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Reminder: Exam 2 next Thurs-Sun (Nov 6-9)



Today’s Lecture

• Representing natural language text as integers
– Byte pair encoding
– WordPiece

• Representing text tokens with continuous vectors
– Word2Vec

• Attention and Transformers
– “Attention is all you need” transformers



Each pixel means little, but images can be interpreted by grouping and 
recognizing patterns in groups of groups of groups of pixels

https://www.istockphoto.com/photos/funny-animal



CNNs iteratively process 
pixels->edges/colors->textures->sub-parts->parts->objects/scenes

Examples 
of strongly 
activating 
regions



But in text, the meaning is already in the words… right?



What does this mean?

Us iadłem  na  kaktus ie



Which of these is more similar?

He sat on the 
chair, and it broke.

The chair says the 
department is 
broke.

After his sitting, 
the seat is broken.



Which of these is more similar?

He sat on the 
chair, and it broke.

The chair says the 
department is 
broke.

After his sitting, 
the seat is broken.



He sat on the 
chair, and it broke.

The chair says 
the department is 
broke.

After sitting, the 
seat is broken.

• Same word (character 
sequence) may mean 
different things

• Different words may 
mean similar things

• Word meaning depends 
on associations and 
surrounding words



To analyze text, need to convert text to tokens

“Token”: an integer or vector that represents 
a data element, a unit of processing
• With integer tokens, the values are not 

continuous (e.g. 5 is no closer to 10 than 5000)
• With vector tokens, similarity/distance (typically 

L2, dot product or cosine) is meaningful



Word  Integer
• Each unique space-delimited 

character string is assigned to a 
different integer
– To limit vocabulary size, assign only 

the most frequent words to integers
– Others are <unk> (unknown)

• Pros and cons
– Simple
– Possible to compare/retrieve 

documents based on count of tokens
– Many words map to unknown (e.g. 

1298, Bart’s, Area-52, anachronism, 
…)

– Large vocabulary needed
– Does not model similarity of related 

words like broke/broken

He sat on the 
chair, and it broke.

The chair says 
the department is 
broke.

After sitting, the 
seat is broken.



Character  Integer
• Each character is assigned to a 

unique integer
• Pros and cons

– Simple
– Every document within 

alphabet can be fully modeled
– Small vocabulary (< 100 integers 

needed for English)
– Sometimes, similar words will 

have similar sequences 
(broke/n)

– Count of tokens is not 
meaningful

– Character sequences are long



Subword  Integer
• Common sequences of 

characters are assigned to 
unique integers

• Pros and cons
– Every document within 

alphabet can be fully modeled
– Vocabulary size is flexible (e.g. 

30K for BERT, 50K for GPT-3)
– Sometimes, similar words will 

have similar sequences 
(broke/n)

– Need to solve for good subword 
tokenization



Character WordSubword

“Chair is broken” c, h, a, i, r, … ch##, ##air, is, brok##, ##en chair, is, broken

Vocabulary Size 256 4K-50K > 30K

Completeness Perfect Perfect Incomplete

Independent 
Meaningfulness

Bad OK Good

Sequence Length Long
Medium 

(e.g., 1.4 tokens per word) A little shorter



Subword Tokenizers: Byte Pair Encoding
1. Start with each character assigned to a unique token
2. Iteratively assign a new token to the most common pair of 

consecutive tokens, until max_tokens is reached

ZabdZabac 
Z=aa 

aaabdaaabac 

ZYdZYac 
Y=ab 
Z=aa 

XdXac 
X=ZY 
Y=ab 
Z=aa 

Example from Wikipedia

Initial array of 4 characters

Replace aa by Z

Replace ab by Y

Replace ZY by X

XZd  ZYZd  aaabaad

https://en.wikipedia.org/wiki/Byte_pair_encoding


WordPiece Tokenizer (Sennrich et al., Wu et al. 2016)
• Word: Jet makers feud over seat width with big orders at stake
• wordpieces: _J et _makers _fe ud _over _seat _width _with _big _orders _at _stake

https://arxiv.org/abs/1508.07909  
https://arxiv.org/pdf/1609.08144.pdf

For each merge:
1. Count token pair frequencies in dataset
2. Select most frequent pair
3. Merge that “best” pair

a. Assign best pair to new token
b. Replace all instances of best pair in dataset with that token

https://arxiv.org/abs/1508.07909
https://arxiv.org/pdf/1609.08144.pdf


Try it

Do first two merges of:
Your cat cannot do the can-can, can he?

_Your _cat _cannot _do _the _can-can, _can he?

_Your _Xt _Xnnot _do _the _Xn-Xn, _Xn _he?

_Your _Xt _Znot _do _the _Z-Z, _Z, _he?

For each merge:
1. Count token pair frequencies in 

dataset
2. Select most frequent pair
3. Merge that “best” pair

a. Assign best pair to new 
token

b. Replace all instances of 
best pair in dataset with that 
token



How can we better encode word similarity?

• Different words are related to each other

• Encode “meaning” in a continuous vector

• Learn these vectors based on surrounding words



Word2Vec (Mikolov et al. 2013)
For each word, solve for a continuous vector representation:
• CBOW: predict center word as average of surrounding words (after projecting each word to a vector)
• Skip-Gram: each word (after projecting to a vector) predicts each surrounding word with a linear 

model

https://arxiv.org/pdf/1301.3781.pdf 

Train by gradient 
descent
• At the end, each word 

integer can be replaced by a 
fixed-length continuous 
vector

https://arxiv.org/pdf/1301.3781.pdf


Word vectors predict word 
relationships



Word2Vec predicted relationship examples

E.g., Paris – France + Italy = Rome



Word2Vec demos

https://turbomaze.github.io/word2vecjson  (fastest)

https://www.cs.cmu.edu/~dst/WordEmbeddingDemo/  (best)

https://remykarem.github.io/word2vec-demo/  (training)

https://turbomaze.github.io/word2vecjson
https://www.cs.cmu.edu/%7Edst/WordEmbeddingDemo/
https://remykarem.github.io/word2vec-demo/
https://remykarem.github.io/word2vec-demo/
https://remykarem.github.io/word2vec-demo/


Q1-Q3

https://tinyurl.com/441AML-L18 

https://tinyurl.com/441AML-L18
https://tinyurl.com/441AML-L18
https://tinyurl.com/441AML-L18


A new type of data processing

• Linear: output is sum of weights times features

• Convolution: output at each position is sum of weights times 
features within a sliding window

• Attention: average of values, weighted by key-query similarity



Attention
<key k, value v>: a data pair, in which key is used for matching 
and value is used to output
<query q>: used to match keys and accumulate values

𝑜𝑜𝑜𝑜𝑜𝑜(𝑞𝑞) = �
𝑖𝑖

𝑠𝑠 𝑘𝑘𝑖𝑖 , 𝑞𝑞 𝑣𝑣𝑖𝑖 / �
𝑖𝑖

𝑠𝑠 𝑘𝑘𝑖𝑖 , 𝑞𝑞

Similarity of ith key and query ith value Make similarities sum to 1



Attention simple example

𝑜𝑜𝑜𝑜𝑜𝑜(𝑞𝑞) = �
𝑖𝑖

𝑠𝑠 𝑘𝑘𝑖𝑖 , 𝑞𝑞 𝑣𝑣𝑖𝑖 / �
𝑖𝑖

𝑠𝑠 𝑘𝑘𝑖𝑖 , 𝑞𝑞

𝑆𝑆 𝑘𝑘, 𝑞𝑞 = 1
𝑘𝑘−𝑞𝑞 2+1

 

<key, value> pairs: < 1,1 >, < 7,−1 >, < 5,−1 >

query: 4

𝑜𝑜𝑜𝑜𝑜𝑜 =
1
10 1 + 1

10 −1 +12 −1
1
10+

1
10+

1
2

= −0.71 
query = 0

𝑜𝑜𝑜𝑜𝑜𝑜 =
1
2 1 + 1

50 −1 + 1
26 −1

1
2+

1
50+

1
26

= 0.79 



Cross-Attention: each input token acquires the values of the 
cross-attended tokens, weighted by key-query similarity

𝑥𝑥0 𝑥𝑥2𝑥𝑥1

𝑦𝑦0

𝑦𝑦1

Compute query per token (multiply by Q)

𝑥𝑥0𝑊𝑊𝑞𝑞 𝑥𝑥1𝑊𝑊𝑞𝑞 𝑥𝑥2𝑊𝑊𝑞𝑞

𝑦𝑦0𝑊𝑊𝑘𝑘, 𝑦𝑦0𝑊𝑊𝑣𝑣

Com
pute key, value per token (m

ultiply by K, V)

𝑦𝑦1𝑊𝑊𝑘𝑘, 𝑦𝑦1𝑊𝑊𝑣𝑣

�𝑥𝑥0 =
∑𝑗𝑗 𝑦𝑦𝑗𝑗𝑊𝑊𝑣𝑣 exp 𝑦𝑦𝑗𝑗𝑊𝑊𝑘𝑘

𝑇𝑇 𝑥𝑥0𝑊𝑊𝑞𝑞 /√𝑑𝑑

∑𝑗𝑗 exp 𝑦𝑦𝑗𝑗𝑊𝑊𝑘𝑘
𝑇𝑇 𝑥𝑥0𝑊𝑊𝑞𝑞 /√𝑑𝑑

Attention 𝑄𝑄,𝐾𝐾,𝑉𝑉 = softmax
𝑄𝑄𝐾𝐾𝑇𝑇

𝑑𝑑
𝑉𝑉

�𝑥𝑥0 �𝑥𝑥1 �𝑥𝑥2
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cross-attended tokens, weighted by key-query similarity

𝑥𝑥0 𝑥𝑥2𝑥𝑥1

𝑦𝑦0

𝑦𝑦1

Compute query per token (multiply by Q)

𝑥𝑥0𝑊𝑊𝑞𝑞 𝑥𝑥1𝑊𝑊𝑞𝑞 𝑥𝑥2𝑊𝑊𝑞𝑞

𝑦𝑦0𝑊𝑊𝑘𝑘, 𝑦𝑦0𝑊𝑊𝑣𝑣

Com
pute key, value per token (m

ultiply by K, V)

𝑦𝑦1𝑊𝑊𝑘𝑘, 𝑦𝑦1𝑊𝑊𝑣𝑣

�𝑥𝑥0 =
∑𝑗𝑗 𝑦𝑦𝑗𝑗𝑊𝑊𝑣𝑣 exp 𝑦𝑦𝑗𝑗𝑊𝑊𝑘𝑘
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∑𝑗𝑗 exp 𝑦𝑦𝑗𝑗𝑊𝑊𝑘𝑘
𝑇𝑇 𝑥𝑥0𝑊𝑊𝑞𝑞 /√𝑑𝑑

1 × 𝑑𝑑
𝑑𝑑 × 𝑑𝑑

1 × 𝑑𝑑

Attention 𝑄𝑄,𝐾𝐾,𝑉𝑉 = softmax
𝑄𝑄𝐾𝐾𝑇𝑇

𝑑𝑑
𝑉𝑉

�𝑥𝑥0 �𝑥𝑥1 �𝑥𝑥2

Linear projection by 𝑊𝑊𝑞𝑞

𝑑𝑑 × 𝑑𝑑
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�𝑥𝑥0 �𝑥𝑥1 �𝑥𝑥2

Linear projection by 𝑊𝑊𝑘𝑘 ,𝑊𝑊𝑣𝑣



Cross-Attention: each input token acquires the values of the 
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𝑑𝑑
𝑉𝑉

�𝑥𝑥0 �𝑥𝑥1 �𝑥𝑥2

Expressed in matrix 
form where 𝑄𝑄 ∈ ℝ3×𝑑𝑑, 
𝐾𝐾 ∈ ℝ2×𝑑𝑑, 𝑉𝑉 ∈ ℝ2×𝑑𝑑 
are stacked projected 
vectors



Self-Attention: each input token acquires the values of the input 
tokens, weighted by key-query similarity

𝑥𝑥0 𝑥𝑥2𝑥𝑥1

Compute query/key/value per token (multiply by Q, K, V)

𝑥𝑥0𝑊𝑊𝑞𝑞, 𝑥𝑥0𝑊𝑊𝑘𝑘 , 𝑥𝑥0𝑊𝑊𝑣𝑣

�𝑥𝑥0 =
∑𝑗𝑗 𝑥𝑥𝑗𝑗𝑊𝑊𝑣𝑣 exp 𝑥𝑥𝑗𝑗𝑊𝑊𝑘𝑘

𝑇𝑇 𝑥𝑥0𝑊𝑊𝑞𝑞 /√𝑑𝑑

∑𝑗𝑗 exp 𝑥𝑥𝑗𝑗𝑊𝑊𝑘𝑘
𝑇𝑇 𝑥𝑥0𝑊𝑊𝑞𝑞 /√𝑑𝑑

Attention 𝑄𝑄,𝐾𝐾,𝑉𝑉 = softmax
𝑄𝑄𝐾𝐾𝑇𝑇

𝑑𝑑
𝑉𝑉

�𝑥𝑥0 �𝑥𝑥1 �𝑥𝑥2

Only difference is that 
each input token attends 
to all the input tokens, 
instead of a separate pool 
of cross-attention tokens



Attention
• Cross-Attention: query tokens are separate 

from <key, value> tokens
– Performs instance-based regression

• Self-Attention: query tokens are the same 
as the key and value tokens
– Performs soft clustering/aggregation
– Adding multi-dimensional vectors can overlay 

multiple types of information, not just blend or 
replace

• Attention is extremely powerful and 
general when combined with learned 
similarity and MLPs



Transformer (Vaswani et al. 2017)
• Define similarity via linear projection with softmax

𝑆𝑆 𝑘𝑘𝑖𝑖 , 𝑞𝑞 = exp(𝑘𝑘𝑖𝑖 ⋅ 𝑞𝑞)

Attention is all you need

Normalize by sqrt of dimensionality of keys

https://arxiv.org/abs/1706.03762


Transformer (Vaswani et al. 2017)
• One or more similarity functions 

can be learned with linear layers
– If there are h similarities and D 

dimensions to input, each parallel 
linear layer outputs D/h values

Attention is all you need

https://arxiv.org/abs/1706.03762


Transformers: general data processors
● Input tokens can represent anything: image 

patches, text tokens, audio, controls, etc.

● Invariant to order of tokens: add positional 
embedding to distinguish pos/type of input

● Transformer block: 
○ Apply multi-head attention 
○ Apply 2-layer MLP with ReLU to each token separately
○ Residual and layer norm (over all tokens) after each

● Can stack any number of transformer blocks

36
Attention is all you need

https://arxiv.org/abs/1706.03762


Positional encodings

● Transformer processing does not 
depend on position of token
○ But to compare between tokens, relative 

position may be important

● Sinusoidal encoding (on right) is such 
that a dot product between encodings 
corresponds to positional similarity

● Learned or even fixed random 
encodings also work similarly in practice



Transformer: alternates data processing (self-attention) 
and memory injection (MLP)

Multi-head Attention

Q, K, V projection

…

Input tokens

O projection
⊕

⊕

Layer norm

Attention: skills,   
algorithms on 
inputs [2] 

MLP: concepts, 
external memory 
lookup (up) and 
output distribution 
(down) [1]

MLP-up

MLP-down

Concept activation

[1] Geva, Mor, et al. "Transformer Feed-Forward Layers Are Key-Value Memories." Proceedings 
of the 2021 Conference on Empirical Methods in Natural Language Processing. 2021.
[2] Olsson, Catherine, et al. "In-context learning and induction heads." arXiv:2209.11895 (2022).



Transformer-based Model

Preparing inputs
1. Text is converted into subword tokens (integer ids)
2. Subword integers are mapped to learned vectors (embedding)
3. Positional embedding is added to the vectors, providing 

ordering information

Inference
4. Inputs go through 12 transformer blocks

a. Self-attention (organize inputs)
b. MLP (retrieve and output memory)
c. Interleaved layer norms and skip connections

Output
5. Predict the next word (classes are subword ids)
6. Perform a classification task

GPT-1 Model
Radford et al. 2018



Q4

https://tinyurl.com/441AML-L18 

https://tinyurl.com/441AML-L18
https://tinyurl.com/441AML-L18
https://tinyurl.com/441AML-L18


Things to remember
Sub-word tokenization based on byte-pair 
encoding is an effective way to turn natural 
text into a sequence of integers

Attention is a general processing 
mechanism that regresses or aggregates 
values 

Learned vector embeddings of these 
integers model the relationships between 
words

Stacked transformer blocks are a powerful 
network architecture that alternates 
attention and MLPs

Paris – France 
+ Italy = Rome

Chair is broken 
ch##, ##air, is, brok##, ##en

Further reading: http://nlp.seas.harvard.edu/annotated-transformer/ 

http://nlp.seas.harvard.edu/annotated-transformer/
http://nlp.seas.harvard.edu/annotated-transformer/
http://nlp.seas.harvard.edu/annotated-transformer/


Next class: Transformers in Language and Vision
• BERT
• ViT
• Unified-IO





• WordPiece tokens (integers) are 
mapped to learned 512-d vectors

• Positional encoding added to each 
vector

• N=6 transformer blocks  applied to 
input

• Until <EOS> is output:
– Process input + output so far
– Output most likely word (after more 

attention blocks and linear model)

Attention is all you need

Language Transformer: Complete Architecture

Self-
Attention

Cross-
Attention

Self-Attention
(each token 
attends to 
earlier output 
tokens)

https://arxiv.org/abs/1706.03762






• English-German 
– 4.5M sentence pairs
– 37K tokens

• English-French
– 36M sentences
– 32K tokens

• Base models trained on 8 P100s for 12 
hours

• Big models (2x token dim, 3x training steps) 
trained for 3.5 days

• Adam optimizer: learning rate ramps up for 
4K iterations, then down

• Regularization: drop-out, L2 weight, label 
smoothing

Attention is all you need

Application to Translation

Self-
Attention

Cross-
Attention

Self-
Attention

https://arxiv.org/abs/1706.03762


Results
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