
CNNs and Key
Ingredients of
Deep
Learning

Applied Machine Learning
Derek Hoiem

Dall-E

Last class

• Perceptrons are linear prediction
models

• MLPs are non-linear prediction models,
composed of multiple linear layers with
non-linear activations

• MLPs can model more complex
functions, but are harder to optimize

• Optimization is by stochastic gradient
descent

Figure source

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

Another application example: mapping position/rays to color

• A network can be trained to serve as a query function, for compression and interpolation
– E.g.,mlp(𝑥𝑥,𝑦𝑦) → (𝑟𝑟,𝑔𝑔, 𝑏𝑏) or mlp 𝑥𝑥,𝑦𝑦, 𝑧𝑧 → (𝑟𝑟,𝑔𝑔, 𝑏𝑏,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑦𝑦)

• Fourier features: instead of using [𝑥𝑥,𝑦𝑦] directly as input, use [sin 𝜔𝜔0𝑥𝑥 , cos 𝜔𝜔0𝑥𝑥 , sin 𝜔𝜔1𝑥𝑥 , …]

Fourier Features (Tancik et al. 2020) NeRF (Mildenhall et al. 2020)

https://arxiv.org/pdf/2006.10739.pdf
https://arxiv.org/abs/2003.08934

Generalized insight from “Fourier Features”
• Input matters – it’s best to represent data in a way that makes it

linearly predictive, even if you have a non-linear model

• 𝑓𝑓 𝑥𝑥,𝑦𝑦 → 𝑅𝑅,𝐺𝐺,𝐵𝐵 requires a complex network to model because
𝑥𝑥𝑖𝑖𝑇𝑇𝑥𝑥𝑗𝑗 is a bad similarity function (maximized when 𝑥𝑥𝑗𝑗 is large,
instead of similar to 𝑥𝑥𝑖𝑖)

• Representing 𝑥𝑥 with a Fourier encoding, e.g. 𝛾𝛾 𝑥𝑥 =
sin 𝑥𝑥 , cos 𝑥𝑥 , sin 2𝑥𝑥 , cos 2𝑥𝑥 , … enables a simpler network

because 𝛾𝛾 𝑥𝑥𝑖𝑖 𝑇𝑇𝛾𝛾 𝑥𝑥𝑗𝑗 falls off smoothly as 𝑥𝑥𝑗𝑗 moves away from 𝑥𝑥𝑖𝑖
– This means the initial network layer can model similarity to different

positions with each hidden unit

HW 4

https://docs.google.com/document/d/1_9ZUFL7gi7Mq0-isQOcwDxhhmlDKVgdZg9mDaKokHEA/edit

Today’s Lecture

• Deep learning history

• Residual Networks

• SGD++

Brief history of deep learning
• 1958: neural nets (perceptron and MLP) invented by Rosenblatt

• 1967: First use of SGD in deep-learning network (Amari)

• 1980’s/1990’s: Neural nets are popularized and then abandoned as being
interesting idea but too difficult to optimize or “unprincipled”, supplanted by
SVM

• 1990’s: LeCun and colleagues achieve state-of-art performance on character
recognition with convolutional network

• 2000’s: Hinton, Bottou, Bengio, LeCun, Ng, and others keep trying stuff with
deep networks but without much traction/acclaim in most areas

• 2010-2011: Substantial progress in some areas, but vision community still
unconvinced

• 2012: shock at ECCV 2012 with ImageNet challenge

Google Book Ngram Plot

The Perceptron

x1

x2

xD

w1

w2

w3

x3

wD

Input

Weights

.

.

.

Output: sgn(w⋅x + b)

Rosenblatt, Frank (1958), The Perceptron: A Probabilistic Model for Information Storage and Organization
in the Brain, Cornell Aeronautical Laboratory, Psychological Review, v65, No. 6, pp. 386–408.

Slide: Lazebnik

Slide: Lazebnik

Deeper neural networks could theoretically learn
compositional representations of complex functions but
were hard to optimize

Pure MLPs are not great for images

Image Fully connected layer

Slide: Lazebnik

You could treat the image
like a vector of values and
add fully connected layers
(which we do in HW4)

But this doesn’t take
advantage of the 2D
structure of images

Images have local patterns that can appear at different
positions

0.92 0.93 0.94 0.97 0.62 0.37 0.85 0.97 0.93 0.92 0.99
0.95 0.89 0.82 0.89 0.56 0.31 0.75 0.92 0.81 0.95 0.91
0.89 0.72 0.51 0.55 0.51 0.42 0.57 0.41 0.49 0.91 0.92
0.96 0.95 0.88 0.94 0.56 0.46 0.91 0.87 0.90 0.97 0.95
0.71 0.81 0.81 0.87 0.57 0.37 0.80 0.88 0.89 0.79 0.85
0.49 0.62 0.60 0.58 0.50 0.60 0.58 0.50 0.61 0.45 0.33
0.86 0.84 0.74 0.58 0.51 0.39 0.73 0.92 0.91 0.49 0.74
0.96 0.67 0.54 0.85 0.48 0.37 0.88 0.90 0.94 0.82 0.93
0.69 0.49 0.56 0.66 0.43 0.42 0.77 0.73 0.71 0.90 0.99
0.79 0.73 0.90 0.67 0.33 0.61 0.69 0.79 0.73 0.93 0.97
0.91 0.94 0.89 0.49 0.41 0.78 0.78 0.77 0.89 0.99 0.93

Linear filtering is a foundation of image processing

• Linear image filtering: at each pixel, output a
weighted sum of pixels in surrounding patch
– E.g. Gaussian-weighted smoothing filter (right), edge

detection (below), local pattern detection

Smoothing Filter

Animation: https://datahacker.rs/004-how-to-smooth-and-sharpen-an-image-in-opencv/

https://datahacker.rs/004-how-to-smooth-and-sharpen-an-image-in-opencv/

A CNN (convolutional network) learns filter weights to
create grids of features (“feature map”)

image

feature map

learned
weights

Convolutional layer
Slide: Lazebnik

Convolution as feature extraction

Input Feature Map

.

.

.

Slide: Lazebnik

image

feature map

learned
weights

Multiple filters are learned, producing a map of
feature vectors

Convolutional layer

Slide: Lazebnik

image
next layer

Convolutional layer

Following layers operate on the feature map from
the previous layer

Slide: Lazebnik

Input Image

Convolution
(Learned)

Non-linearity

Spatial pooling

Feature maps

Input Feature Map

.

.

.

Key operations in a CNN

Source: R. Fergus, Y. LeCun Slide: Lazebnik

Input Image

Convolution
(Learned)

Non-linearity

Spatial pooling

Feature maps

Key operations

Source: R. Fergus, Y. LeCun

Rectified Linear Unit (ReLU)

Slide: Lazebnik

Input Image

Convolution
(Learned)

Non-linearity

Spatial pooling

Feature maps

Max

Key operations

Source: R. Fergus, Y. LeCun Slide: Lazebnik

Key idea: learn features and classifier that work
well together (“end-to-end training”)

Image

Convolution/pool

Convolution/pool

Convolution/pool

Convolution/pool

Convolution/pool

Dense

Dense

Dense

Label

LeNet-5 for character/digit recognition

• Average pooling
• Sigmoid or tanh nonlinearity
• Fully connected layers at the end
• Trained on MNIST digit dataset with 60K training examples

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document
recognition, Proc. IEEE 86(11): 2278–2324, 1998.

MNIST
results
(~1% test
error)

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

Fast forward to the arrival of big visual data…

• ~14 million labeled images, 20k classes

• Images gathered from Internet

• Human labels via Amazon MTurk

• ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC):
1.2 million training images, 1000 classes

www.image-net.org/challenges/LSVRC/

Slide: Lazebnik

http://www.image-net.org/challenges/LSVRC/

2012 ImageNet 1K
(Fall 2012)

0

5

10

15

20

25

30

35

40

Er
ro

r

Slide: Jia-bin Huang

0

5

10

15

20

25

30

35

40

Er
ro

r

2012 ImageNet 1K
(Fall 2012)

Slide: Jia-bin Huang

AlexNet: ILSVRC 2012 winner

• Similar framework to LeNet but:
• Max pooling, ReLU nonlinearity
• More data and bigger model (7 hidden layers, 650K units, 60M params)
• GPU implementation (50x speedup over CPU)

• Trained on two GPUs for a week
• Dropout regularization

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep
Convolutional Neural Networks, NIPS 2012

http://www.cs.toronto.edu/%7Efritz/absps/imagenet.pdf
http://www.cs.toronto.edu/%7Efritz/absps/imagenet.pdf

What enabled the
breakthrough?

1. ReLU activation enabled
large models to be
optimized

2. ImageNet provided diverse
and massive annotation to
take advantage of the
models

3. GPU processing made the
optimization practicable

Sigmoid vs. ReLU

http://playground.tensorflow.org/

Slide: Lazebnik

Try many layers with sigmoid vs relu

Sigmoid

ReLU

http://playground.tensorflow.org/

Even with ReLU, it was hard to get very deep networks to
work well

C. Szegedy et al., Going deeper with convolutions, CVPR 2015

Auxiliary classifier

GoogLeNet: add bottlenecks and multiple stages of
supervision

https://arxiv.org/abs/1409.4842

What was the problem?

• Were deeper networks
overfitting the training data?

• Or was the problem just that
we couldn’t optimize them?

• How could we answer this
question?

Look at the training error!

With deeper networks, the training error goes up!?!

Fig: He et al. 2016

https://arxiv.org/abs/1512.03385

Very deep networks, vanishing gradients,
and information propagation
Vanishing gradients
• Early weights have a long path to reach output
• Any zeros along that path kill the gradient
• Early layers cannot be optimized
• Multiple stages of supervision can help, but it’s

complicated and time-consuming

Information propagation
• Networks need to continually maintain and add

to information represented in previous layers

ResNet: the residual module

• Use skip or shortcut
connections around 2-3
layer MLPs

• Gradients can flow
quickly back through skip
connections

• Each module needs only
add information to the
previous layers

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Deep Residual
Learning for Image Recognition, CVPR 2016 (Best Paper), 200K+ citations

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385

ResNet: Residual Bottleneck Module

• Directly performing 3x3
convolutions with 256 feature
maps at input and output:
256 x 256 x 3 x 3 ~ 600K
operations

• Using 1x1 convolutions to
reduce 256 to 64 feature maps,
followed by 3x3 convolutions,
followed by 1x1 convolutions
to expand back to 256 maps:
256 x 64 x 1 x 1 ~ 16K
64 x 64 x 3 x 3 ~ 36K
64 x 256 x 1 x 1 ~ 16K
Total: ~70K

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Deep Residual
Learning for Image Recognition, CVPR 2016

Used in 50+ layer networks

Slide: Lazebnik

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385

ResNet: going real deep

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Deep Residual
Learning for Image Recognition, CVPR 2016

Despite depth, the residual connections enable error
gradients to “skip” all the way back to the beginning

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385

Example code: ResBlock
class ResBlock(nn.Module):

def __init__(self, in_channels, out_channels, downsample):
super().__init__()
if downsample:

self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1)
self.shortcut = nn.Sequential(

nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=2),
nn.BatchNorm2d(out_channels)

)
else:

self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.shortcut = nn.Sequential()

self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.bn1 = nn.BatchNorm2d(out_channels)
self.bn2 = nn.BatchNorm2d(out_channels)

def forward(self, input):
shortcut = self.shortcut(input)
input = nn.ReLU()(self.bn1(self.conv1(input)))
input = nn.ReLU()(self.bn2(self.conv2(input)))
input = input + shortcut
return nn.ReLU()(input)

Example code: ResNet-18 architecture for ImageNet
class Network(nn.Module):

def __init__(self, num_classes=37):

super().__init__()

resblock = ResBlock

self.layer0 = nn.Sequential(

nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3),

nn.MaxPool2d(kernel_size=3, stride=2, padding=1),

nn.BatchNorm2d(64),

nn.ReLU()

)
self.layer1 = nn.Sequential(

resblock(64, 64, downsample=False),

resblock(64, 64, downsample=False)

)
self.layer2 = nn.Sequential(

resblock(64, 128, downsample=True),

resblock(128, 128, downsample=False)

)
self.layer3 = nn.Sequential(

resblock(128, 256, downsample=True),

resblock(256, 256, downsample=False)

)
self.layer4 = nn.Sequential(

resblock(256, 512, downsample=True),

resblock(512, 512, downsample=False)

)
self.gap = torch.nn.AdaptiveAvgPool2d(1)

self.fc = torch.nn.Linear(512, num_classes)

def forward(self, input):
input = self.layer0(input)
input = self.layer1(input)
input = self.layer2(input)
input = self.layer3(input)
input = self.layer4(input)
input = self.gap(input)
input = torch.flatten(input, 1)
input = self.fc(input)

return input

ResNet Architectures and Results

Improvements to SGD
Great site by Lili Jiang
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-
adagrad-rmsprop-adam-f898b102325c

Basic SGD:
Δ𝑤𝑤𝑡𝑡 = −𝜂𝜂𝑔𝑔 𝑤𝑤𝑡𝑡
𝑤𝑤𝑡𝑡+1 = 𝑤𝑤𝑡𝑡 + Δ𝑤𝑤𝑡𝑡

Gradient of loss wrt weights

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

SGD + Momentum
SGD + Momentum:
𝑚𝑚𝑡𝑡 = 𝛽𝛽 ⋅ 𝑚𝑚𝑡𝑡−1 + 𝑔𝑔(𝑤𝑤𝑡𝑡) e.g. 𝛽𝛽 = .9
Δ𝑤𝑤𝑡𝑡 = −𝜂𝜂 ⋅ 𝑚𝑚𝑡𝑡
𝑤𝑤𝑡𝑡+1 = 𝑤𝑤𝑡𝑡 + Δ𝑤𝑤𝑡𝑡

Figure source

Momentum (magenta)
converges faster and carries
the ball through a local
minimum

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

AdaGrad: Adaptive Gradient
AdaGrad:
𝑔𝑔𝑠𝑠𝑠𝑠 𝑑𝑑 = 𝑔𝑔𝑠𝑠𝑠𝑠 𝑑𝑑 − 1 + 𝑔𝑔 𝑤𝑤𝑡𝑡 2

Δ𝑤𝑤𝑡𝑡 = −𝜂𝜂𝑔𝑔 𝑤𝑤𝑡𝑡 / 𝑔𝑔𝑠𝑠𝑠𝑠(𝑑𝑑) (normalize by path length of all previous updates)
𝑤𝑤𝑡𝑡+1 = 𝑤𝑤𝑡𝑡 + Δ𝑤𝑤𝑡𝑡

Figure source

AdaGrad (white) avoids
moving in only one weight
direction, and can lead to
smoother convergence

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

RMSProp: Root Mean Squared Propagation
RMSProp:
𝑔𝑔𝑠𝑠𝑠𝑠 𝑑𝑑 = 𝜖𝜖 ⋅ 𝑔𝑔𝑠𝑠𝑠𝑠 𝑑𝑑 − 1 + 1 − 𝜖𝜖 ⋅ 𝑔𝑔 𝑤𝑤𝑡𝑡 2 (introducing decay rate turns this into moving avg)

Δ𝑤𝑤𝑡𝑡 = −𝜂𝜂𝑔𝑔 𝑤𝑤𝑡𝑡 / 𝑔𝑔𝑠𝑠𝑠𝑠(𝑑𝑑) (normalize by moving average length of previous updates)
𝑤𝑤𝑡𝑡+1 = 𝑤𝑤𝑡𝑡 + Δ𝑤𝑤𝑡𝑡

Figure source

RMSProp (green) moves
faster than AdaGrad (white)

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

Adam: Adaptive Moment Estimation
Adam:
𝑚𝑚𝑡𝑡 = 𝛽𝛽 ⋅ 𝑚𝑚𝑡𝑡 + 1 − 𝛽𝛽 ⋅ 𝑔𝑔(𝑤𝑤𝑡𝑡) [momentum, 𝛽𝛽 = 0.9]
𝑔𝑔𝑠𝑠𝑠𝑠 𝑑𝑑 = 𝜖𝜖 ⋅ 𝑔𝑔𝑠𝑠𝑠𝑠 𝑑𝑑 − 1 + 1 − 𝜖𝜖 ⋅ 𝑔𝑔 𝑤𝑤𝑡𝑡 2 [RMSProp, 𝜖𝜖 = 0.999]

Δ𝑤𝑤𝑡𝑡 = −𝜂𝜂 ⋅ 𝑚𝑚𝑡𝑡/ 𝑔𝑔𝑠𝑠𝑠𝑠(𝑤𝑤𝑡𝑡)
𝑤𝑤𝑡𝑡+1 = 𝑤𝑤𝑡𝑡 + Δ𝑤𝑤𝑡𝑡

Figure source

Videos

AdamW is widely used and easier to
tune than SGD + momentum

AdamW is a fix on Adam to correctly update weight decay

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

What to use?

• AdamW is less sensitive to hyperparameters (easier to get a
decent solution working)

• Many practitioners say SGD+momentum can achieve the best
performance, if you’re able to optimize over hyperparameters

• I commonly see either one used in research papers

What to remember
• Deep networks provide huge gains in

performance
– Large capacity, optimizable models
– Learn from new large datasets

• ReLU and skip connections simplify
optimization

• SGD+momentum and AdamW are the
most commonly used optimizers

ImageNet

Next lecture

• More deep network optimization
– Batch Normalization
– Data Augmentation

• Re-using networks
– Linear probe
– Fine-tuning

• Mask RCNN line of work

	CNNs and Key Ingredients of Deep Learning
	Last class
	Another application example: mapping position/rays to color
	Generalized insight from “Fourier Features”
	HW 4
	Today’s Lecture
	Brief history of deep learning
	Slide Number 8
	Slide Number 9
	Deeper neural networks could theoretically learn compositional representations of complex functions but were hard to optimize
	Pure MLPs are not great for images
	Images have local patterns that can appear at different positions
	Linear filtering is a foundation of image processing
	A CNN (convolutional network) learns filter weights to create grids of features (“feature map”)
	Convolution as feature extraction
	Multiple filters are learned, producing a map of feature vectors
	Following layers operate on the feature map from the previous layer
	Key operations in a CNN
	Key operations
	Key operations
	Key idea: learn features and classifier that work well together (“end-to-end training”)
	LeNet-5 for character/digit recognition
	Fast forward to the arrival of big visual data…
	Slide Number 27
	Slide Number 28
	AlexNet: ILSVRC 2012 winner
	What enabled the breakthrough?
	Sigmoid vs. ReLU
	Even with ReLU, it was hard to get very deep networks to work well
	What was the problem?
	Look at the training error!
	Very deep networks, vanishing gradients, and information propagation
	ResNet: the residual module
	ResNet: Residual Bottleneck Module
	ResNet: going real deep
	Example code: ResBlock
	Example code: ResNet-18 architecture for ImageNet
	ResNet Architectures and Results
	Improvements to SGD
	SGD + Momentum
	AdaGrad: Adaptive Gradient
	RMSProp: Root Mean Squared Propagation
	Adam: Adaptive Moment Estimation
	What to use?
	What to remember
	Next lecture

