Word
Representations

and
Transformers

Applied Machine Learning
Derek Hoiem

Reminder: Exam 2 next Thurs-Sun (Nov 6-9)

Today’s Lecture

* Representing natural language text as integers
— Byte pair encoding
— WordPiece

* Representing text tokens with continuous vectors
— Word2Vec

* Attention and Transformers
— “Attention is all you need” transformers

Each pixel means little, but images can be interpreted by grouping and
recognizing patterns in groups of groups of groups of pixels

https://www.istockphoto.com/photos/funny-animal

CNNs iteratively process
pixels->edges/colors->textures->sub-parts->parts->objects/scenes

EN _
1 --. 3[- 4 j'.\ : “_:: T, y
g 192 192 128 2048 \ / zoas \dense
48
57 128
5 -
) 13 13 \ 13
- j '.' 5] 1\'\._?_
224 5-1------.‘.;::5,-.- 3,'; = LA 3[et e . A .
: 13 S : g 2 "
: — o\ 3| U 13 dense | |dense
3 | N 1600
192 192 128 Max
Max 158 Max pooling 2948 2048
pooling pooling

Examples
of strongly
activating
regions

But in text, the meaning is already in the words... right?

What does this mean?

Usiadlem na kaktusie

Which of these is more similar?

The chair says the
department is

He sat on the broke.
chair, and it broke.

After his sitting,
the seat is broken.

Which of these is more similar?

The chair says the
department is

He sat on the broke.
chair, and it broke.

After his sitting,
the seat is broken.

 Same word (character
sequence) may mean
different things

 Different words may
mean similar things

 Word meaning depends
on associations and
surrounding words

He sat on the
chair, and it broke.

The chair says
the department is
broke.

After sitting, the
seat Is broken.

To analyze text, need to convert text to tokens

“Token”: an integer or vector that represents
a data element, a unit of processing

* With integer tokens, the values are not
continuous (e.g. 5 is no closer to 10 than 5000)

* With vector tokens, similarity/distance (typically
L2, dot product or cosine) is meaningful

Word =2 Integer

* Each unique space-delimited
character string is assigned to a
different integer

To limit vocabulary size, assign only
the most frequent words to integers

Others are <unk> (unknown)

* Pros and cons

Simple
Possible to compare/retrieve
documents based on count of tokens

Many words map to unknown (e.g.
1298, Bart’s, Area-52, anachronism,

)

Large vocabulary needed

Does not model similarity of related
words like broke/broken

He sat on the
chair, and it broke.

The chair says
the department is
broke.

After sitting, the
seat Is broken.

Character =2 Integer

* Each character is assigned to a
unigue integer

* Pros and cons
— Simple

— Every document within
alphabet can be fully modeled

— Small vocabulary (< 100 integers
needed for English)

— Sometimes, similar words will
have similar sequences

(broke/n)

— Count of tokens is not
meaningful

— Character sequences are long

Subword = Integer

e Common sequences of
characters are assigned to
unigue integers

* Pros and cons

— Every document within
alphabet can be fully modeled

— Vocabulary size is flexible (e.g.
30K for BERT, 50K for GPT-3)

— Sometimes, similar words will

have similar sequences
(broke/n)

— Need to solve for good subword
tokenization

Character Subword Word

“Chair is broken” c,h air, ... chit#, #tair, is, brok##, ##en chair, is, broken
Vocabulary Size 256 4K-50K > 30K
Completeness Perfect Perfect Incomplete
Independent Bad OK Good

Meaningfulness

Medium

(e.g., 1.4 tokens per word) A little shorter

Sequence Length Long

Subword Tokenizers: Byte Pair Encoding

1. Start with each character assigned to a unique token

2. Iteratively assign a new token to the most common pair of
consecutive tokens, until max_tokens is reached

Initial array of 4 characters aaabdaaabac

Replace aa by Z ZabdZabac
Z=aa

ZzYdZYac
Replace ab by Y Y=ab

Z=aa

XZd =2 Z2Y7Zd = aaabaad

XdXac

X=7Y
Replace ZY by X veb

Z=aa

Example from Wikipedia

https://en.wikipedia.org/wiki/Byte_pair_encoding

WordPiece Tokenizer (Sennrich et al., Wu et al. 2016)

Word: Jet makers feud over seat width with big orders at stake
« wordpieces: Jet makers feud over seat width with big orders at stake

Algorithm 1 Learn BPE operations

import re, collections

def get_stats(vocab):
pairs = collections.defaultdict (int)
for word, freq in vocab.items():
symbols = word.split ()
for i in range(len(symbols)-1) :

roturn paire o SRelSlial e fred For each merge:
cet mexge yocab pase, v in) 1. Count token pair frequencies in dataset
S LT L e 2. Select most frequent pair
fo;ﬁziid:l;.zag?i‘.join(pair), word) 3- Merge that “best” palr
v_out [w_out] = v_in[word] . .
a. Assign best pair to new token
e T e e e I e b. Replace all instances of best pair in dataset with that token

num _merges = 10

for i in range (num merges) :
pairs = get stats(vocab)
best = max(pairs, key=pairs.get)
vocab = merge vocab(best, vocab)
print (best)

I
lo
low
er-

r .

lo
low
er-

Ll

o BPE e https://arxiv.org/abs/1508.07909
fonary {low-. Jowest". mewer', wider' https://arxiv.ora/pdf/1609.08144.pdf

https://arxiv.org/abs/1508.07909
https://arxiv.org/pdf/1609.08144.pdf

Try |t For each merge:

1. Count token pair frequencies in
dataset
2. Select most frequent pair
3. Merge that “best” pair
a. Assign best pair to new
token
b. Replace all instances of
best pair in dataset with that
token

Do first two merges of:

Your cat cannot do the can-can, can he?

_Your cat cannot do the can-can, can he?

_Your Xt Xnnot do
_Your Xt Znot do

~the Xn-Xn, Xn he?
the 7-7, 2z, he?

How can we better encode word similarity?

* Different words are related to each other
* Encode “meaning” in a continuous vector

e Learn these vectors based on surrounding words

Word2Vec (Mikolov et al. 2013)

For each word, solve for a continuous vector representation:
« CBOW: predict center word as average of surrounding words (after projecting each word to a vector)

» Skip-Gram: each word (after projecting to a vector) predicts each surrounding word with a linear
model

INPUT PROJECTION OUTPUT INPUT PROJECTION QUTPUT

w(t-2)

w(2) Train by gradient
descent

-1
SUM / e At the end, each word
\\\

w(t-1)

integer can be replaced by a
fixed-length continuous
vector

w(t+1) w(t+1)

N

w(t+2) w(t+2)

CBOW Skip-gram
https://arxiv.orq/pdf/1301.3781.pdf

https://arxiv.org/pdf/1301.3781.pdf

Word vectors predict word

relationships

Table 6: Comparison of models trained using the DistBelief distributed framework. Note that

Table 1: Examples of five types of semantic and nine types of syntactic questions in the Semantic-
Syntactic Word Relationship test set.

Type of relationship

Word Pair 1

Word Pair 2

Common capital city Athens Greece Oslo Norway
All capital cities Astana Kazakhstan Harare Zimbabwe
Currency Angola kwanza [ran rial
City-in-state Chicago [llinois Stockton California
Man-Woman brother sister grandson | granddaughter
Adjective to adverb apparent apparently rapid rapidly
Opposite possibly impossibly ethical unethical
Comparative great greater tough tougher
Superlative easy easiest lucky luckiest
Present Participle think thinking read reading
Nationality adjective | Switzerland Swiss Cambodia Cambodian
Past tense walking walked swimming swam
Plural nouns mouse mice dollar dollars
Plural verbs work works speak speaks

training of NNLM with 1000-dimensional vectors would take too long to complete.

Model Vector Training Accuracy [%] Training time
Dimensionality words |days x CPU cores]|
Semantic | Syntactic | Total
NNLM 100 6B 34.2 64.5 50.8 14 x 180
CBOW 1000 6B 57.3 68.9 63.7 2x 140
Skip-gram 1000 6B 66.1 65.1 65.6 25x 125

Word2Vec predicted relationship examples

Table 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skip-
gram model trained on 783M words with 300 dimensionality).

Relationship Example 1 Example 2 Example 3
France - Paris [taly: Rome Japan: Tokyo Florida: Tallahassee
big - bigger small: larger cold: colder quick: quicker
Miami - Florida Baltimore: Maryland Dallas: Texas Kona: Hawan
Einstein - scientist Messi: midfielder Mozart: violinist Picasso: painter
Sarkozy - France Berlusconi: Italy Merkel: Germany Koizumi: Japan
copper - Cu zinc: Zn gold: Au uranium: plutonium
Berlusconi - Silvio Sarkozy: Nicolas Putin: Medvedev Obama: Barack
Microsoft - Windows Google: Android [IBM: Linux Apple: iPhone
Microsoft - Ballmer Google: Yahoo [IBM: McNealy Apple: Jobs
Japan - sushi Germany: bratwurst France: tapas USA: pizza

E.g., Paris — France + Italy = Rome

Word2Vec demos

https://turbomaze.qithub.io/word2vecijson (fastest)

https://www.cs.cmu.edu/~dst/WordEmbeddingDemo/ (best)

https://remykarem.github.io/word2vec-demo/ (training)

https://turbomaze.github.io/word2vecjson
https://www.cs.cmu.edu/%7Edst/WordEmbeddingDemo/
https://remykarem.github.io/word2vec-demo/
https://remykarem.github.io/word2vec-demo/
https://remykarem.github.io/word2vec-demo/

Q1-Q3
https://tinyurl.com/441AML-L18

https://tinyurl.com/441AML-L18
https://tinyurl.com/441AML-L18
https://tinyurl.com/441AML-L18

A new type of data processing

* Linear: output is sum of weights times features

* Convolution: output at each position is sum of weights times
features within a sliding window

* Attention: average of values, weighted by key-query similarity

Attention

<key k, value v>: a data pair, in which key is used for matching
and value is used to output

<query g>: used to match keys and accumulate values

out(q) = zs(ki,q)vi / zS(ki»CI)

N

Similarity of ith key and query ith value Make similarities sum to 1

Attention simple example

out(q) = zs(ki,q)vi / zS(ki»CI)

L1 L

1
(k—q)%+1

S(k,q) =

<key, value> pairs: < 1,1 >,<7,-1 >,<5,—-1>

query: 4

=0
= (D+—(-1)+>(-1) - L)+ (=) +(=1)
out = = T = —0.71 out = 2 510 ——=20 = 0.79
E+E+E —4—F—

Cross-Attention: each input token acquires the values of the
cross-attended tokens, weighted by key-query similarity

)) ’_

Yo

30)exp | (3" (xoWg) Vel

1
|
1
|
E 1
: i
l
& 1
» YoWk, YOWv» i
E 1
|
E 1
|
1
|
1

Xo =
V1 VW, 31 W 2. €xp l(YjWk) (XOWq)/\/d]
@
xowq x1Wq xzm/q

" (A1 Aq Ajdiinw) uayoy Jad anjen ‘Aey sindwio)

Cross-Attention: each input token acquires the values of the
cross-attended tokens, weighted by key-query similarity

4 Linear projection by W,

Cross-Attention: each input token acquires the values of the
cross-attended tokens, weighted by key-query similarity

1Xd
dXd

Yo T
» YoWg, :VOVVD»

1 yiWk, yi W,

@

(/\ l>| AqA|d|1|nuJ)ua>|01Ja dan |e/\‘/\a>| alnd w o:)

Linear projection by W,, W, X0 X1 X2

Cross-Attention: each input token acquires the values of the
cross-attended tokens, weighted by key-query similarity

i Expressed in matrix
i form where Q € R3*,
: K € RZXd, /= IRZXCI
I are stacked projected
| vectors
i
1
i
1
i
i

)) ’_

Yo

_ 2;(yjWy)exp [(YJWR)T(xOWq)/‘/d]
. exp [(yWi) (xoWy)/ Vel

1 yiWk, yi W,

1
|
1
|
E 1
: i
l
& 1
» YoWk, YOWv» i
E 1
|
E 1
|
1
|
1

" (A1 Aq Ajdiinw) uayoy Jad anjen ‘Aey sindwio)

Self-Attention: each input token acquires the values of the input
tokens, weighted by key-query similarity

Only difference is that i
each input token attends i
to all the input tokens, i
instead of a separate pool i
of cross-attention tokens i

Attention

* Cross-Attention: query tokens are separate
from <key, value> tokens

— Performs instance-based regression

e Self-Attention: query tokens are the same
as the key and value tokens
— Performs soft clustering/aggregation

— Adding multi-dimensional vectors can overlay
multiple types of information, not just blend or
replace

* Attention is extremely powerful and
general when combined with learned
similarity and MLPs

Transformer (Vaswani et al. 2017)

* Define similarity via linear projection with softmax
S(ki,q) = exp(k; - q)

Scaled Dot-Product Attention

t
MatMul
SoftMax
: -1 QK" i
Attention(Q, K, V') = softmax(~)V Mask (opt)
A\ i
/ Scale
Normalize by sqrt of dimensionality of keys MatMul
tf
Q KV

Attention is all you need

https://arxiv.org/abs/1706.03762

Transformer (Vaswani et al. 2017)

* One or more similarity functions

can be learned with linear layers Multi-Head Attention
T |
— If there are h similarities and D inear
dimensions to input, each parallel ——
linear layer outputs D/h values T
Scaled Dot-Product JA "
Attention -
1! t [
iHead((Q. K. V) = Conca sady, heady, YW© L L -
MultiHead(Q, K. V') = Concat(head; hea 1}1}11 , — J r— Ll = J
where head; = Attention(QWS. KWK viwY) ,r r T
Where the projections are parameter matrices I'I—"Z.Q € Rifmoar>di K Ridmosaxdic T7V Rmoserxdo \/ K Q

and WO g RMdv X dmoger

Attention is all you need

https://arxiv.org/abs/1706.03762

Transformers: general data processors

o Input tokens can represent anything: image

4 Y

|
patches, text tokens, audio, controls, etc. Add & Norm J
Feed
Fori?ard
'y
e Invariant to order of tokens: add positional
. . : : N Add & Norm)
embedding to distinguish pos/type of input ————
Attention
1
o Transformer block: N\ /
> Apply multi-head attention EEF'E';TA;' @—(ﬁ
o Apply 2-layer MLP with ReLU to each token separately input
- Residual and layer norm (over all tokens) after each Embeiddmg
Inpuls

e Can stack any number of transformer blocks

Attention is all you need

https://arxiv.org/abs/1706.03762

Positional encodings

o Transformer processing does not

depend on position of token

o But to compare between tokens, relative
position may be important

o Sinusoidal encoding (on right) is such
that a dot product between encodings
corresponds to positional similarity

o Learned or even fixed random
encodings also work similarly in practice

PE (pos.2i) = sin(pos/10000%"/ dmser)
PE(pos 2i41) = cos(pos/10000%/ dms)

Positional
Encoding

Input
Embedding

I

Inpuls

Transformer: alternates data processing (self-attention)
and memory injection (MLP)

MLP-down

MLP-up

o
T

Concept activation

T Layer norm

QP *

T O projection

Multi-head Attention

T Q, K, V projection

JO000ad -0~

Input tokens

MLP: concepts,
external memory
lookup (up) and
output distribution
(down) [1]

Attention: skills,
algorithms on
iInputs [2]

[1] Geva, Mor, et al. "Transformer Feed-Forward Layers Are Key-Value Memories." Proceedings
of the 2021 Conference on Empirical Methods in Natural Language Processing. 2021.
[2] Olsson, Catherine, et al. "In-context learning and induction heads." arXiv:2209.11895 (2022).

Transformer-based Model

Preparing inputs
1. Text is converted into subword tokens (integer ids)
2. Subword integers are mapped to learned vectors (embedding)

3. Positional embedding is added to the vectors, providing
ordering information

Inference

4. Inputs go through 12 transformer blocks
a. Self-attention (organize inputs)
b. MLP (retrieve and output memory)
c. Interleaved layer norms and skip connections

Output
5. Predict the next word (classes are subword ids)
6. Perform a classification task

Text Task
Prediction | Classifier

N

!

Layer Norm

-

Feed Forward
A

12x —

Layer Norm

o

Masked Multi

Self Attention
A

Text & Position Embed

GPT-1 Model
Radford et al. 2018

Q4

https://tinyurl.com/441AML-L18

https://tinyurl.com/441AML-L18
https://tinyurl.com/441AML-L18
https://tinyurl.com/441AML-L18

Things to remember

Sub-w_ord_tokenlzathn based on byte-pair Chair is broken
encoding is an effective way to turn natural chus sair is, broki#, ##en
text into a sequence of integers

Learned vector embeddings of these Paris — France
integers model the relationships between + Italy = Rome
words

Scaled Dot-Product Attention

Attention is a general processing
mechanism that regresses or aggregates
values

(~Camem)
Feed
Stacked transformer blocks are a powerful oo
network architecture that alternates v |~
attention and MLPs i
L

% /

Further reading: http://nlp.seas.harvard.edu/annotated-transformer/

http://nlp.seas.harvard.edu/annotated-transformer/
http://nlp.seas.harvard.edu/annotated-transformer/
http://nlp.seas.harvard.edu/annotated-transformer/

Next class: Transformers in Language and Vision
* BERT

* ViT

e Unified-1O

Language Transformer: Complete Architecture

Qutput

Probabilities
: : t
* WordPiece tokens (integers) are (e)
mapped to learned 512-d vectors S
- . ,[Add & Norm].._\'”
* Positional encoding added to each ==
Forward
vector I 1;..1*_\
. 4 I — B Add &INDrm Cross-
* N=6 transformer blocks applied to Sa=u | yronsal I | i
|nput Fon:":fard T 1) N x
| (Add & Norm Je~
. . . N> | orm | X elf-Attention
* Until <EOS> is output: or. ([[y | [] |[Seones
. ention Attention ttention attends to
— Process input + output so far e | | careroutpu
— Output most likely word (after more posiionn b ah 1 -
attention blocks and linear model) Soodn 2t Off;® Encoding
Embdeing Embegding
I T

Inputs Cutputs
Attention is all you need (shifted right)

https://arxiv.org/abs/1706.03762

Attention Visualizations

82
5 5
c v —
= = E k5 2 = o B 5 DA A A A A A
= (@) O O W QO o 2 0 c Q 5 T T T U T T
. — ﬂ).}} ngDx — = Q = 2 Ommmmmm
235 T @© Edama @b L oS 0P ° 2 o & I o a oo a o
w £ C _C E"'_ T E_CGJLDLE._
= @2 £ =5 o = @© o< oL ac 8 v N = - 0 > Q T .V V V V V V V
=Z 0 c v E S 0 >N c w00 n U o DO C s Dw o= A A A A A A A
= =g £ & EOME>G>%§UO.E-'=.9°.EWO= W T T T T T T
= Q= o) O g 8 @ & @ £ O % *Y = = & O O T @ ® @ ©® ®©
7 — fu o - m N T @ o = O O O 9 9 Qo
@© o £ o c = > O = w v v v v V V
[
{5 ®
&]

Figure 3: An example of the attention mechanism following long-distance dependencies in the
encoder self-attention in layer 5 of 6. Many of the attention heads attend to a distant dependency of
the verb ‘making’, completing the phrase ‘making...more difficult’. Attentions here shown only for
the word ‘making’. Different colors represent different heads. Best viewed in color.

<peds <peds
<S0O3> \AwOm_v
uoludo = _» uoluido
Aw w\: © o Aw
ul ul
Buissiw - Buissiw
ale ale
am am
reym 1eym
Sl A]|
siy} Sy}
isnf ysn
aq aq

pinoys - pInoys

uoneoldde uoneoldde
s J i = S)
ing- inq
1oepad
99
lanau
1M
Mme
|yl
<peds <peds
<S03> / <S03>
UoIUIdO = -~ uoluido
Aw — Aw
ul ul
Buissiw Buissiw
ale- ale
oM~ am
Jeym
! Sl
siy}y = Siy}
ysnl ysnl
ag- aq
pInoys pInoys
uonesldde uoneoldde
sH si
inq (]
Jospad Japad
aq / aq
Jenau JaAsu
M M
MeT ME
ayL aylL

<peds> <peds>
<S03> X <S03>
uoludo = uoluido
Aw Aw
Buissiw Buissiw
ale \ ale
oM am
reym reym
siy} ~ Sy}
- -
isnl |
aq \ aq
pinoys pinoys
uoneoldde uoljeoldde
sy \ﬂ_
nq \Sn
1oepad Joapad
oq \ aq
JaAau Janau
M M
MeT meT
mﬁ\ oyl
<peds <peds>
<S03> <S03>
uoluido uoiudo
Awl Awl
ul ul
Buissiw Buissiw
ale ale
oM am
JEym Jeym
s S|
siu} siy}
isnl ysnl
2q aq
pinoys pinoys
uoljesidde uoneoldde
sy sl
inq g
1oaped 108ped
aq aq
Janau Janau
|[1M M
MeT]
ayL 8yl

Figure 5: Many of the attention heads exhibit behaviour that seems related to the structure of the

Figure 4: Two attention heads, also in layer 5 of 6, apparently involved in anaphora resolution. Top:

sentence. We give two such examples above, from two different heads from the encoder self-attention

at layer 5 of 6. The heads clearly learned to perform different tasks.

Full attentions for head 5. Bottom: Isolated attentions from just the word ‘its’ for attention heads 5

and 6. Note that the attentions are very sharp for this word.

Application to Translation

* English-German
— 4.5M sentence pairs
— 37K tokens
* English-French
— 36M sentences
— 32K tokens

e Base models trained on 8 P100s for 12
hours

* Big models (2x token dim, 3x training steps)
trained for 3.5 days

 Adam optimizer: learning rate ramps up for
4K iterations, then down

* Regularization: drop-out, L2 weight, label
smoothing

Attention is all you need

Cutput

Probabilities
t
| Softmax |
t
| Linear)
4 B
[Add & Norm Je=
Feed
Forward
s I ~ | Add & Norm Je= i
~—("Add & Norm) = Cross-
I Multi-Head Attention
Feed Attention
Forward J) J) J) N
—l
N | Add & Norm Je
~—>{ Add & Norm] N Tacked Self-
Self- Multi-Head Multi-Head Attention
Attention Attention Attention
* 3 ’ t 3 }

— J o v,
Positional ®_@ Positional
Encoding . Encoding

Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

https://arxiv.org/abs/1706.03762

Results

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Mod BLEU Training Cost (FLOPs)
odel EN-DE EN-FR EN-DE EN-FR

ByteNet [18] 23.75

Deep-Att + PosUnk [39] 39.2 1.0 - 102
GNMT + RL [38] 24.6 39.92 2.3-10 1.4-102°
ConvS2S [9] 25.16 40.46 0.6-10% 1.5.102°
MokE [32] 26.03 40.56 2.0-107 1.2-10%Y
Deep-Att + PosUnk Ensemble [39] 40.4 8.0-10%
GNMT + RL Ensemble [38] 26.30 41.16 1.8-10% 1.1-102t
ConvS2S Ensemble [9] 26.36 41.29 7.7-1017 1.2.10%
Transformer (base model) 27.3 38.1 3.3.10'8

Transformer (big) 28.4 41.8 23.1019

	Word Representations and Transformers
	Reminder: Exam 2 next Thurs-Sun (Nov 6-9)
	Today’s Lecture
	Each pixel means little, but images can be interpreted by grouping and recognizing patterns in groups of groups of groups of pixels
	CNNs iteratively process �pixels->edges/colors->textures->sub-parts->parts->objects/scenes
	But in text, the meaning is already in the words… right?
	What does this mean?
	Which of these is more similar?
	Which of these is more similar?
	Slide Number 10
	To analyze text, need to convert text to tokens
	Word  Integer
	Character  Integer
	Subword  Integer
	Slide Number 15
	Subword Tokenizers: Byte Pair Encoding
	WordPiece Tokenizer (Sennrich et al., Wu et al. 2016)
	Try it
	How can we better encode word similarity?
	Word2Vec (Mikolov et al. 2013)
	Word vectors predict word relationships
	Word2Vec predicted relationship examples
	Word2Vec demos
	Q1-Q3
	A new type of data processing
	Attention
	Attention simple example
	Cross-Attention: each input token acquires the values of the cross-attended tokens, weighted by key-query similarity
	Cross-Attention: each input token acquires the values of the cross-attended tokens, weighted by key-query similarity
	Cross-Attention: each input token acquires the values of the cross-attended tokens, weighted by key-query similarity
	Cross-Attention: each input token acquires the values of the cross-attended tokens, weighted by key-query similarity
	Self-Attention: each input token acquires the values of the input tokens, weighted by key-query similarity
	Attention
	Transformer (Vaswani et al. 2017)
	Transformer (Vaswani et al. 2017)
	Transformers: general data processors
	Positional encodings
	Transformer: alternates data processing (self-attention) and memory injection (MLP)
	Transformer-based Model
	Q4
	Things to remember
	Next class: Transformers in Language and Vision
	Slide Number 43
	Language Transformer: Complete Architecture
	Slide Number 45
	Slide Number 46
	Application to Translation
	Results

