
Dall-E

Word
Representations
and
Transformers

Applied Machine Learning
Derek Hoiem

Reminder: Exam 2 next Thurs-Sun (Nov 6-9)

Today’s Lecture

• Representing natural language text as integers
– Byte pair encoding
– WordPiece

• Representing text tokens with continuous vectors
– Word2Vec

• Attention and Transformers
– “Attention is all you need” transformers

Each pixel means little, but images can be interpreted by grouping and
recognizing patterns in groups of groups of groups of pixels

https://www.istockphoto.com/photos/funny-animal

CNNs iteratively process
pixels->edges/colors->textures->sub-parts->parts->objects/scenes

Examples
of strongly
activating
regions

But in text, the meaning is already in the words… right?

What does this mean?

Us iadłem na kaktus ie

Which of these is more similar?

He sat on the
chair, and it broke.

The chair says the
department is
broke.

After his sitting,
the seat is broken.

Which of these is more similar?

He sat on the
chair, and it broke.

The chair says the
department is
broke.

After his sitting,
the seat is broken.

He sat on the
chair, and it broke.

The chair says
the department is
broke.

After sitting, the
seat is broken.

• Same word (character
sequence) may mean
different things

• Different words may
mean similar things

• Word meaning depends
on associations and
surrounding words

To analyze text, need to convert text to tokens

“Token”: an integer or vector that represents
a data element, a unit of processing
• With integer tokens, the values are not

continuous (e.g. 5 is no closer to 10 than 5000)
• With vector tokens, similarity/distance (typically

L2, dot product or cosine) is meaningful

Word  Integer
• Each unique space-delimited

character string is assigned to a
different integer
– To limit vocabulary size, assign only

the most frequent words to integers
– Others are <unk> (unknown)

• Pros and cons
– Simple
– Possible to compare/retrieve

documents based on count of tokens
– Many words map to unknown (e.g.

1298, Bart’s, Area-52, anachronism,
…)

– Large vocabulary needed
– Does not model similarity of related

words like broke/broken

He sat on the
chair, and it broke.

The chair says
the department is
broke.

After sitting, the
seat is broken.

Character  Integer
• Each character is assigned to a

unique integer
• Pros and cons

– Simple
– Every document within

alphabet can be fully modeled
– Small vocabulary (< 100 integers

needed for English)
– Sometimes, similar words will

have similar sequences
(broke/n)

– Count of tokens is not
meaningful

– Character sequences are long

Subword  Integer
• Common sequences of

characters are assigned to
unique integers

• Pros and cons
– Every document within

alphabet can be fully modeled
– Vocabulary size is flexible (e.g.

30K for BERT, 50K for GPT-3)
– Sometimes, similar words will

have similar sequences
(broke/n)

– Need to solve for good subword
tokenization

Character WordSubword

“Chair is broken” c, h, a, i, r, … ch##, ##air, is, brok##, ##en chair, is, broken

Vocabulary Size 256 4K-50K > 30K

Completeness Perfect Perfect Incomplete

Independent
Meaningfulness

Bad OK Good

Sequence Length Long
Medium

(e.g., 1.4 tokens per word) A little shorter

Subword Tokenizers: Byte Pair Encoding
1. Start with each character assigned to a unique token
2. Iteratively assign a new token to the most common pair of

consecutive tokens, until max_tokens is reached

ZabdZabac
Z=aa

aaabdaaabac

ZYdZYac
Y=ab
Z=aa

XdXac
X=ZY
Y=ab
Z=aa

Example from Wikipedia

Initial array of 4 characters

Replace aa by Z

Replace ab by Y

Replace ZY by X

XZd  ZYZd  aaabaad

https://en.wikipedia.org/wiki/Byte_pair_encoding

WordPiece Tokenizer (Sennrich et al., Wu et al. 2016)
• Word: Jet makers feud over seat width with big orders at stake
• wordpieces: _J et _makers _fe ud _over _seat _width _with _big _orders _at _stake

https://arxiv.org/abs/1508.07909
https://arxiv.org/pdf/1609.08144.pdf

For each merge:
1. Count token pair frequencies in dataset
2. Select most frequent pair
3. Merge that “best” pair

a. Assign best pair to new token
b. Replace all instances of best pair in dataset with that token

https://arxiv.org/abs/1508.07909
https://arxiv.org/pdf/1609.08144.pdf

Try it

Do first two merges of:
Your cat cannot do the can-can, can he?

_Your _cat _cannot _do _the _can-can, _can he?

_Your _Xt _Xnnot _do _the _Xn-Xn, _Xn _he?

_Your _Xt _Znot _do _the _Z-Z, _Z, _he?

For each merge:
1. Count token pair frequencies in

dataset
2. Select most frequent pair
3. Merge that “best” pair

a. Assign best pair to new
token

b. Replace all instances of
best pair in dataset with that
token

How can we better encode word similarity?

• Different words are related to each other

• Encode “meaning” in a continuous vector

• Learn these vectors based on surrounding words

Word2Vec (Mikolov et al. 2013)
For each word, solve for a continuous vector representation:
• CBOW: predict center word as average of surrounding words (after projecting each word to a vector)
• Skip-Gram: each word (after projecting to a vector) predicts each surrounding word with a linear

model

https://arxiv.org/pdf/1301.3781.pdf

Train by gradient
descent
• At the end, each word

integer can be replaced by a
fixed-length continuous
vector

https://arxiv.org/pdf/1301.3781.pdf

Word vectors predict word
relationships

Word2Vec predicted relationship examples

E.g., Paris – France + Italy = Rome

Word2Vec demos

https://turbomaze.github.io/word2vecjson (fastest)

https://www.cs.cmu.edu/~dst/WordEmbeddingDemo/ (best)

https://remykarem.github.io/word2vec-demo/ (training)

https://turbomaze.github.io/word2vecjson
https://www.cs.cmu.edu/%7Edst/WordEmbeddingDemo/
https://remykarem.github.io/word2vec-demo/
https://remykarem.github.io/word2vec-demo/
https://remykarem.github.io/word2vec-demo/

Q1-Q3

https://tinyurl.com/441AML-L18

https://tinyurl.com/441AML-L18
https://tinyurl.com/441AML-L18
https://tinyurl.com/441AML-L18

A new type of data processing

• Linear: output is sum of weights times features

• Convolution: output at each position is sum of weights times
features within a sliding window

• Attention: average of values, weighted by key-query similarity

Attention
<key k, value v>: a data pair, in which key is used for matching
and value is used to output
<query q>: used to match keys and accumulate values

𝑜𝑜𝑜𝑜𝑜𝑜(𝑞𝑞) = �
𝑖𝑖

𝑠𝑠 𝑘𝑘𝑖𝑖 , 𝑞𝑞 𝑣𝑣𝑖𝑖 / �
𝑖𝑖

𝑠𝑠 𝑘𝑘𝑖𝑖 , 𝑞𝑞

Similarity of ith key and query ith value Make similarities sum to 1

Attention simple example

𝑜𝑜𝑜𝑜𝑜𝑜(𝑞𝑞) = �
𝑖𝑖

𝑠𝑠 𝑘𝑘𝑖𝑖 , 𝑞𝑞 𝑣𝑣𝑖𝑖 / �
𝑖𝑖

𝑠𝑠 𝑘𝑘𝑖𝑖 , 𝑞𝑞

𝑆𝑆 𝑘𝑘, 𝑞𝑞 = 1
𝑘𝑘−𝑞𝑞 2+1

<key, value> pairs: < 1,1 >, < 7,−1 >, < 5,−1 >

query: 4

𝑜𝑜𝑜𝑜𝑜𝑜 =
1
10 1 + 1

10 −1 +12 −1
1
10+

1
10+

1
2

= −0.71
query = 0

𝑜𝑜𝑜𝑜𝑜𝑜 =
1
2 1 + 1

50 −1 + 1
26 −1

1
2+

1
50+

1
26

= 0.79

Cross-Attention: each input token acquires the values of the
cross-attended tokens, weighted by key-query similarity

𝑥𝑥0 𝑥𝑥2𝑥𝑥1

𝑦𝑦0

𝑦𝑦1

Compute query per token (multiply by Q)

𝑥𝑥0𝑊𝑊𝑞𝑞 𝑥𝑥1𝑊𝑊𝑞𝑞 𝑥𝑥2𝑊𝑊𝑞𝑞

𝑦𝑦0𝑊𝑊𝑘𝑘, 𝑦𝑦0𝑊𝑊𝑣𝑣

Com
pute key, value per token (m

ultiply by K, V)

𝑦𝑦1𝑊𝑊𝑘𝑘, 𝑦𝑦1𝑊𝑊𝑣𝑣

�𝑥𝑥0 =
∑𝑗𝑗 𝑦𝑦𝑗𝑗𝑊𝑊𝑣𝑣 exp 𝑦𝑦𝑗𝑗𝑊𝑊𝑘𝑘

𝑇𝑇 𝑥𝑥0𝑊𝑊𝑞𝑞 /√𝑑𝑑

∑𝑗𝑗 exp 𝑦𝑦𝑗𝑗𝑊𝑊𝑘𝑘
𝑇𝑇 𝑥𝑥0𝑊𝑊𝑞𝑞 /√𝑑𝑑

Attention 𝑄𝑄,𝐾𝐾,𝑉𝑉 = softmax
𝑄𝑄𝐾𝐾𝑇𝑇

𝑑𝑑
𝑉𝑉

�𝑥𝑥0 �𝑥𝑥1 �𝑥𝑥2

Cross-Attention: each input token acquires the values of the
cross-attended tokens, weighted by key-query similarity

𝑥𝑥0 𝑥𝑥2𝑥𝑥1

𝑦𝑦0

𝑦𝑦1

Compute query per token (multiply by Q)

𝑥𝑥0𝑊𝑊𝑞𝑞 𝑥𝑥1𝑊𝑊𝑞𝑞 𝑥𝑥2𝑊𝑊𝑞𝑞

𝑦𝑦0𝑊𝑊𝑘𝑘, 𝑦𝑦0𝑊𝑊𝑣𝑣

Com
pute key, value per token (m

ultiply by K, V)

𝑦𝑦1𝑊𝑊𝑘𝑘, 𝑦𝑦1𝑊𝑊𝑣𝑣

�𝑥𝑥0 =
∑𝑗𝑗 𝑦𝑦𝑗𝑗𝑊𝑊𝑣𝑣 exp 𝑦𝑦𝑗𝑗𝑊𝑊𝑘𝑘

𝑇𝑇 𝑥𝑥0𝑊𝑊𝑞𝑞 /√𝑑𝑑

∑𝑗𝑗 exp 𝑦𝑦𝑗𝑗𝑊𝑊𝑘𝑘
𝑇𝑇 𝑥𝑥0𝑊𝑊𝑞𝑞 /√𝑑𝑑

1 × 𝑑𝑑
𝑑𝑑 × 𝑑𝑑

1 × 𝑑𝑑

Attention 𝑄𝑄,𝐾𝐾,𝑉𝑉 = softmax
𝑄𝑄𝐾𝐾𝑇𝑇

𝑑𝑑
𝑉𝑉

�𝑥𝑥0 �𝑥𝑥1 �𝑥𝑥2

Linear projection by 𝑊𝑊𝑞𝑞

𝑑𝑑 × 𝑑𝑑

Cross-Attention: each input token acquires the values of the
cross-attended tokens, weighted by key-query similarity

𝑥𝑥0 𝑥𝑥2𝑥𝑥1

𝑦𝑦0

𝑦𝑦1

Compute query per token (multiply by Q)

𝑥𝑥0𝑊𝑊𝑞𝑞 𝑥𝑥1𝑊𝑊𝑞𝑞 𝑥𝑥2𝑊𝑊𝑞𝑞

𝑦𝑦0𝑊𝑊𝑘𝑘, 𝑦𝑦0𝑊𝑊𝑣𝑣

Com
pute key, value per token (m

ultiply by K, V)

𝑦𝑦1𝑊𝑊𝑘𝑘, 𝑦𝑦1𝑊𝑊𝑣𝑣

�𝑥𝑥0 =
∑𝑗𝑗 𝑦𝑦𝑗𝑗𝑊𝑊𝑣𝑣 exp 𝑦𝑦𝑗𝑗𝑊𝑊𝑘𝑘

𝑇𝑇 𝑥𝑥0𝑊𝑊𝑞𝑞 /√𝑑𝑑

∑𝑗𝑗 exp 𝑦𝑦𝑗𝑗𝑊𝑊𝑘𝑘
𝑇𝑇 𝑥𝑥0𝑊𝑊𝑞𝑞 /√𝑑𝑑

1 × 𝑑𝑑
𝑑𝑑 × 𝑑𝑑 Attention 𝑄𝑄,𝐾𝐾,𝑉𝑉 = softmax

𝑄𝑄𝐾𝐾𝑇𝑇

𝑑𝑑
𝑉𝑉

�𝑥𝑥0 �𝑥𝑥1 �𝑥𝑥2

Linear projection by 𝑊𝑊𝑘𝑘 ,𝑊𝑊𝑣𝑣

Cross-Attention: each input token acquires the values of the
cross-attended tokens, weighted by key-query similarity

𝑥𝑥0 𝑥𝑥2𝑥𝑥1

𝑦𝑦0

𝑦𝑦1

Compute query per token (multiply by Q)

𝑥𝑥0𝑊𝑊𝑞𝑞 𝑥𝑥1𝑊𝑊𝑞𝑞 𝑥𝑥2𝑊𝑊𝑞𝑞

𝑦𝑦0𝑊𝑊𝑘𝑘, 𝑦𝑦0𝑊𝑊𝑣𝑣

Com
pute key, value per token (m

ultiply by K, V)

𝑦𝑦1𝑊𝑊𝑘𝑘, 𝑦𝑦1𝑊𝑊𝑣𝑣

�𝑥𝑥0 =
∑𝑗𝑗 𝑦𝑦𝑗𝑗𝑊𝑊𝑣𝑣 exp 𝑦𝑦𝑗𝑗𝑊𝑊𝑘𝑘

𝑇𝑇 𝑥𝑥0𝑊𝑊𝑞𝑞 /√𝑑𝑑

∑𝑗𝑗 exp 𝑦𝑦𝑗𝑗𝑊𝑊𝑘𝑘
𝑇𝑇 𝑥𝑥0𝑊𝑊𝑞𝑞 /√𝑑𝑑

Attention 𝑄𝑄,𝐾𝐾,𝑉𝑉 = softmax
𝑄𝑄𝐾𝐾𝑇𝑇

𝑑𝑑
𝑉𝑉

�𝑥𝑥0 �𝑥𝑥1 �𝑥𝑥2

Expressed in matrix
form where 𝑄𝑄 ∈ ℝ3×𝑑𝑑,
𝐾𝐾 ∈ ℝ2×𝑑𝑑, 𝑉𝑉 ∈ ℝ2×𝑑𝑑
are stacked projected
vectors

Self-Attention: each input token acquires the values of the input
tokens, weighted by key-query similarity

𝑥𝑥0 𝑥𝑥2𝑥𝑥1

Compute query/key/value per token (multiply by Q, K, V)

𝑥𝑥0𝑊𝑊𝑞𝑞, 𝑥𝑥0𝑊𝑊𝑘𝑘 , 𝑥𝑥0𝑊𝑊𝑣𝑣

�𝑥𝑥0 =
∑𝑗𝑗 𝑥𝑥𝑗𝑗𝑊𝑊𝑣𝑣 exp 𝑥𝑥𝑗𝑗𝑊𝑊𝑘𝑘

𝑇𝑇 𝑥𝑥0𝑊𝑊𝑞𝑞 /√𝑑𝑑

∑𝑗𝑗 exp 𝑥𝑥𝑗𝑗𝑊𝑊𝑘𝑘
𝑇𝑇 𝑥𝑥0𝑊𝑊𝑞𝑞 /√𝑑𝑑

Attention 𝑄𝑄,𝐾𝐾,𝑉𝑉 = softmax
𝑄𝑄𝐾𝐾𝑇𝑇

𝑑𝑑
𝑉𝑉

�𝑥𝑥0 �𝑥𝑥1 �𝑥𝑥2

Only difference is that
each input token attends
to all the input tokens,
instead of a separate pool
of cross-attention tokens

Attention
• Cross-Attention: query tokens are separate

from <key, value> tokens
– Performs instance-based regression

• Self-Attention: query tokens are the same
as the key and value tokens
– Performs soft clustering/aggregation
– Adding multi-dimensional vectors can overlay

multiple types of information, not just blend or
replace

• Attention is extremely powerful and
general when combined with learned
similarity and MLPs

Transformer (Vaswani et al. 2017)
• Define similarity via linear projection with softmax

𝑆𝑆 𝑘𝑘𝑖𝑖 , 𝑞𝑞 = exp(𝑘𝑘𝑖𝑖 ⋅ 𝑞𝑞)

Attention is all you need

Normalize by sqrt of dimensionality of keys

https://arxiv.org/abs/1706.03762

Transformer (Vaswani et al. 2017)
• One or more similarity functions

can be learned with linear layers
– If there are h similarities and D

dimensions to input, each parallel
linear layer outputs D/h values

Attention is all you need

https://arxiv.org/abs/1706.03762

Transformers: general data processors
● Input tokens can represent anything: image

patches, text tokens, audio, controls, etc.

● Invariant to order of tokens: add positional
embedding to distinguish pos/type of input

● Transformer block:
○ Apply multi-head attention
○ Apply 2-layer MLP with ReLU to each token separately
○ Residual and layer norm (over all tokens) after each

● Can stack any number of transformer blocks

36
Attention is all you need

https://arxiv.org/abs/1706.03762

Positional encodings

● Transformer processing does not
depend on position of token
○ But to compare between tokens, relative

position may be important

● Sinusoidal encoding (on right) is such
that a dot product between encodings
corresponds to positional similarity

● Learned or even fixed random
encodings also work similarly in practice

Transformer: alternates data processing (self-attention)
and memory injection (MLP)

Multi-head Attention

Q, K, V projection

…

Input tokens

O projection
⊕

⊕

Layer norm

Attention: skills,
algorithms on
inputs [2]

MLP: concepts,
external memory
lookup (up) and
output distribution
(down) [1]

MLP-up

MLP-down

Concept activation

[1] Geva, Mor, et al. "Transformer Feed-Forward Layers Are Key-Value Memories." Proceedings
of the 2021 Conference on Empirical Methods in Natural Language Processing. 2021.
[2] Olsson, Catherine, et al. "In-context learning and induction heads." arXiv:2209.11895 (2022).

Transformer-based Model

Preparing inputs
1. Text is converted into subword tokens (integer ids)
2. Subword integers are mapped to learned vectors (embedding)
3. Positional embedding is added to the vectors, providing

ordering information

Inference
4. Inputs go through 12 transformer blocks

a. Self-attention (organize inputs)
b. MLP (retrieve and output memory)
c. Interleaved layer norms and skip connections

Output
5. Predict the next word (classes are subword ids)
6. Perform a classification task

GPT-1 Model
Radford et al. 2018

Q4

https://tinyurl.com/441AML-L18

https://tinyurl.com/441AML-L18
https://tinyurl.com/441AML-L18
https://tinyurl.com/441AML-L18

Things to remember
Sub-word tokenization based on byte-pair
encoding is an effective way to turn natural
text into a sequence of integers

Attention is a general processing
mechanism that regresses or aggregates
values

Learned vector embeddings of these
integers model the relationships between
words

Stacked transformer blocks are a powerful
network architecture that alternates
attention and MLPs

Paris – France
+ Italy = Rome

Chair is broken 
ch##, ##air, is, brok##, ##en

Further reading: http://nlp.seas.harvard.edu/annotated-transformer/

http://nlp.seas.harvard.edu/annotated-transformer/
http://nlp.seas.harvard.edu/annotated-transformer/
http://nlp.seas.harvard.edu/annotated-transformer/

Next class: Transformers in Language and Vision
• BERT
• ViT
• Unified-IO

• WordPiece tokens (integers) are
mapped to learned 512-d vectors

• Positional encoding added to each
vector

• N=6 transformer blocks applied to
input

• Until <EOS> is output:
– Process input + output so far
– Output most likely word (after more

attention blocks and linear model)

Attention is all you need

Language Transformer: Complete Architecture

Self-
Attention

Cross-
Attention

Self-Attention
(each token
attends to
earlier output
tokens)

https://arxiv.org/abs/1706.03762

• English-German
– 4.5M sentence pairs
– 37K tokens

• English-French
– 36M sentences
– 32K tokens

• Base models trained on 8 P100s for 12
hours

• Big models (2x token dim, 3x training steps)
trained for 3.5 days

• Adam optimizer: learning rate ramps up for
4K iterations, then down

• Regularization: drop-out, L2 weight, label
smoothing

Attention is all you need

Application to Translation

Self-
Attention

Cross-
Attention

Self-
Attention

https://arxiv.org/abs/1706.03762

Results

	Word Representations and Transformers
	Reminder: Exam 2 next Thurs-Sun (Nov 6-9)
	Today’s Lecture
	Each pixel means little, but images can be interpreted by grouping and recognizing patterns in groups of groups of groups of pixels
	CNNs iteratively process �pixels->edges/colors->textures->sub-parts->parts->objects/scenes
	But in text, the meaning is already in the words… right?
	What does this mean?
	Which of these is more similar?
	Which of these is more similar?
	Slide Number 10
	To analyze text, need to convert text to tokens
	Word  Integer
	Character  Integer
	Subword  Integer
	Slide Number 15
	Subword Tokenizers: Byte Pair Encoding
	WordPiece Tokenizer (Sennrich et al., Wu et al. 2016)
	Try it
	How can we better encode word similarity?
	Word2Vec (Mikolov et al. 2013)
	Word vectors predict word relationships
	Word2Vec predicted relationship examples
	Word2Vec demos
	Q1-Q3
	A new type of data processing
	Attention
	Attention simple example
	Cross-Attention: each input token acquires the values of the cross-attended tokens, weighted by key-query similarity
	Cross-Attention: each input token acquires the values of the cross-attended tokens, weighted by key-query similarity
	Cross-Attention: each input token acquires the values of the cross-attended tokens, weighted by key-query similarity
	Cross-Attention: each input token acquires the values of the cross-attended tokens, weighted by key-query similarity
	Self-Attention: each input token acquires the values of the input tokens, weighted by key-query similarity
	Attention
	Transformer (Vaswani et al. 2017)
	Transformer (Vaswani et al. 2017)
	Transformers: general data processors
	Positional encodings
	Transformer: alternates data processing (self-attention) and memory injection (MLP)
	Transformer-based Model
	Q4
	Things to remember
	Next class: Transformers in Language and Vision
	Slide Number 43
	Language Transformer: Complete Architecture
	Slide Number 45
	Slide Number 46
	Application to Translation
	Results

