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Last class

• Perceptrons are linear prediction 
models

• MLPs are non-linear prediction models, 
composed of multiple linear layers with 
non-linear activations

• MLPs can model more complex 
functions, but are harder to optimize

• Optimization is by stochastic gradient 
descent

Figure source

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c


Another application example: mapping position/rays to color

• A network can be trained to serve as a query function, for compression and interpolation
– E.g.,mlp(𝑥𝑥,𝑦𝑦) → (𝑟𝑟,𝑔𝑔, 𝑏𝑏)       or         mlp 𝑥𝑥,𝑦𝑦, 𝑧𝑧 → (𝑟𝑟,𝑔𝑔, 𝑏𝑏,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑦𝑦)

• Fourier features: instead of using [𝑥𝑥,𝑦𝑦] directly as input, use [sin 𝜔𝜔0𝑥𝑥 , cos 𝜔𝜔0𝑥𝑥 , sin 𝜔𝜔1𝑥𝑥 , … ]

Fourier Features (Tancik et al. 2020) NeRF (Mildenhall et al. 2020)

https://arxiv.org/pdf/2006.10739.pdf
https://arxiv.org/abs/2003.08934


Generalized insight from “Fourier Features”
• Input matters – it’s best to represent data in a way that makes it 

linearly predictive, even if you have a non-linear model

• 𝑓𝑓 𝑥𝑥,𝑦𝑦 → 𝑅𝑅,𝐺𝐺,𝐵𝐵 requires a complex network to model because 
𝑥𝑥𝑖𝑖𝑇𝑇𝑥𝑥𝑗𝑗 is a bad similarity function (maximized when 𝑥𝑥𝑗𝑗 is large, 
instead of similar to 𝑥𝑥𝑖𝑖) 

• Representing 𝑥𝑥 with a Fourier encoding, e.g. 𝛾𝛾 𝑥𝑥 =
sin 𝑥𝑥 , cos 𝑥𝑥 , sin 2𝑥𝑥 , cos 2𝑥𝑥 , …  enables a simpler network 

because 𝛾𝛾 𝑥𝑥𝑖𝑖 𝑇𝑇𝛾𝛾 𝑥𝑥𝑗𝑗  falls off smoothly as 𝑥𝑥𝑗𝑗 moves away from 𝑥𝑥𝑖𝑖
– This means the initial network layer can model similarity to different 

positions with each hidden unit



HW 4

https://docs.google.com/document/d/1_9ZUFL7gi7Mq0-isQOcwDxhhmlDKVgdZg9mDaKokHEA/edit


Today’s Lecture

• Deep learning history

• Residual Networks

• SGD++



Brief history of deep learning
• 1958: neural nets (perceptron and MLP) invented by Rosenblatt

• 1967: First use of SGD in deep-learning network (Amari)

• 1980’s/1990’s: Neural nets are popularized and then abandoned as being 
interesting idea but too difficult to optimize or “unprincipled”, supplanted by 
SVM

• 1990’s: LeCun and colleagues achieve state-of-art performance on character 
recognition with convolutional network

• 2000’s: Hinton, Bottou, Bengio, LeCun, Ng, and others keep trying stuff with 
deep networks but without much traction/acclaim in most areas

• 2010-2011: Substantial progress in some areas, but vision community still 
unconvinced

• 2012: shock at ECCV 2012 with ImageNet challenge

Google Book Ngram Plot



The Perceptron
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Rosenblatt, Frank (1958), The Perceptron: A Probabilistic Model for Information Storage and Organization 
in the Brain, Cornell Aeronautical Laboratory, Psychological Review, v65, No. 6, pp. 386–408. 

Slide: Lazebnik



Slide: Lazebnik



Deeper neural networks could theoretically learn 
compositional representations of complex functions but 
were hard to optimize



Pure MLPs are not great for images

Image Fully connected layer

Slide: Lazebnik

You could treat the image 
like a vector of values and 
add fully connected layers
(which we do in HW4)

But this doesn’t take 
advantage of the 2D 
structure of images



Images have local patterns that can appear at different 
positions
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Linear filtering is a foundation of image processing

• Linear image filtering: at each pixel, output a 
weighted sum of pixels in surrounding patch
– E.g. Gaussian-weighted smoothing filter (right), edge 

detection (below), local pattern detection

Smoothing Filter

Animation: https://datahacker.rs/004-how-to-smooth-and-sharpen-an-image-in-opencv/ 

https://datahacker.rs/004-how-to-smooth-and-sharpen-an-image-in-opencv/


A CNN (convolutional network) learns filter weights to 
create grids of features (“feature map”) 

image

feature map

learned 
weights

Convolutional layer
Slide: Lazebnik



Convolution as feature extraction

Input Feature Map

.

.

.

Slide: Lazebnik



image

feature map

learned 
weights

Multiple filters are learned, producing a map of 
feature vectors

Convolutional layer

Slide: Lazebnik



image
next layer

Convolutional layer

Following layers operate on the feature map from 
the previous layer

Slide: Lazebnik



Input Image

Convolution 
(Learned)

Non-linearity

Spatial pooling

Feature maps

Input Feature Map

.

.

.

Key operations in a CNN

Source: R. Fergus, Y. LeCun Slide: Lazebnik



Input Image

Convolution 
(Learned)

Non-linearity

Spatial pooling

Feature maps

Key operations

Source: R. Fergus, Y. LeCun

Rectified Linear Unit (ReLU)

Slide: Lazebnik



Input Image

Convolution 
(Learned)

Non-linearity

Spatial pooling

Feature maps

Max

Key operations

Source: R. Fergus, Y. LeCun Slide: Lazebnik



Key idea: learn features and classifier that work 
well together (“end-to-end training”)

Image

Convolution/pool

Convolution/pool

Convolution/pool

Convolution/pool

Convolution/pool

Dense

Dense

Dense

Label



LeNet-5 for character/digit recognition

• Average pooling
• Sigmoid or tanh nonlinearity
• Fully connected layers at the end
• Trained on MNIST digit dataset with 60K training examples

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document 
recognition, Proc. IEEE 86(11): 2278–2324, 1998.

MNIST 
results 
(~1% test 
error)

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf


Fast forward to the arrival of big visual data…

• ~14 million labeled images, 20k classes

• Images gathered from Internet

• Human labels via Amazon MTurk 

• ImageNet Large-Scale Visual Recognition 
Challenge (ILSVRC): 
1.2 million training images, 1000 classes

www.image-net.org/challenges/LSVRC/

Slide: Lazebnik

http://www.image-net.org/challenges/LSVRC/
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AlexNet: ILSVRC 2012 winner

• Similar framework to LeNet but:
• Max pooling, ReLU nonlinearity
• More data and bigger model (7 hidden layers, 650K units, 60M params)
• GPU implementation (50x speedup over CPU)

• Trained on two GPUs for a week
• Dropout regularization

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep 
Convolutional Neural Networks, NIPS 2012

http://www.cs.toronto.edu/%7Efritz/absps/imagenet.pdf
http://www.cs.toronto.edu/%7Efritz/absps/imagenet.pdf


What enabled the 
breakthrough?

1. ReLU activation enabled 
large models to be 
optimized

2. ImageNet provided diverse 
and massive annotation to 
take advantage of the 
models

3. GPU processing made the 
optimization practicable 



Sigmoid vs. ReLU

http://playground.tensorflow.org/

Slide: Lazebnik

Try many layers with sigmoid vs relu

Sigmoid

ReLU

http://playground.tensorflow.org/


Even with ReLU, it was hard to get very deep networks to 
work well

C. Szegedy et al., Going deeper with convolutions, CVPR 2015

Auxiliary classifier

GoogLeNet: add bottlenecks and multiple stages of 
supervision

https://arxiv.org/abs/1409.4842


What was the problem?

• Were deeper networks 
overfitting the training data?

• Or was the problem just that 
we couldn’t optimize them?

• How could we answer this 
question?



Look at the training error!

With deeper networks, the training error goes up!?!

Fig: He et al. 2016

https://arxiv.org/abs/1512.03385


Very deep networks, vanishing gradients, 
and information propagation
Vanishing gradients
• Early weights have a long path to reach output
• Any zeros along that path kill the gradient
• Early layers cannot be optimized
• Multiple stages of supervision can help, but it’s 

complicated and time-consuming

Information propagation
• Networks need to continually maintain and add 

to information represented in previous layers



ResNet: the residual module

• Use skip or shortcut 
connections around 2-3 
layer MLPs

• Gradients can flow 
quickly back through skip 
connections

• Each module needs only 
add information to the 
previous layers

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Deep Residual 
Learning for Image Recognition, CVPR 2016 (Best Paper), 200K+ citations

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385


ResNet: Residual Bottleneck Module

• Directly performing 3x3 
convolutions with 256 feature 
maps at input and output: 
256 x 256 x 3 x 3 ~ 600K 
operations

• Using 1x1 convolutions to 
reduce 256 to 64 feature maps, 
followed by 3x3 convolutions, 
followed by 1x1 convolutions 
to expand back to 256 maps:
256 x 64 x 1 x 1 ~ 16K
64 x 64 x 3 x 3 ~ 36K
64 x 256 x 1 x 1 ~ 16K
Total: ~70K

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Deep Residual 
Learning for Image Recognition, CVPR 2016 

Used in 50+ layer networks

Slide: Lazebnik

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385


ResNet: going real deep

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Deep Residual 
Learning for Image Recognition, CVPR 2016

Despite depth, the residual connections enable error 
gradients to “skip” all the way back to the beginning

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385


Example code: ResBlock
class ResBlock(nn.Module):

def __init__(self, in_channels, out_channels, downsample):
super().__init__()
if downsample:

self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1)
self.shortcut = nn.Sequential(

nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=2),
nn.BatchNorm2d(out_channels)

)
else:

self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.shortcut = nn.Sequential()

self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.bn1 = nn.BatchNorm2d(out_channels)
self.bn2 = nn.BatchNorm2d(out_channels)

def forward(self, input):
shortcut = self.shortcut(input)
input = nn.ReLU()(self.bn1(self.conv1(input)))
input = nn.ReLU()(self.bn2(self.conv2(input)))
input = input + shortcut
return nn.ReLU()(input)



Example code: ResNet-18 architecture for ImageNet
class Network(nn.Module):

def __init__(self, num_classes=37):

super().__init__()

resblock = ResBlock

self.layer0 = nn.Sequential(

nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3),

nn.MaxPool2d(kernel_size=3, stride=2, padding=1),

nn.BatchNorm2d(64),

nn.ReLU()

)
self.layer1 = nn.Sequential(

resblock(64, 64, downsample=False),

resblock(64, 64, downsample=False)

)
self.layer2 = nn.Sequential(

resblock(64, 128, downsample=True),

resblock(128, 128, downsample=False)

)
self.layer3 = nn.Sequential(

resblock(128, 256, downsample=True),

resblock(256, 256, downsample=False)

)
self.layer4 = nn.Sequential(

resblock(256, 512, downsample=True),

resblock(512, 512, downsample=False)

)
self.gap = torch.nn.AdaptiveAvgPool2d(1)

self.fc = torch.nn.Linear(512, num_classes)

def forward(self, input):
input = self.layer0(input)
input = self.layer1(input)
input = self.layer2(input)
input = self.layer3(input)
input = self.layer4(input)
input = self.gap(input)
input = torch.flatten(input, 1)
input = self.fc(input)

return input



ResNet Architectures and Results



Improvements to SGD
Great site by Lili Jiang
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-
adagrad-rmsprop-adam-f898b102325c 

Basic SGD:
Δ𝑤𝑤𝑡𝑡 = −𝜂𝜂𝑔𝑔 𝑤𝑤𝑡𝑡  
𝑤𝑤𝑡𝑡+1 = 𝑤𝑤𝑡𝑡 + Δ𝑤𝑤𝑡𝑡 

Gradient of loss wrt weights

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c


SGD + Momentum
SGD + Momentum:
𝑚𝑚𝑡𝑡 = 𝛽𝛽 ⋅ 𝑚𝑚𝑡𝑡−1 + 𝑔𝑔(𝑤𝑤𝑡𝑡)   e.g. 𝛽𝛽 = .9 
Δ𝑤𝑤𝑡𝑡 = −𝜂𝜂 ⋅ 𝑚𝑚𝑡𝑡 
𝑤𝑤𝑡𝑡+1 = 𝑤𝑤𝑡𝑡 + Δ𝑤𝑤𝑡𝑡 
 

Figure source

Momentum (magenta) 
converges faster and carries 
the ball through a local 
minimum

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c


AdaGrad: Adaptive Gradient
AdaGrad:
𝑔𝑔𝑠𝑠𝑠𝑠 𝑑𝑑 = 𝑔𝑔𝑠𝑠𝑠𝑠 𝑑𝑑 − 1 + 𝑔𝑔 𝑤𝑤𝑡𝑡 2 

Δ𝑤𝑤𝑡𝑡 = −𝜂𝜂𝑔𝑔 𝑤𝑤𝑡𝑡 / 𝑔𝑔𝑠𝑠𝑠𝑠(𝑑𝑑)   (normalize by path length of all previous updates) 
𝑤𝑤𝑡𝑡+1 = 𝑤𝑤𝑡𝑡 + Δ𝑤𝑤𝑡𝑡 
 

Figure source

AdaGrad (white) avoids 
moving in only one weight 
direction, and can lead to 
smoother convergence

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c


RMSProp: Root Mean Squared Propagation
RMSProp:
𝑔𝑔𝑠𝑠𝑠𝑠 𝑑𝑑 = 𝜖𝜖 ⋅ 𝑔𝑔𝑠𝑠𝑠𝑠 𝑑𝑑 − 1 + 1 − 𝜖𝜖 ⋅ 𝑔𝑔 𝑤𝑤𝑡𝑡 2   (introducing decay rate turns this into moving avg)

Δ𝑤𝑤𝑡𝑡 = −𝜂𝜂𝑔𝑔 𝑤𝑤𝑡𝑡 / 𝑔𝑔𝑠𝑠𝑠𝑠(𝑑𝑑)   (normalize by moving average length of previous updates) 
𝑤𝑤𝑡𝑡+1 = 𝑤𝑤𝑡𝑡 + Δ𝑤𝑤𝑡𝑡 
 

Figure source

RMSProp (green) moves 
faster than AdaGrad (white)

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c


Adam: Adaptive Moment Estimation
Adam:
𝑚𝑚𝑡𝑡 = 𝛽𝛽 ⋅ 𝑚𝑚𝑡𝑡 + 1 − 𝛽𝛽 ⋅ 𝑔𝑔(𝑤𝑤𝑡𝑡)  [momentum, 𝛽𝛽 = 0.9]
𝑔𝑔𝑠𝑠𝑠𝑠 𝑑𝑑 = 𝜖𝜖 ⋅ 𝑔𝑔𝑠𝑠𝑠𝑠 𝑑𝑑 − 1 + 1 − 𝜖𝜖 ⋅ 𝑔𝑔 𝑤𝑤𝑡𝑡 2   [RMSProp, 𝜖𝜖 = 0.999]

Δ𝑤𝑤𝑡𝑡 = −𝜂𝜂 ⋅ 𝑚𝑚𝑡𝑡/ 𝑔𝑔𝑠𝑠𝑠𝑠(𝑤𝑤𝑡𝑡) 
𝑤𝑤𝑡𝑡+1 = 𝑤𝑤𝑡𝑡 + Δ𝑤𝑤𝑡𝑡 
 

Figure source

Videos

AdamW is widely used and easier to 
tune than SGD + momentum

AdamW is a fix on Adam to correctly update weight decay

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c


What to use?

• AdamW is less sensitive to hyperparameters (easier to get a 
decent solution working)

• Many practitioners say SGD+momentum can achieve the best 
performance, if you’re able to optimize over hyperparameters

• I commonly see either one used in research papers



What to remember
• Deep networks provide huge gains in 

performance
– Large capacity, optimizable models
– Learn from new large datasets

• ReLU and skip connections simplify 
optimization

• SGD+momentum and AdamW are the 
most commonly used optimizers

ImageNet



Next lecture

• More deep network optimization
– Batch Normalization
– Data Augmentation

• Re-using networks
– Linear probe
– Fine-tuning

• Mask RCNN line of work
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