.pdf

Gradient Descent Visualization

Figure source

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

Pegasos algorithm: Stochastic Gradient Descent (SGD)

Notation

𝑆𝑆: training set
𝜆𝜆: regularization weight
𝑇𝑇: number iterations
𝒘𝒘𝑡𝑡: model weights
𝒙𝒙𝑖𝑖𝑡𝑡: features for example 𝑖𝑖𝑡𝑡
𝑦𝑦𝑖𝑖𝑡𝑡: label for example 𝑖𝑖𝑡𝑡
𝜂𝜂𝑡𝑡: step size (“learning rate”)

Pegasos with mini-batch
• Calculating gradient based on multiple examples reduces

variance of gradient estimate
𝑘𝑘: batch size
𝑚𝑚: number of training samples
𝐴𝐴𝑡𝑡: batch of examples
𝐴𝐴𝑡𝑡+: examples within margin

𝑆𝑆: training set
𝜆𝜆: regularization weight
𝑇𝑇: number iterations
𝒘𝒘𝑡𝑡: model weights
𝒙𝒙𝑖𝑖: features for example 𝑖𝑖
𝑦𝑦𝑖𝑖: label for example 𝑖𝑖
𝜂𝜂𝑡𝑡: step size (“learning rate”)

SGD applies to many losses

SVM (hinge loss)

Logistic regression / sigmoid loss

z is the score
for y=1

Hinge L1 regression

Margin loss between scores of
most likely and correct label

Variant of a logistic loss

SGD is fast compared to other optimization approaches

SDCA = stochastic dual
coordinate descent, another form
of sub-gradient optimization that
chooses learning rate
dynamically

Experiments with Linear SVM

Training time and test error

Experiments using Gaussian kernel SVM (see paper for kernelized Pegasos algorithm)

Effect of mini-batch size

Effect of sampling procedure: randomly ordered epochs is best

Sampling with replacement

Use different random order for each “epoch”

Use same order for each epoch

Epoch: one run through the training set

Learning rate comparison

Zhang uses fixed learning rate

Plots show error over iterations for
several rates

Pegasos: take-ways and surprising facts

• SGD is very simple and effective optimization algorithm – step
toward better solution based on a small sample of training data

• Not very sensitive to mini-batch size (but larger batches can be
much faster with parallel processing)

• The same learning schedule is effective across several problems

• A larger training set makes it faster to obtain the same test
performance

Next week
• Neural networks

– Multi-layer perceptrons (MLP)
– Deep networks

	SVMs and SGD
	Previously, we learned…
	Support Vector Machines (SVMs)
	This lecture
	What is the best linear classifier?
	SVM Terminology
	SVMs minimize 𝒘 𝑇 𝒘 while preserving a margin of 1
	Why SVMs achieve good generalization
	SVM in Linearly Separable Case
	SVM in Non-Linearly Separable Case
	Slide Number 11
	Sometimes non-linear optimization is written in terms of “slack variables”
	Slide Number 13
	Representer theorem
	Primal vs. Dual Formulations of SVM
	For SVM, 𝛼 is sparse (most values are zero)
	But what if the decision boundary is not even close to linear?
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Decreasing C gives a wider soft margin
	Decreasing sigma makes it more like nearest neighbor
	Slide Number 29
	Stretch break
	Example application of SVM: Dalal-Triggs 2005
	Example application of SVM: Dalal-Triggs 2005
	Example application of SVM: Dalal-Triggs 2005
	Using SVMs
	Pegasos: Primal Estimated sub-GrAdient SOlver for SVM (2011)
	Gradient Descent Visualization
	Pegasos algorithm: Stochastic Gradient Descent (SGD)
	Pegasos with mini-batch
	SGD applies to many losses
	SGD is fast compared to other optimization approaches
	Experiments with Linear SVM
	Experiments using Gaussian kernel SVM (see paper for kernelized Pegasos algorithm)
	Effect of mini-batch size
	Effect of sampling procedure: randomly ordered epochs is best
	Learning rate comparison
	Pegasos: take-ways and surprising facts
	Next week

