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Review
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Midterm Exam Logistics

 Thurs, Mar 7 (start exam between 9:30 AM and 10:30 PM)

 Exam will be 75 minutes long (or longer for those with DRES
accommodations)

* Mainly multiple choice / multiple select
— No coding or complex calculations; mainly tests conceptual understanding
* You take it at home (open book) on PrairieLearn
* Not cheating
— Consult notes, practice questions/answers, slides, internet, etc.
* Cheating
— Talking to a classmate about the exam after one (but not both) of you has taken it

— Getting help from another person during the exam
— Obtaining past exam questions/answers

* You will not have time to look up all the answers, so do prepare by reviewing
slides, lectures, AML book, and practice questions



Midterm Exam Central Topics

* How does train/test error depend on
— Number of training samples
— Complexity of model

* Bias-variance trade-off, including meaning of “bias” and “variance’
for ML models and “overfitting”

» Basic function/form/assumptions of classification/regression
models (KNN, NB, linear/logistic regression, trees, SVMs, boosted
trees, random forests, ensembles)

* Entropy/Information gain
e Data organization and transformation: clustering, PCA

* Latent variables and robustness: EM, density estimation, robust
estimation and fittting

 Gradient descent, SGD

)



KNN Usage Example: Deep Face

DeepFace: Closing the Gap to Human-Level Performance in Face Verification

Yaniv Taigman Ming Yang Marc’ Aurelio Ranzato Lior Wolf
Facebook Al Research Tel Aviv University CVP R 20 1 4
Menlo Park, CA, USA Tel Aviv, Israel

{vaniv, mingyang, ranzato}@fb.com wolf@cs.tau.ac.il
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Detection & Localization @152%152x3 @142x142 @771 @63x63 @55x55 @25x25 ®21%21

Detect facial features
Align faces to be frontal
Extract features using deep network while training classifier to label image into person (dataset based on employee faces)

H w N

In testing, extract features from deep network and use nearest neighbor classifier to assign identity

* Performs similarly to humans in the LFW dataset (labeled faces in the wild)

* Can be used to organize photo albums, identifying celebrities, or alert user when someone posts an image of them
* If thisis used in a commercial deployment, what might be some unintended consequences?

* This algorithm is used by Facebook (though with expanded training data)



Example application of SVM: Dalal-Triggs 2005

Input
image

Normalize
gamma &

colour

Compute
gradients

Weighted vote
into spatial &

orientation cells

* Detection by scanning window

* Resize image to multiple scales and extract overlapping windows

» Classify each window as positive or negative
* Very highly cited (40,000+) paper, mainly for HOG
* One of the best pedestrian detectors for several years

Contrast normalize
over overlapping
spatial blocks

Collect HOG s
over detection
window

Linear
SVM

Person/
—» non—person
classification

https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf



https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf

Example application of SVM: Dalal-Triggs 2005

Input
image

Normalize Compute Weighted vote Contrast normalize Collect HOG’s
—» gamma & —» aradients —>»| into spatial &  |—»| over overlapping |[—| over detection > SVM
colour orientation cells spatial blocks window

FHEE LM
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Figure 6. Our HOG detectors cue mainly on silhouette contours (especially the head, shoulders and feet). The most active blocks are
centred on the image background just outside the contour. (a) The average gradient image over the training examples. (b) Each “pixel™
shows the maximum positive SVM weight in the block centred on the pixel. (c) Likewise for the negative SVM weights. (d) A test image.
(e) 1t's computed R-HOG descriptor. (f,g) The R-HOG descriptor weighted by respectively the positive and the negative SVM weights.

* Very highly cited (40,000+) paper, mainly for HOG
* One of the best pedestrian detectors for several years

Person/

Linear| , ,,,n person

classification



Example application of SVM: Dalal-Triggs 2005

Input
image

miss rate

Normalize

gamma &
colour

Compute
gradients

Weighted vote
into spatial &

orientation cells

DET - different descriptors on MIT database

Contrast normalize
over overlapping
spatial blocks

Collect HOG s
over detection
window

Linear
SVM

Person/
—» non—person
classification

DET - different descriptors on INRIA database
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“Semi-naive Bayes” object detection

A Statistical Method for 3D Object Detection Applied to Faces and Cars

Henry Schneiderman and Takeo Kanade

* Best performing
face/car detector in
2000-2005

 Model probabilities of
small groups of features
(wavelet coefficients)

* Search for groupings,

discretize features, '
. Pu(patrerny(x, v), x, v|object)
estimate parameters - .

17
I1 | [T Piparrerny(x, y). x, ¥ |non-object)

X,V € reglonj — |

https://www.cs.cmu.edu/afs/cs.cmu.edu/user/hws/www/CVPRO0O.pdf



https://www.cs.cmu.edu/afs/cs.cmu.edu/user/hws/www/CVPR00.pdf

Human pose estimation with random forest

* Very simple features

* Lots of data

e Random Forest




Raw
Features

Discrete/continuous values

Text

Images

Audio
Structured/unstructured
Few/many features
Clean/noisy labels

Training (Parameter Learning)

Target

Model

Encoder

Trees

Feature selection
Clustering

Kernels

Density estimation

Manual feature design
Deep networks

== Decoder

Linear regressor
Logistic regressor
Nearest Neighbor
Probabilistic model
SVM

Labels

1

== Prediction

Category

Continuous value

Clusters

Low dimensional embedding

Pixel labels
Generated text, image, audio
Positions



Learning a model

0* = argmin Loss(f (X;0),y)
0

f(X;0):the model,e.g. y = wix

e O:parameters of the model (e.g. w)

* (X, y): pairs of training samples

 Loss(): defines what makes a good model

— Good predictions, e.g. minimize — ), log P(y,,|x,,)

— Likely parameters, e.g. minimize w! w

* Regularization and priors indicate preference for particular solutions, which tends to
improve generalization (for well chosen parameters) and can be necessary to obtain
a unique solution



Prediction using a model

Ve = f(x;0)
* Given some new set of input features x;, model predicts y;

— Regression: output vy, directly, possibly with some variance estimate

— Classification
* Output most likely y; directly, as in nearest neighbor
* Qutput P(y;|x;), as in logistic regression



Model evaluation process

1. Collect/define training, validation, and test sets
2. Decide on some candidate models and hyperparameters
3. For each candidate:

a. Learn parameters with training set
b. Evaluate trained model on the validation set

4. Select best model

5. Evaluate best model’s performance on the test set

— Cross-validation can be used as an alternative

— Common measures include error or accuracy, root mean squared
error, precision-recall



How to think about ML algorithms

 What is the model?
— What kinds of functions can it represent?
— What functions does it prefer? (regularization/prior)

 What is the objective function?
— What “values” are implied?
— The objective function does not always match the final evaluation metric
— Objectives are designed to be optimizable and improve generalization

* How do | optimize the model?

— How long does it take to train, and how does it depend on the amount of training
data or number of features?

— Can | reach a global optimum?
 How does the prediction work?
— How accurate is the prediction?
— How fast can | make a prediction for a new sample?
— Does my algorithm provide a confidence on its prediction?



Bias-Variance Trade-off

Bxyp |(hp(x) ~ 9)°| = Bxp | (hp(x) — ()" | + Bxy [@(x) — 9)°| + Bx | (A(x) ~ §())’]

T - T - g
il T il

Expected Test Error Variance Noise

Variance: due to limited data
Different training samples will give different models that vary in predictions for the same test sample

“Noise”: irreducible error due to data/problem

Bias: error when optimal model is learned from infinite data

Above is for regression.
But same error = variance + noise + bias? holds for classification error and logistic regression.

See this for derivation Fig Sources



https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote12.html
http://scott.fortmann-roe.com/docs/BiasVariance.html

Error

Underfitting

Overfitting

Optimum Model Complexity

&

Total Error

Variance

Model Complexity

How to detect high variance:
« Test error is much higher than
training error

How to detect high bias or noise:
* The training error is high

As you increase model complexity:

« Training error will decrease

« Test error may decrease (if you are
currently “underfitting”) or increase (if
you are “overfitting”)



What does “model complexity” mean?

 More parameters in the same structure, e.g. a deeper tree is
more complex than a shallow tree

* Less regularization, e.g. smaller regularization penalty



Performance vs training size

Error

As we get more training data:
Fived model 1. The same model has more difficulty
Ixed mode fitting the training data
2. But the test error becomes closer to
training error (reduced generalization
error)
Due to limited training data .
Testing (model variance) and 3. Overall test performance improves

distribution shift

. Test error with infinite training examples . . .
Due to difference in P(y|x) in
" Train error with infinite training examples training and test (function shift)
e
__ Training \
Number of Training Examples

Due to limited power of model
(model bias) and unavoidable
intrinsic error (Bayes optimal
error)



Classification methods

Decision Tree

Type

Decision
Boundary

Model /
Prediction

Strengths

Limitations

Nearest Neighbor

Instance-Based

Partition by example distance

i = argmin dist (X [i], x)
l

y' = ytrn[i*]

* Low bias

* No training time
* Widely applicable
* Simple

* Relies on good input features
* Slow prediction (in basic
implementation)

Naive Bayes Logistic Regression
Probabilistic Probabilistic
Usually linear Usually linear

Ply=a %)
y' = argmaan(xily)P(y) ©Ohxrb » |°3 Py 1x )
y i

y* = argmax P(y|x)

y
* Estimate from limited data * Powerful in high
* Simple dimensions
* Fast training/prediction * Widely applicable
* Good confidence
estimates

* Fast prediction

* Limited modeling power * Relies on good
input features

Probabilistic

Partition by selected
boundaries

Conjunctive rules
y* = leaf (x)

* Explainable decision
function

* Widely applicable

* Does not require
feature scaling

* One tree tends to
either generalize poorly
or underfit the data




Classification methods (extended)

Learning Objective

assuming x in {0 1}

Training Inference /
0,'x+0,"(1-x)>0 J/
Naive maximizez ;logp(xy | yi;ej) Zﬁ(xij == k)+ : where 6, = 1°g%(%§’
Bayes " +1logP(y,:6,) 2.6y, =k)+Kr o o Ple=0lr=1)
i 0J gP(xj=0|y=0i
LOg|St|C minimize Z —log(P(¥;|x,0)) + /10| Gradient descent OT o4
. i X
Regression where P(y;[%8) = 1/(1 + exp(~y;07x))
C . 1
Linear minimize ’IZI,:@ +§”0” Quadratic programming .
SVM such that y,0'x>1-¢& Vi, & >0 or subgradient opt. ' x>1
Kernelized complicated to write Quadratic Z ya K& ,x)>0
rogrammin
SVM prog g -
Nearest Vi
i most similar features =2 same label Record data
Neighbor

wherei = argmin K (%,,x)

l

* Notation may differ from previous slide



Regression methods

Nearest Neighbor

Naive Bayes

Linear Regression

Decision Tree

Type

Decision
Boundary

Model /
Prediction

Strengths

Limitations

Instance-Based

Partition by example distance

i = argmin dist (X [i], x)
l
V' = Yernli®]

* Low bias

* No training time
* Widely applicable
* Simple

* Relies on good input features
* Slow prediction (in basic
implementation)

Probabilistic

Usually linear

y* = argmax 1_[ P(x;ly)P(y)
y i

* Estimate from limited data
* Simple
* Fast training/prediction

* Limited modeling power

Data fit

Linear

* Powerful in high
dimensions

* Widely applicable

* Fast prediction

* Coefficients may be
interpretable

* Relies on good
input features

Probabilistic

Partition by selected
boundaries

Conjunctive rules
y* = leaf (x)

* Explainable decision
function

* Widely applicable

* Does not require
feature scaling

* One tree tends to
either generalize poorly
or underfit the data




Ensembles

 Ensembles improve accuracy by
reducing bias and/or variance By [(h0() — 7] = B [(hox) ~ K(x)?] + By [0 — 9] + B [(B) - 50’

Expected Test Error Variance Noise Bias?

* Boosting minimizes bias by fixing
previous mistakes, e.g. Boosted
Decision Tree classifier

* Averaging over predictions from

multiple models minimizes
variance, e.g. Random Forests

(1,%) (Z,%)

tree 1 tree T

 Random forests and boosted trees
are powerful classifiers and useful
for a wide variety of problems

Pr(c)
I Pi(c) ‘LJ-



Questions

https://tinyurl.com/cs441midtermreview



https://tinyurl.com/cs441midtermreview

Summaries



Working with Data (L2)

Machine learning is fitting

parameters of a model so that you _

can accurately predict one set of f(x: H) — Yy
numbers from another set of

numbers

Something can take a lot of data
storage but provide little
information, or vice versa

The predictiveness or information 10

gain of the features depends on i Lin
0.5

how they are modeled

0.0 ———
40 50



Clustering (L3)

e Similarity is foundational to machine
learning

e Use highly optimized libraries like FAISS for
search/retrieval

* Approximate search methods like LSH can
be used to find similar points quickly

e TF-IDF is used for similarity of tokenized
documents and used with index for fast
search

* Clustering groups similar data points

e K-means is the must-know method, but
there are many others
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KNN (L4)

* KNN is a simple but effective
classifier/regressor that
predicts the label of the most
similar training example(s)

e Larger K gives a smoother
prediction function

* Test error is composed of bias
(model too simple/smooth to
fit data) and variance (model
too complex to learn from
training data)

Error

x2

X1

Under-fitting Overfitting

| |
I M 1

Test error

eneralizatior

1 Error

Train error

Complexity/Precision of Model
K=25 K=5 K=1



PCA/Embedding (L5)

* PCA reduces dimensions by linear projection

— Preserves variance to reproduce data as well as
possible, according to mean squared error

— May not preserve local connectivity structure or
discriminative information

* Other methods try to preserve relationships

between points

— MDS: preserve pairwise distances
— IsoMap: MDS but using a graph-based distance

— t-SNE: preserve a probabilistic distribution of
neighbors for each point (also focusing on closest

points)

— UMAP: incorporates k-nn structure, spectral
embedding, and more to achieve good embeddings

relatively quickly
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o

Li n ea r Reg ress i O n ( L6) Chirp frequency vs temperature in crickets

=" RA2=0.68

Linear regression fits a linear model to a
set of feature points to predict a
continuous value

Temperature

— Explain relationships
— Predict values

— Extrapolate observations

14 15 16 17 18 19 20
Frequency

Regularization prevents overfitting by

restricting the magnitude of feature
weights
— L1: prefers to assign a lot of weight to the most
useful features 60 -

64 -

62 1

RMSE

— L2: prefers to assign smaller weight to
everything

58

56 1

T T
1071 10°
lambda



Linear Classifiers (L7)

P(circle|x) is higher P(triangle|x) is higher

Linear logistic regression and linear SVM are
classification techniques that aims to split features ° o
between two classes with a linear model % .’ °. A

— Predict categorical values with confidence : Qo A “A‘A‘

o ® A A
A AA

Logistic regression maximizes confidence in the -
correct label, while SVM just tries to be confident

enough

Non-linear versions of SVMs can also work well and Optimized SVM Model

were once popular (but almost entirely replaced by _ X
deep networks)

Nearest neighbor and linear models are the final
predictors of most ML algorithms — the complexity
lies in finding features that work well with NN or
linear models

x1



Probability / Naive Bayes (L8)

* Probabilistic models are a large class of
machine learning methods

* Naive Bayes assumes that features are

independent given the label P(x,y) = l_[ P(x;|y)P(y)
l

— Easy/fast to estimate parameters
— Less risk of overfitting when data is limited

* You can look up how to estimate parameters
for most common probability models

— Or take partial derivative of total data/label
likelihood given parameter

* Prediction involves finding y that maximizes

P(x,y), either by trying all y or solving 'Yt = 0—(8""0‘& TI P(,)(,, )Y) P(‘/)
!

partial derivative

« Maximizing log P(x, y) is equivalent to = 0‘(3‘(;0’{' Z I'{‘_’} P(_XC 2‘{) t 17’3 P(y)

maximizing P(x, y) and often much easier



EM (L9)

* EMis a widely applicable algorithm to
solve for latent variables and parameters Estimated scores

that make the observed data likely
— E-step: compute the likelihoods of the values ti ot

0.8

of the latent variables ! !

— M-step: solve for most likely model
parameters, using the likelihoods from the E- . :
step as weights !

0.2 1

* While derivation is long and somewhat - Ly

complicated, the application is simple

(Green = true; red = prediction)

* EM is used, for example, in mixture of

. . Good annotators: 0, 1, 3
Gaussian and topic models



PDF Estimation (L10)

Parametric Models

Semi-Parametric

Non-Parametric

Can fit a broad

distribution

in high dimensions

Descriotion Assumes a fixed range of functions Can fit any
P form for density with limited distribution
parameters
: . Discretization,
Gaussian, Mixture of :
Examples : ) kernel density
exponential Gaussians L.
estimation
Model is able to : .
: . Low dimensional or
Good when approximately fit . 1-D data
. smooth distribution
the distribution
Model cannot Distribution is not -
. . Data is high
Not good when approximate the smooth, challenging | . .
dimensional




Robust Estimation (L11)

Median and quantiles are
robust to outliers, while
mean/min/max aren’t

Outliers can be detected as
low probability points, low :

density points, poorly
compressible points, or

through 2D visualizations i

Least squares is not robust to
outliers. Use RANSAC or IRLS
or robust loss function
instead.

1 —— clean data

—— Moving median of noisy data
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Trees (L12)

* Decision/regression trees
learn to split up the feature
space into partitions with
similar values

* Entropy is a measure of
uncertainty

* Information gain measures
how much particular
knowledge reduces prediction
uncertainty




Ensembles (L13)

 Ensembles improve accuracy and
confidence estimates by reducing o [(ho(6) 7] = B [(h0(x) - 560)"] + B [55) ] + 52 (30 - 760)]
bias and/or variance "

 Boosted trees minimize bias by
fixing previous mistakes
* Random forests minimize variance

by averaging over multiple
different trees

(1,%) (Z,%)

tree 1 tree T

 Random forests and boosted trees
are powerful classifiers and useful
for a wide variety of problems

Pr(c)
I Pi(c) ‘LJ.



SGD (L14)

Gradient descent iteratively takes a step in the
negative gradient direction of the full objective
function, to minimize a loss function

Stochastic gradient descent (SGD) estimates the
gradient using a subset of examples
— Smaller batches require much less compute to

evaluate but give a noisier estimate of the
gradient

— Faster than GD
— Can escape local minima
Learning rate (step size) and schedule are

important factors in the speed and stability of
the optimization

Optimization problems for linear models are
convex, and have a single local optimum

MLPs and deep networks have many local
optima, so are harder to optimize well

50 4

30

20 1

10

Learning rate: 0.1

10
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