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Reminder: Exam 2 next Thurs-Sun (Nov 6-9)



Today’s Lecture

* Representing natural language text as integers
— Byte pair encoding
— WordPiece

* Representing text tokens with continuous vectors
— Word2Vec

* Attention and Transformers
— “Attention is all you need” transformers



Each pixel means little, but images can be interpreted by grouping and
recognizing patterns in groups of groups of groups of pixels

https://www.istockphoto.com/photos/funny-animal



CNNs iteratively process
pixels->edges/colors->textures->sub-parts->parts->objects/scenes
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But in text, the meaning is already in the words... right?



What does this mean?

Usiadlem na kaktusie



Which of these is more similar?

The chair says the
department is

He sat on the broke.
chair, and it broke.

After his sitting,
the seat is broken.



Which of these is more similar?

The chair says the
department is

He sat on the broke.
chair, and it broke.

After his sitting,
the seat is broken.



 Same word (character
sequence) may mean
different things

 Different words may
mean similar things

 Word meaning depends
on associations and
surrounding words

He sat on the
chair, and it broke.

The chair says
the department is
broke.

After sitting, the
seat Is broken.



To analyze text, need to convert text to tokens

“Token”: an integer or vector that represents
a data element, a unit of processing

* With integer tokens, the values are not
continuous (e.g. 5 is no closer to 10 than 5000)

* With vector tokens, similarity/distance (typically
L2, dot product or cosine) is meaningful



Word =2 Integer

* Each unique space-delimited
character string is assigned to a
different integer

To limit vocabulary size, assign only
the most frequent words to integers

Others are <unk> (unknown)

* Pros and cons

Simple
Possible to compare/retrieve
documents based on count of tokens

Many words map to unknown (e.g.
1298, Bart’s, Area-52, anachronism,

)

Large vocabulary needed

Does not model similarity of related
words like broke/broken

He sat on the
chair, and it broke.

The chair says
the department is
broke.

After sitting, the
seat Is broken.



Character =2 Integer

* Each character is assigned to a
unigue integer

* Pros and cons
— Simple

— Every document within
alphabet can be fully modeled

— Small vocabulary (< 100 integers
needed for English)

— Sometimes, similar words will
have similar sequences

(broke/n)

— Count of tokens is not
meaningful

— Character sequences are long



Subword = Integer

e Common sequences of
characters are assigned to
unigue integers

* Pros and cons

— Every document within
alphabet can be fully modeled

— Vocabulary size is flexible (e.g.
30K for BERT, 50K for GPT-3)

— Sometimes, similar words will

have similar sequences
(broke/n)

— Need to solve for good subword
tokenization



Character Subword Word

“Chair is broken” c,h air, ... chit#, #tair, is, brok##, ##en chair, is, broken
Vocabulary Size 256 4K-50K > 30K
Completeness Perfect Perfect Incomplete
Independent Bad OK Good

Meaningfulness

Medium

(e.g., 1.4 tokens per word) A little shorter

Sequence Length Long



Subword Tokenizers: Byte Pair Encoding

1. Start with each character assigned to a unique token

2. Iteratively assign a new token to the most common pair of
consecutive tokens, until max_tokens is reached

Initial array of 4 characters aaabdaaabac

Replace aa by Z ZabdZabac
Z=aa

ZzYdZYac
Replace ab by Y Y=ab

Z=aa

XZd =2 Z2Y7Zd = aaabaad

XdXac

X=7Y
Replace ZY by X veb

Z=aa

Example from Wikipedia


https://en.wikipedia.org/wiki/Byte_pair_encoding

WordPiece Tokenizer (Sennrich et al., Wu et al. 2016)

Word: Jet makers feud over seat width with big orders at stake
« wordpieces: Jet makers feud over seat width with big orders at stake

Algorithm 1 Learn BPE operations

import re, collections

def get_stats(vocab):
pairs = collections.defaultdict (int)
for word, freq in vocab.items():
symbols = word.split ()
for i in range(len(symbols)-1) :

roturn paire o SRelSlial e fred For each merge:
cet mexge yocab pase, v in) 1. Count token pair frequencies in dataset
S LT L e 2. Select most frequent pair
fo;ﬁziid:l;.zag?i‘.join(pair), word) 3- Merge that “best” palr
v_out [w_out] = v_in[word] . .
a. Assign best pair to new token
e T e e e I e b. Replace all instances of best pair in dataset with that token

num _merges = 10

for i in range (num merges) :
pairs = get stats(vocab)
best = max(pairs, key=pairs.get)
vocab = merge vocab(best, vocab)
print (best)
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o BPE e https://arxiv.org/abs/1508.07909
fonary {low-. Jowest". mewer', wider' https://arxiv.ora/pdf/1609.08144.pdf



https://arxiv.org/abs/1508.07909
https://arxiv.org/pdf/1609.08144.pdf

Try |t For each merge:

1. Count token pair frequencies in
dataset
2. Select most frequent pair
3. Merge that “best” pair
a. Assign best pair to new
token
b. Replace all instances of
best pair in dataset with that
token

Do first two merges of:

Your cat cannot do the can-can, can he?

_Your cat cannot do the can-can, can he?

_Your Xt Xnnot do
_Your Xt Znot do

~the Xn-Xn, Xn he?
the 7-7, 2z, he?



How can we better encode word similarity?

* Different words are related to each other
* Encode “meaning” in a continuous vector

e Learn these vectors based on surrounding words



Word2Vec (Mikolov et al. 2013)

For each word, solve for a continuous vector representation:
« CBOW: predict center word as average of surrounding words (after projecting each word to a vector)

» Skip-Gram: each word (after projecting to a vector) predicts each surrounding word with a linear
model

INPUT PROJECTION OUTPUT INPUT PROJECTION  QUTPUT

w(t-2)

w(2) Train by gradient
descent

-1
SUM / e At the end, each word
\\\

w(t-1)

integer can be replaced by a
fixed-length continuous
vector

w(t+1) w(t+1)

N

w(t+2) w(t+2)

CBOW Skip-gram
https://arxiv.orq/pdf/1301.3781.pdf



https://arxiv.org/pdf/1301.3781.pdf

Word vectors predict word

relationships

Table 6: Comparison of models trained using the DistBelief distributed framework. Note that

Table 1: Examples of five types of semantic and nine types of syntactic questions in the Semantic-
Syntactic Word Relationship test set.

Type of relationship

Word Pair 1

Word Pair 2

Common capital city Athens Greece Oslo Norway
All capital cities Astana Kazakhstan Harare Zimbabwe
Currency Angola kwanza [ran rial
City-in-state Chicago [llinois Stockton California
Man-Woman brother sister grandson | granddaughter
Adjective to adverb apparent apparently rapid rapidly
Opposite possibly impossibly ethical unethical
Comparative great greater tough tougher
Superlative easy easiest lucky luckiest
Present Participle think thinking read reading
Nationality adjective | Switzerland Swiss Cambodia Cambodian
Past tense walking walked swimming swam
Plural nouns mouse mice dollar dollars
Plural verbs work works speak speaks

training of NNLM with 1000-dimensional vectors would take too long to complete.

Model Vector Training Accuracy [%] Training time
Dimensionality words |days x CPU cores]|
Semantic | Syntactic | Total
NNLM 100 6B 34.2 64.5 50.8 14 x 180
CBOW 1000 6B 57.3 68.9 63.7 2x 140
Skip-gram 1000 6B 66.1 65.1 65.6 25x 125




Word2Vec predicted relationship examples

Table 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skip-
gram model trained on 783M words with 300 dimensionality).

Relationship Example 1 Example 2 Example 3
France - Paris [taly: Rome Japan: Tokyo Florida: Tallahassee
big - bigger small: larger cold: colder quick: quicker
Miami - Florida Baltimore: Maryland Dallas: Texas Kona: Hawan
Einstein - scientist Messi: midfielder Mozart: violinist Picasso: painter
Sarkozy - France Berlusconi: Italy Merkel: Germany Koizumi: Japan
copper - Cu zinc: Zn gold: Au uranium: plutonium
Berlusconi - Silvio Sarkozy: Nicolas Putin: Medvedev Obama: Barack
Microsoft - Windows Google: Android [IBM: Linux Apple: iPhone
Microsoft - Ballmer Google: Yahoo [IBM: McNealy Apple: Jobs
Japan - sushi Germany: bratwurst France: tapas USA: pizza

E.g., Paris — France + Italy = Rome



Word2Vec demos

https://turbomaze.qithub.io/word2vecijson (fastest)

https://www.cs.cmu.edu/~dst/WordEmbeddingDemo/ (best)

https://remykarem.github.io/word2vec-demo/ (training)



https://turbomaze.github.io/word2vecjson
https://www.cs.cmu.edu/%7Edst/WordEmbeddingDemo/
https://remykarem.github.io/word2vec-demo/
https://remykarem.github.io/word2vec-demo/
https://remykarem.github.io/word2vec-demo/

Q1-Q3
https://tinyurl.com/441AML-L18



https://tinyurl.com/441AML-L18
https://tinyurl.com/441AML-L18
https://tinyurl.com/441AML-L18

A new type of data processing

* Linear: output is sum of weights times features

* Convolution: output at each position is sum of weights times
features within a sliding window

* Attention: average of values, weighted by key-query similarity



Attention

<key k, value v>: a data pair, in which key is used for matching
and value is used to output

<query g>: used to match keys and accumulate values

out(q) = zs(ki,q)vi / zS(ki»CI)

N

Similarity of ith key and query ith value Make similarities sum to 1




Attention simple example

out(q) = zs(ki,q)vi / zS(ki»CI)

L1 L

1
(k—q)%+1

S(k,q) =

<key, value> pairs: < 1,1 >,<7,-1 >,<5,—-1>

query: 4

=0
= (D+—(-1)+>(-1) - L)+ (=) +(=1)
out = = T = —0.71 out = 2 510 ——=20 = 0.79
E+E+E —4—F—



Cross-Attention: each input token acquires the values of the
cross-attended tokens, weighted by key-query similarity
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Cross-Attention: each input token acquires the values of the
cross-attended tokens, weighted by key-query similarity

4 Linear projection by W,



Cross-Attention: each input token acquires the values of the
cross-attended tokens, weighted by key-query similarity
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Cross-Attention: each input token acquires the values of the
cross-attended tokens, weighted by key-query similarity

i Expressed in matrix
i form where Q € R3*,
: K € RZXd, /= IRZXCI
I are stacked projected
| vectors
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Self-Attention: each input token acquires the values of the input
tokens, weighted by key-query similarity

Only difference is that i
each input token attends i
to all the input tokens, i
instead of a separate pool i
of cross-attention tokens i




Attention

* Cross-Attention: query tokens are separate
from <key, value> tokens

— Performs instance-based regression

e Self-Attention: query tokens are the same
as the key and value tokens
— Performs soft clustering/aggregation

— Adding multi-dimensional vectors can overlay
multiple types of information, not just blend or
replace

* Attention is extremely powerful and
general when combined with learned
similarity and MLPs



Transformer (Vaswani et al. 2017)

* Define similarity via linear projection with softmax
S(ki,q) = exp(k; - q)

Scaled Dot-Product Attention

t
MatMul
SoftMax
: -1 QK" i
Attention(Q, K, V') = softmax( ~ )V Mask (opt)
A\ i
/ Scale
Normalize by sqrt of dimensionality of keys MatMul
tf
Q KV

Attention is all you need



https://arxiv.org/abs/1706.03762

Transformer (Vaswani et al. 2017)

* One or more similarity functions

can be learned with linear layers Multi-Head Attention
T |
— If there are h similarities and D inear
dimensions to input, each parallel ——
linear layer outputs D/h values T
Scaled Dot-Product JA "
Attention -
1! t [
iHead((Q. K. V) = Conca sady . ..., heady, YW© L L -
MultiHead(Q, K. V') = Concat(head; hea 1}1}11 , — J r— Ll = J
where head; = Attention(QWS. KWK viwY) ,r r T
Where the projections are parameter matrices I'I—"Z.Q € Rifmoar>di K Ridmosaxdic T7V  Rmoserxdo \/ K Q

and WO g RMdv X dmoger

Attention is all you need



https://arxiv.org/abs/1706.03762

Transformers: general data processors

o Input tokens can represent anything: image

4 Y

|
patches, text tokens, audio, controls, etc. Add & Norm J
Feed
Fori?ard
'y
e Invariant to order of tokens: add positional
. . : : N Add & Norm )
embedding to distinguish pos/type of input ————
Attention
1
o Transformer block: N\ /
> Apply multi-head attention EEF'E';TA;' @—(ﬁ
o Apply 2-layer MLP with ReLU to each token separately input
- Residual and layer norm (over all tokens) after each Embeiddmg
Inpuls

e Can stack any number of transformer blocks

Attention is all you need



https://arxiv.org/abs/1706.03762

Positional encodings

o Transformer processing does not

depend on position of token

o But to compare between tokens, relative
position may be important

o Sinusoidal encoding (on right) is such
that a dot product between encodings
corresponds to positional similarity

o Learned or even fixed random
encodings also work similarly in practice

PE (pos.2i) = sin(pos/10000%"/ dmser)
PE(pos 2i41) = cos(pos/10000%/ dms)

Positional
Encoding

Input
Embedding

I

Inpuls




Transformer: alternates data processing (self-attention)
and memory injection (MLP)

MLP-down

MLP-up

o
T

Concept activation

T Layer norm

QP *

T O projection

Multi-head Attention

T Q, K, V projection

JO000ad -0~

Input tokens

MLP: concepts,
external memory
lookup (up) and
output distribution
(down) [1]

Attention: skills,
algorithms on
iInputs [2]

[1] Geva, Mor, et al. "Transformer Feed-Forward Layers Are Key-Value Memories." Proceedings
of the 2021 Conference on Empirical Methods in Natural Language Processing. 2021.
[2] Olsson, Catherine, et al. "In-context learning and induction heads." arXiv:2209.11895 (2022).



Transformer-based Model

Preparing inputs
1. Text is converted into subword tokens (integer ids)
2. Subword integers are mapped to learned vectors (embedding)

3. Positional embedding is added to the vectors, providing
ordering information

Inference

4. Inputs go through 12 transformer blocks
a. Self-attention (organize inputs)
b. MLP (retrieve and output memory)
c. Interleaved layer norms and skip connections

Output
5. Predict the next word (classes are subword ids)
6. Perform a classification task

Text Task
Prediction | Classifier

N

!

Layer Norm

-

Feed Forward
A

12x —

Layer Norm

o

Masked Multi

Self Attention
A

Text & Position Embed

GPT-1 Model
Radford et al. 2018



Q4

https://tinyurl.com/441AML-L18



https://tinyurl.com/441AML-L18
https://tinyurl.com/441AML-L18
https://tinyurl.com/441AML-L18

Things to remember

Sub-w_ord_tokenlzathn based on byte-pair Chair is broken
encoding is an effective way to turn natural  chus sair is, broki#, ##en
text into a sequence of integers

Learned vector embeddings of these Paris — France
integers model the relationships between + Italy = Rome
words

Scaled Dot-Product Attention

Attention is a general processing
mechanism that regresses or aggregates
values

(~Camem)
Feed
Stacked transformer blocks are a powerful oo
network architecture that alternates v |~
attention and MLPs i
L

% /

Further reading: http://nlp.seas.harvard.edu/annotated-transformer/



http://nlp.seas.harvard.edu/annotated-transformer/
http://nlp.seas.harvard.edu/annotated-transformer/
http://nlp.seas.harvard.edu/annotated-transformer/

Next class: Transformers in Language and Vision
* BERT

* ViT

e Unified-1O






Language Transformer: Complete Architecture

Qutput

Probabilities
: : t
* WordPiece tokens (integers) are (e )
mapped to learned 512-d vectors S
- . ,[ Add & Norm ].._\'”
* Positional encoding added to each ==
Forward
vector I 1;..1*_\
. 4 I — B Add &INDrm Cross-
* N=6 transformer blocks applied to Sa=u | yronsal I | i
|nput Fon:":fard T 1 ) N x
| (Add & Norm Je~
. . . N> | orm | X elf-Attention
* Until <EOS> is output: or. ([ [y | [ ] |[Seones
. ention Attention ttention attends to
— Process input + output so far e | | careroutpu
— Output most likely word (after more posiionn b ah 1 -
attention blocks and linear model) Soodn 2t Off;® Encoding
Embdeing Embegding
I T

Inputs Cutputs
Attention is all you need (shifted right)



https://arxiv.org/abs/1706.03762

Attention Visualizations
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Figure 3: An example of the attention mechanism following long-distance dependencies in the
encoder self-attention in layer 5 of 6. Many of the attention heads attend to a distant dependency of
the verb ‘making’, completing the phrase ‘making...more difficult’. Attentions here shown only for
the word ‘making’. Different colors represent different heads. Best viewed in color.
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Figure 5: Many of the attention heads exhibit behaviour that seems related to the structure of the

Figure 4: Two attention heads, also in layer 5 of 6, apparently involved in anaphora resolution. Top:

sentence. We give two such examples above, from two different heads from the encoder self-attention

at layer 5 of 6. The heads clearly learned to perform different tasks.

Full attentions for head 5. Bottom: Isolated attentions from just the word ‘its’ for attention heads 5

and 6. Note that the attentions are very sharp for this word.



Application to Translation

* English-German
— 4.5M sentence pairs
— 37K tokens
* English-French
— 36M sentences
— 32K tokens

e Base models trained on 8 P100s for 12
hours

* Big models (2x token dim, 3x training steps)
trained for 3.5 days

 Adam optimizer: learning rate ramps up for
4K iterations, then down

* Regularization: drop-out, L2 weight, label
smoothing

Attention is all you need

Cutput

Probabilities
t
|  Softmax |
t
| Linear )
4 B
[ Add & Norm Je=
Feed
Forward
s I ~ | Add & Norm Je= i
~—("Add & Norm ) = Cross-
I Multi-Head Attention
Feed Attention
Forward J) J) J) N
—l
N | Add & Norm Je
~—>{ Add & Norm ] N Tacked Self-
Self- Multi-Head Multi-Head Attention
Attention Attention Attention
* 3 ’ t 3 }

— J o v,
Positional ®_@ Positional
Encoding . Encoding

Input Output
Embedding Embedding
Inputs Outputs

(shifted right)


https://arxiv.org/abs/1706.03762

Results

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Mod BLEU Training Cost (FLOPs)
odel EN-DE EN-FR EN-DE  EN-FR

ByteNet [18] 23.75

Deep-Att + PosUnk [39] 39.2 1.0 - 102
GNMT + RL [38] 24.6 39.92 2.3-10  1.4-102°
ConvS2S [9] 25.16 40.46 0.6-10%  1.5.102°
MokE [32] 26.03 40.56 2.0-107  1.2-10%Y
Deep-Att + PosUnk Ensemble [39] 40.4 8.0-10%
GNMT + RL Ensemble [38] 26.30 41.16 1.8-10%  1.1-102t
ConvS2S Ensemble [9] 26.36 41.29 7.7-1017  1.2.10%
Transformer (base model) 27.3 38.1 3.3.10'8

Transformer (big) 28.4 41.8 23.1019
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