

Deep Learning Optimization and Computer Vision

Applied Machine Learning Derek Hoiem

Today's Lecture

- Other architecture and training tricks
 - Batch normalization
 - Data augmentation
- Defining and training a deep network w/ PyTorch
- Adopting the network to new tasks
 - Fine-tuning
 - Linear probe
- Mask RCNN recognition system

Batch Normalization

- During training, the feature distribution at intermediate layers keep changing as the network learns
 - This destabilizes training
- BatchNorm normalizes features of each mini-batch according to its mean and variance and learned parameters γ , β
- Using BatchNorm often improves speed and effectiveness of training

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1m}\};$ Parameters to be learned: γ, β Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$						
$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} \frac{1}{m} \sum_{i=$	x_i	// mini-batch mean				
$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (\sigma_{\mathcal{B}}^2 \leftarrow \sigma_{\mathcal{B}}^2)^{-1} $	$(x_i - \mu_{\mathcal{B}})^2 \qquad //$	mini-batch variance				
$\widehat{x}_i \leftarrow \frac{x_i - \mu}{\sqrt{\sigma_B^2 + \sigma_B^2}}$	$\frac{\partial \mathcal{B}}{\partial \epsilon}$	// normalize				
$y_i \leftarrow \gamma \widehat{x}_i + \beta$	$\beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i)$	// scale and shift				
0.9 0.8 		2 0 -2 -2				
(a)	(b) Without BN	(c) With BN				

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift [loffe and Szegedy 2015]

Example code: ResNet-18 architecture for ImageNet

class Network(nn.Module):

```
def init (self, num classes=1000):
    super(). init ()
    resblock = ResBlock
    self.layer0 = nn.Sequential(
        nn.Conv2d(3, 64, kernel size=7, stride=2, padding=3),
        nn.MaxPool2d(kernel size=3, stride=2, padding=1),
        nn.BatchNorm2d(64),
        nn.ReLU()
    self.layer1 = nn.Sequential(
        resblock(64, 64, downsample=False),
        resblock(64, 64, downsample=False)
    self.layer2 = nn.Sequential(
        resblock(64, 128, downsample=True),
        resblock(128, 128, downsample=False)
    self.layer3 = nn.Sequential(
        resblock(128, 256, downsample=True),
        resblock(256, 256, downsample=False)
    self.layer4 = nn.Sequential(
        resblock(256, 512, downsample=True),
        resblock(512, 512, downsample=False)
    self.gap = torch.nn.AdaptiveAvgPool2d(1)
    self.fc = torch.nn.Linear(512, num classes)
```

def forward(self, input): input = self.layer0(input) input = self.layer1(input) input = self.layer2(input) input = self.layer3(input) input = self.layer4(input) input = self.gap(input) input = torch.flatten(input, 1) input = self.fc(input)

return input

Forward applies prediction, going through each layer

Backward applies backpropagation to compute the loss gradient with respect to parameters in each layer

Pretrained Torch models

Example code: ResBlock

"channels" = # feature maps kernel_size = filter size, e.g. 3x3 stride = # pixels to skip when evaluating convolution padding: to calculate filter values near edge of image/map

```
class ResBlock(nn.Module):
    def init (self, in channels, out channels, downsample):
        super(). init ()
        if downsample:
            self.conv1 = nn.Conv2d(in channels, out channels, kernel size=3, stride=2, padding=1)
            self.shortcut = nn.Sequential(
                nn.Conv2d(in channels, out channels, kernel size=1, stride=2),
                nn.BatchNorm2d(out channels)
                                                             If downsampling, do it here too so dimensions match
        else:
            self.conv1 = nn.Conv2d(in channels, out channels, kernel size=3, stride=1, padding=1)
            self.shortcut = nn.Sequential()
        self.conv2 = nn.Conv2d(out channels, out channels, kernel size=3, stride=1, padding=1)
        self.bn1 = nn.BatchNorm2d(out channels)
        self.bn2 = nn.BatchNorm2d(out channels)
   def forward(self, input):
        shortcut = self.shortcut(input)
        input = nn.ReLU()(self.bn1(self.conv1(input)))
        input = nn.ReLU()(self.bn2(self.conv2(input)))
        input = input + shortcut
        return nn.ReLU()(input)
                                                              This '+' is the skip connection!
```

 Define the network model (see ResNet example in previous slides)

Convolutional network for Digits Classification

```
class Network(nn.Module):
    def __init__(self, num_classes=10, dropout = 0.5):
        super(Network, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
            nn.Conv2d(64, 256, kernel_size=5, padding=2),
            nn.ReLU(inplace=True),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, stride=2),
            nn.Conv2d(256, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
```

```
self.avgpool = nn.AdaptiveAvgPool2d((6, 6))
self.classifier = nn.Sequential(
    nn.Dropout(p=dropout),
    nn.Linear(256 * 6 * 6, 512),
    nn.ReLU(inplace=True),
    nn.Dropout(p=dropout),
    nn.Linear(512, 512),
    nn.ReLU(inplace=True),
    nn.Linear(512, num_classes),
```

```
)
```

```
def forward(self, x):
```

```
N, c, H, W = x.shape
features = self.features(x)
pooled_features = self.avgpool(features)
output = self.classifier(torch.flatten(pooled_features, 1))
return output
```

- 1. Define the network model
- 2. Set the key training parameters: # epochs, initial learning rate and schedule, optimizer, loss function, data loaders

```
# Set up the training
num epochs = 20
                                                                                   train loader = DataLoader(dataset=train set,
test interval = 1
                                                                                                                batch size=64,
                                                                                                                shuffle=True,
# set initial learning rate and optimizer
                                                                                                                num workers=2)
learn rate = 3E-4
optimizer = torch.optim.AdamW(model.parameters(), lr=learn rate)
                                                                                   test loader = DataLoader(dataset=test set,
# define your learning rate scheduler, e.g. StepLR
                                                                                                                batch_size=64,
lr scheduler = torch.optim.lr scheduler.StepLR(optimizer, step size=5, gamma=0.5)
                                                                                                                shuffle=False,
                                                                                                               num workers=2)
# set the loss
criterion = torch.nn.CrossEntropyLoss()
```

- 1. Define the network model
- 2. Set the key training parameters
- 3. Train and track performance

Top-level of training

```
# Iterate over the DataLoader for training data
for epoch in tqdm(range(num_epochs), total=num_epochs, desc="Training ...", position=1):
    train_loss = train(train_loader, model, criterion, optimizer) # Train the Network for one epoch
```

TO DO: uncomment the line below. It should be called each epoch to apply the lr_scheduler lr_scheduler.step()

```
train_losses.append(train_loss)
print(f'Loss for Training on epoch {str(epoch)} is {str(train_loss)} \n')
```

Also compute validation loss/error every few epochs # Tools like TensorFlow and Weights&Biases make it easier to track and visualize experiments

- 1. Define the network model
- 2. Set the key training parameters
- 3. Train and track performance

```
def train(train_loader, model, criterion, optimizer):
    """
    Train network
    :param train_loader: training dataloader
    :param model: model to be trained
    :param criterion: criterion used to calculate loss (should be CrossEntropyLoss
    :param optimizer: optimizer for model's params (Adams or SGD)
    :return: mean training loss
    """
    model.train()
    loss = 0.0
```

```
# train for one epoch
it_train = tqdm(enumerate(train_loader), total=len(train_loader), desc="Trainin
for i, (images, labels) in it train:
```

get images, labels for this batch images, labels = images.to(device), labels.to(device)

```
# clear the gradients
optimizer.zero_grad()
```

losses = []

generate output for each image in the batch
prediction = model(images)

```
# compute the loss for each example
loss = criterion(prediction, labels)
```

it_train.set_description(f'loss: {loss:.3f}') # update displayed statement

```
# compute the gradients
loss.backward()
```

```
# update the weights
optimizer.step()
```

keep track of the loss to monitor the process losses.append(loss)

```
return torch.stack(losses).mean().item()
```

Training Trick: Data Augmentation

- Create *virtual* training samples
 - Horizontal flip
 - Random crop
 - Color casting
 - Geometric distortion
- Simulates a larger training set, often improves improve performance
- Idea goes back to Pomerleau 1995 at least (neural net for car driving)

Applying Data Augmentation

1. Define transformation sequence

2. Input transform specification to data loader

```
import torch
from torchvision import datasets, transforms
batch_size=200
train_loader = torch.utils.data.Dataloader(
    dataset.MNIST('../data', train=True, download=True,
        transform=transforms.Compose([
            transforms.RandomHorizontalFlip(),
            transforms.RandomVerticalFlip(),
            transforms.RandomRotation(15),
            transforms.Resize([32, 32]),
            transforms.RandomCrop([28, 28]),
            transforms.ToTensor()
            ])),
        batch_size=batch_size, shuffle=True)
```

References:

https://medium.com/dejunhuang/learning-day-23-data-augmentation-in-pytorch-e375e19100c3 https://pytorch.org/vision/main/transforms.html

Training deep networks is a craft

- https://karpathy.github.io/2019/04/25/recipe/
- <u>https://myrtle.ai/learn/how-to-train-your-resnet/</u>

Questions to check knowledge

https://tinyurl.com/441deep24

Adapting Networks to New Tasks

 Training a deep network from scratch requires a lot of data and a lot of compute

- Critical concept: We can start with a "pre-trained" network and adapt it to a new task
 - Linear probe
 - Fine-tuning

Adapting Networks to New Tasks

- Suppose we've trained ImageNet model
- But we want to do something else, e.g. classify flowers or dog breeds
- We don't have a huge dataset for that task

Linear probe, a.k.a. Feature extraction

How to apply linear probe

Pre-compute features method

1. Load pretrained model (many available)

<u>https://pytorch.org/vision/stable/model</u> <u>s.html</u>

- 2. Remove prediction final layer
- 3. Apply model to each image to get features; save them with labels
- 4. Train new linear model (e.g. logistic regression or SVM) on the features

import torch
import torch.nn as nn
from torchvision import models

model = models.alexnet(pretrained=True)

remove last fully-connected layer

```
new_classifier = nn.Sequential(*list(model.classifier.children())[:-1])
model.classifier = new_classifier
```

Freeze encoder method

- Load pretrained model (many available)
 <u>https://pytorch.org/vision/stable/m</u> odels.html
- 2. Set network to not update weights
- 3. Replace last layer
- 4. Retrain network with new dataset

- Slower than method on left but does not require storing features, and can apply data augmentation

model = torchvision.models.vgg19(pretrained=True)

```
for param in model.parameters():
```

```
param.requires_grad = False
```

```
# Replace the last fully-connected layer
```

```
# Parameters of newly constructed modules have requires_grad=True by default
model.fc = nn.Linear(512, 8) # assuming that the fc7 layer has 512 neurons, other
model.cuda()
```

<u>Source</u>

Pre-trained networks can provide very good features, as shown in "CNN Features off-the-shelf: an Astounding Baseline for Recognition"

Razavian et al. CVPR 2014

Fine-tuning

How to apply fine-tuning

- 1. Load pre-trained model
- 2. Replace last layer
- 3. Set a low learning rate (e.g. lr=e-4)
 - Very sensitive to learning rate because you want to improve but not drift too far from the initial model
 - Learning rate is often at least 10x lower than from "scratch" training
 - Can "warm start" by freezing earlier layers initially and then unfreezing after a few epochs when the linear layer is mostly trained (avoids messing up encoder while classifier is adjusting)
 - Can set lower learning rate for earlier layers

```
target_class = 37
model = torch.hub.load('pytorch/vision:v0.10.0', 'resnet34', pretrained=True)
model.fc = nn.Linear(512, target_class)
```

In this example, last layer has 512 input features and is called "fc"

Other examples of layer customization (from '23 TA Weijie)

R-CNN first demonstrated major detection improvement by pretraining on ImageNet and fine-tuning on PASCAL VOC

> 0.7 **R-CNN** Mean Average Precision (VOC 2007) Deep learning detection 0.6 0.5 0.4 Regionlets 0.3 **Deformable Parts Model** 0.2 (v1-v5)0.1 **HOG** Template 0 2012 2013 2005 2007 2008 2009 2010 2014

Improvements in Object Detection

Comparing linear probe, fine-tuning, and training from scratch, when does each have an advantage and why?

(a) Transfer: ImageNet to Cifar100

"Learning Curves" (2021) pdf

ResNet18, Err vs # examples / class (in paren)

Green: Train from scratch Blue: Linear Probe from ImageNet Purple: Fine-tune from ImageNet

Very little data

Use linear probe on pre-trained model

Moderate data

• Fine-tune pre-trained model

Very large dataset

• Either fine-tune or train from scratch

Statistical template approach to object detection

CNN features

resize to fixed window

R-CNN (Girshick et al. CVPR 2014)

- Extract regions using Selective Search method (Uijilings et al. IJCV 2013)
- Extract rectangles around regions and resize to 227x227
- Extract features with fine-tuned CNN (that was initialized with network trained on ImageNet before training)
- Classify last layer of network features with SVM
 http://arxiv.org/pdf/1311.2524.pdf

Fast R-CNN – Girshick 2015

- Compute CNN features for image once
- ROI Pooling: Pool into 7x7 spatial bins for each region proposal, output class scores and regressed bboxes
- Other refinements: compress classification layer, use network for final classification, end-to-end training
- 100x speed up of R-CNN (0.02 − 0.1 FPS → 0.5-20 FPS) with similar accuracy

Faster R-CNN – Ren et al. 2016

- Convolutional features used for generating proposals and scoring
 - Generate proposals with "objectness" scores and refined bboxes for each of k "anchors"
 - Score proposals in same way as Fast R-CNN
- Similar accuracy to Fast R-CNN with 10x speedup

Mask R-CNN – He Gxioxari Dollar Girshick (2017)

- Same network as Faster R-CNN, except
 - Bilinearly interpolate when extracting
 7x7 cells of ROI features for better
 alignment of features to image
 - Instance segmentation: produce a
 28x28 mask for each object category
 - Keypoint prediction: produce a 56x56 mask for each keypoint (aim is to label single pixel as correct keypoint)

Example ROI and predicted mask

Example ROI and predicted mask and keypoints

Top performing object detector, keypoint segmenter, instance segmenter (at time of release and for a bit after)

	backbone	APbb	AP_{50}^{bb}	AP_{75}^{bb}	AP_S^{bb}	$\operatorname{AP}^{\operatorname{bb}}_M$	$\mathrm{AP}^{\mathrm{bb}}_L$
Faster R-CNN+++ [19]	ResNet-101-C4	34.9	55.7	37.4	15.6	38.7	50.9
Faster R-CNN w FPN [27]	ResNet-101-FPN	36.2	59.1	39.0	18.2	39.0	48.2
Faster R-CNN by G-RMI [21]	Inception-ResNet-v2 [37]	34.7	55.5	36.7	13.5	38.1	52.0
Faster R-CNN w TDM [36]	Inception-ResNet-v2-TDM	36.8	57.7	39.2	16.2	39.8	52.1
Faster R-CNN, RoIAlign	ResNet-101-FPN	37.3	59.6	40.3	19.8	40.2	48.8
Mask R-CNN	ResNet-101-FPN	38.2	60.3	41.7	20.1	41.1	50.2
Mask R-CNN	ResNeXt-101-FPN	39.8	62.3	43.4	22.1	43.2	51.2

Table 3. Object detection single-model results (bounding box AP), vs. state-of-the-art on test-dev. Mask R-CNN usir

	backbone	AP	AP ₅₀	AP ₇₅	AP_S	AP_M	AP_L
MNC [10]	ResNet-101-C4	24.6	44.3	24.8	4.7	25.9	43.6
FCIS [26] +OHEM	ResNet-101-C5-dilated	29.2	49.5	-	7.1	31.3	50.0
FCIS+++ [26] +OHEM	ResNet-101-C5-dilated	33.6	54.5	-	-	-	-
Mask R-CNN	ResNet-101-C4	33.1	54.9	34.8	12.1	35.6	51.1
Mask R-CNN	ResNet-101-FPN	35.7	58.0	37.8	15.5	38.1	52.4
Mask R-CNN	ResNeXt-101-FPN	37.1	60.0	39.4	16.9	39.9	53.5

Table 1. Instance segmentation mask AP on COCO test-dev. MNC [10] and FCIS [26] are the winners of the COCO 2015 and 2016

	AP ^{kp}	AP_{50}^{kp}	AP_{75}^{kp}	AP_M^{kp}	AP_L^{kp}
CMU-Pose+++ [6]	61.8	84.9	67.5	57.1	68.2
G-RMI [31] [†]	62.4	84.0	68.5	59.1	68.1
Mask R-CNN, keypoint-only	62.7	87.0	68.4	57.4	71.1
Mask R-CNN, keypoint & mask	63.1	87.3	68.7	57.8	71.4

Table 4. Keypoint detection AP on COCO test-dev. Ours

Example detections and instance segmentations

Example detections and instance segmentations

Example keypoint detections

U-Net Architecture

O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In MICCAI, 2015.

The "U-Net" is an encoder-decoder with skip connections between mirrored layers in the encoder and decoder stacks.

U-Net style architectures are used to generate pixel maps (e.g., RGB images or per-pixel labels)

What does the CNN learn?

Map activation back to the input pixel space

• What input pattern originally caused a given activation in the feature maps?

Layer 1 (visualization of randomly sampled features)

Activations (which pixels caused the feature to have a high magnitude)

Image patches that had high activations

Layer 2

Layer 3

Layer 4 and 5

Things to remember

- Models trained on ImageNet are used as pretrained "backbones" for other vision tasks
- Mask-RCNN samples patches in feature maps and predicts boxes, object region, and keypoints
- Many image generation and segmentation methods are based on U-Net downsamples while deepening features, then upsamples with skip connections

