Applied Machine Learning (CS 441) – Spring 2023

  

 

  Instructor:  Derek Hoiem

 

  Lectures: Tues/Thurs 9:30-10:45, 1002 ECE Building

 

  Syllabus

  Lecture Recordings  Transcriptions

  Lecture Review Questions and Answers

  CampusWire Discussion (code: 6897)

  Canvas Submission

 

  Textbook: Applied Machine Learning by David Forsyth

                                                                                                           

  

   Assignments

HW 1 – Intro to Classification and Regression (Feb 6)

HW 2 – Trees, Ensembles, and MLPs (Feb 27)

HW 3 – Application Domains and Foundation Models (Mar 27)

HW 4 – Pattern Discovery (Apr 17)

Final Project (May 3)

 

 

 

 

 

 

  Class Schedule   (subject to change)

Week

Date

Topic

Link

Reading/Notes

1

Jan 17 (Tues)

Introduction

ppt ; pdf

Jupyter notebook tutorial vid ipynb cc

Numpy tutorial vid cc

Linear algebra tutorial vid  cc

 

 

Supervised Learning Fundamentals

 

 

1

Jan 19 (Thurs)

KNN, key concepts in ML

ppt ; pdf

AML Ch 1

2

Jan 24 (Tues)

Probability and Naïve Bayes

ppt ; pdf

AML Ch 1

2

Jan 26 (Thurs)

Linear Least Squares and Logistic Regression

ppt ; pdf

AML 10.1-10.2, 11

3

Jan 31 (Tues)

Decision Trees

ppt ; pdf

AML Ch 2

3

Feb 2 (Thurs)

Consolidation and Review

ppt ; pdf

 

 

Feb 6 (Mon)

HW 1 (Classification & Regression) due

 

 

4

Feb 7 (Tues)

Ensembles and Random Forests

ppt ; pdf

AML Ch 2, Ch 12

4

Feb 9 (Thurs)

SVMs and SGD

ppt ; pdf

AML Ch 2

5

Feb 14 (Tues)

MLPs and Backprop

ppt ; pdf

AML Ch 16

5

Feb 16 (Thurs)

Deep Learning

ppt ; pdf

AML Ch 16; ResNet (He et al. 2016)

6

Feb 21 (Tues)

Consolidation and Review

ppt ; pdf

 

 

 

Vision, Language, and Applications

 

 

6

Feb 23 (Thurs)

CNNs in Computer Vision

ppt ; pdf

AML Ch 17-18, PyTorch Tutorial from CS444

7

Feb 27 (Mon)

HW 2 (Trees & MLPs) due

 

 

7

Feb 28 (Tues)

Words and Attention

ppt ; pdf

Sub-word Tokenization (Sennrich et al. 2016)

Word2Vec (Mikolov et al. 2013)

Attention is all you need (Vaswani et al. 2017)

Transformer tutorial/walkthrough

7

Mar 2 (Thurs)

Transformers in Language and Vision

ppt ; pdf

BERT (Devlin et al. 2019)

ViT (Dosovitskiy et al. 2021)

Unified-IO (Lu et al. 2022)

8

Mar 7 (Tues)

Foundation Models: CLIP and GPT-3

ppt ; pdf

 

8

Mar 9 (Thurs)

Exam 1 on PrairieLearn 9:30am to 10:30pm

link

 

9

Mar 11-19

Spring Break (no classes)

 

 

10

Mar 21 (Tues)

Building ML Applications and Task Adaptation

ppt ; pdf

 

10

Mar 23 (Thurs)

Ethics and Impact of AI

ppt ; pdf

 

11

Mar 27 (Mon)

HW 3 (Application Domains) due

 

 

11

Mar 28 (Tues)

Bias in AI, and Fair ML

ppt ; pdf

 

 

 

Pattern Discovery

 

 

11

Mar 30 (Thurs)

Clustering and Retrieval

ppt ; pdf

AML Ch 8

12

Apr 4 (Tues)

EM and Latent Variables

ppt ; pdf

AML Ch 9

12

Apr 6 (Thurs)

Density estimation: MoG, Hists, KDE

ppt ; pdf

AML Ch 9

13

Apr 11 (Tues)

Dimensionality Reduction: PCA, embeddings

ppt ; pdf

AML Ch 11

13

Apr 13 (Thurs)

Topic Modeling

ppt ; pdf

 

14

Apr 17 (Mon)

HW 4 (Pattern Discovery) due

 

 

14

Apr 18 (Tues)

Outliers and Robust Estimation

ppt ; pdf

Linear fit demo (Matlab)

 

 

More Applications and Topics

 

 

14

Apr 20 (Thurs)

Reinforcement Learning (by Josh Levine)

 ppt ; pdf

 

15

Apr 25 (Tues)

Audio and 1D Signals

 ppt ; pdf

Audio Deep Learning

16

Apr 27 (Thurs)

ML Applications

 gslides

 

16

May 2 (Tues)

Summary and Looking Forward

 ppt ; pdf

 

16

May 3 (Wed)

Final Project due (cannot be late)

 

 

 

May 9 (Tues)

Final Exam on PrairieLearn, May 9 9:30am to May 10 10:30am

 Exam Link