
MLPs and
Backprop

Applied Machine Learning
Derek Hoiem

Dall-E

Multi-layer Perceptrons (MLPs)

• Recap of Perceptrons and SGD

• What is an MLP
– Layers
– Activations
– Losses

• How do we optimize with SGD and back-propagation

Perceptron

Fig source: CS 440

Perceptron = thresholded linear prediction model for
classification

Very similar to linear logistic regression, though perceptron does
not imply a particular error or training objective

sgn returns -1 for negative inputs and +1
for positive inputs

https://courses.grainger.illinois.edu/cs440/fa2019/Lectures/lect26.html

Perceptron Training
Prediction: 𝑓𝑓 𝒙𝒙 = 𝑤𝑤0𝑥𝑥0 + 𝑤𝑤1𝑥𝑥1 + … 𝑤𝑤𝑚𝑚𝑥𝑥𝑚𝑚 + 𝑏𝑏

Error: 𝐸𝐸 𝒙𝒙 = 𝑓𝑓 𝒙𝒙 − 𝑦𝑦 2

Update 𝑤𝑤𝑖𝑖: take a step to decrease 𝐸𝐸 𝒙𝒙
𝜕𝜕𝜕𝜕 𝒙𝒙
𝜕𝜕𝑤𝑤𝑖𝑖

= 2 𝑓𝑓 𝒙𝒙 − 𝑦𝑦 [𝜕𝜕 𝑓𝑓 𝒙𝒙 −𝑦𝑦
𝜕𝜕𝑤𝑤𝑖𝑖

]
𝜕𝜕𝜕𝜕 𝒙𝒙
𝜕𝜕𝑤𝑤𝑖𝑖

= 2 𝑓𝑓 𝒙𝒙 − 𝑦𝑦 𝑥𝑥𝑖𝑖

 𝑤𝑤𝑖𝑖 = 𝑤𝑤𝑖𝑖 − 𝜂𝜂 𝑓𝑓 𝒙𝒙 − 𝑦𝑦 𝑥𝑥𝑖𝑖

prediction target

Chain Rule:
ℎ 𝑥𝑥 = 𝑓𝑓(𝑔𝑔 𝑥𝑥), then
ℎ′ 𝑥𝑥 = 𝑓𝑓′ 𝑔𝑔 𝑥𝑥 𝑔𝑔𝑔(𝑥𝑥)

Learning rateMake error lower

Perceptron Optimization by SGD
Randomly initialize weights, e.g. w ~ Gaus(mu=0, std=0.05)
For each iteration 𝑡𝑡:
 Split data into batches
 𝜂𝜂 = 0.1/𝑡𝑡
 For each batch 𝑋𝑋𝑏𝑏:
 For each weight 𝑤𝑤𝑖𝑖:

 𝑤𝑤𝑖𝑖 = 𝑤𝑤𝑖𝑖 − 𝜂𝜂 1
𝑋𝑋𝑏𝑏

∑𝒙𝒙𝑛𝑛∈𝑋𝑋𝑏𝑏 𝑓𝑓 𝒙𝒙𝑛𝑛 − 𝑦𝑦𝑛𝑛 𝑥𝑥𝑛𝑛𝑛𝑛

Perceptron is often not enough
• Perceptron is linear, but we often need a non-linear prediction

function
Which of these can a perceptron solve (fit with zero training error)?

Yes No Not even close

Multi-Layer Perceptron (MLP)

Nodes in hidden
layer(s) encode latent
relationships

Latent = hidden, not
explicitly identified

Fig source: CS 440

Look up: activate
concept based on
input pattern

Apply: activated
concepts influence
prediction

https://courses.grainger.illinois.edu/cs440/fa2019/Lectures/lect26.html

Example MLP for MNIST Digits

• Input: # of features (one
per pixel)

• Fully connected (FC)
layer(s): linear feature
transformations

• Non-linear activation:
enables complex functions
to be modeled by multiple
FC layers

• Output: score per class

Input Values (28x28=784)

Fully Connected Layer (784->256)

ReLU Activation

Fully Connected Layer (256->10)

Sigmoid Activation Output (10)

𝒙𝒙0
𝒙𝒙0 = 784

𝒙𝒙1 = 𝑊𝑊10𝒙𝒙0
𝑊𝑊10. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 256, 784

𝒙𝒙1 = 256

𝒙𝒙2 = max(𝒙𝒙1, 0)
𝒙𝒙2 = 256

𝒙𝒙3 = 𝑊𝑊32𝒙𝒙2
𝑊𝑊32. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 10,256

𝒙𝒙3 = 10

Total parameters: (256 x (784+1)) + (10 x (256+1)), +1 is for bias terms

𝒙𝒙𝑜𝑜𝑜𝑜𝑜𝑜 = 1/(1 + exp(−𝒙𝒙3)
𝒙𝒙𝑜𝑜𝑜𝑜𝑜𝑜 = 10

Linear activation
• A no-op activation (i.e. nothing happens)
• Could be used for information compression or data alignment
• Multiple stacked linear layers are equivalent to a single linear layer

𝑓𝑓 𝑥𝑥 = 𝑥𝑥

𝑓𝑓𝑓 𝑥𝑥 = 1

Sigmoid activation
• Maps any value to 0 to 1 range
• Traditionally, a common choice for internal layers
• Common choice for output layer to map to a probability

If f 𝑥𝑥 = log 𝑃𝑃 𝑦𝑦 = 1 𝑥𝑥
𝑃𝑃 𝑦𝑦 = −1 𝑥𝑥 , then 𝑃𝑃(𝑦𝑦 = 1|𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑓𝑓(𝑥𝑥))

• But weak gradients at extrema make it difficult to optimize if there are many layers (“vanishing
gradient problem”)

𝑓𝑓 𝑥𝑥 =
1

1 + exp −𝑥𝑥

𝑓𝑓𝑓 𝑥𝑥 = 𝑓𝑓(𝑥𝑥)(1 − 𝑓𝑓 𝑥𝑥)

Fig source

https://towardsdatascience.com/derivative-of-the-sigmoid-function-536880cf918e

ReLU (Rectified Linear Unit) activation
• Maps negative values to zero; others pass through
• Typical choice for internal layers in current deep networks
• Results in sparse network activations, and all positive values have gradient of 1

𝑓𝑓 𝑥𝑥 = max(0, 𝑥𝑥)

𝑓𝑓𝑓 𝑥𝑥 = 𝛿𝛿(𝑥𝑥 > 0)

Fig source

https://medium.com/@toprak.mhmt/activation-functions-for-deep-learning-13d8b9b20e

MLP Architectures: Hidden Layers and Nodes

• Number of internal (“hidden”) layers
– Without hidden layers, neural networks (a.k.a. perceptron or linear logistic regressor) can fit

linear decision boundaries
– With enough nodes in one hidden layer, any Boolean function can be fit but the number of nodes

required grows exponentially in the worst case (because the nodes can enumerate all joint
combinations)

– Every bounded continuous function can be approximated with one hidden sigmoid layer and one
linear output layer

– Any function can be approximated to arbitrary accuracy by a network with two hidden layers
with sigmoid activation (Cybenko 1988)

– Does it ever make sense to have more than two internal layers?

• Number of nodes per hidden layer (often called the “width”)
– More nodes means more representational power and more parameters

• Each layer has an activation function

Application Example: Backgammon (1992)
• 198 inputs: how many pieces on each

space
– Later versions had expert-defined

features
• 1 internal FC layer with sigmoid

activation
• Reinforcement learning: reward is

evaluation of game position or result
• Network competed well with world

experts, demonstrating power of ML

https://en.wikipedia.org/wiki/TD-Gammon Fig source

https://en.wikipedia.org/wiki/TD-Gammon
https://en.wikipedia.org/wiki/TD-Gammon
https://en.wikipedia.org/wiki/TD-Gammon
https://medium.com/clique-org/td-gammon-algorithm-78a600b039bb

Q1-Q3
ht tps:/ / t inyurl.com/441AML-L15

https://tinyurl.com/441AML-L15
https://tinyurl.com/441AML-L15
https://tinyurl.com/441AML-L15
https://tinyurl.com/441AML-L15

• Find network weights to minimize the training error between true
and estimated labels of training examples, e.g.:

• Update weights by gradient descent:

• Back-propagation: gradients are computed in the direction from
output to input layers and combined using chain rule

• Stochastic gradient descent: compute the weight update w.r.t. a
small batch of examples at a time, cycle through training examples
in random order in multiple epochs

w
ww

∂
∂

−←
Eα

Training of multi-layer networks

Slide: Lazebnik

Backpropagation

𝑥𝑥1 𝑓𝑓

𝑥𝑥2

y

targetprediction

input

Error

E(𝒙𝒙, y;𝒘𝒘) = ((f(x) − y)2

𝑤𝑤1𝑓𝑓

𝑤𝑤2𝑓𝑓

𝑓𝑓 𝑥𝑥 = 𝑤𝑤1𝑓𝑓𝑥𝑥1 + 𝑤𝑤2𝑓𝑓𝑥𝑥2

∂E
∂w1𝑓𝑓

=
𝜕𝜕E
∂𝑓𝑓 ⋅

𝜕𝜕𝑓𝑓
𝜕𝜕𝑤𝑤1𝑓𝑓

= 2 𝑓𝑓 𝑥𝑥 − 𝑦𝑦 ⋅ 𝑥𝑥1

∂E
∂w2𝑓𝑓

=
𝜕𝜕E
∂𝑓𝑓 ⋅

𝜕𝜕𝑓𝑓
𝜕𝜕𝑤𝑤2𝑓𝑓

= 2 𝑓𝑓 𝑥𝑥 − 𝑦𝑦 ⋅ 𝑥𝑥2

Apply chain rule to compute gradient
(amount that an increase in the weight will
increase the error)

Backpropagation: add “hidden” node

𝑥𝑥1
𝑓𝑓

𝑥𝑥2

y

targetprediction

input

Error

E(𝒙𝒙, y;𝒘𝒘) = ((𝑔𝑔(x) − y)2

𝑤𝑤1𝑓𝑓

𝑤𝑤2𝑓𝑓

𝑓𝑓 𝑥𝑥 = 𝑤𝑤1𝑓𝑓𝑥𝑥1 + 𝑤𝑤2𝑓𝑓𝑥𝑥2

∂E
∂w1𝑓𝑓

= 𝜕𝜕E
∂𝑔𝑔
⋅ 𝜕𝜕𝑔𝑔
𝜕𝜕𝑓𝑓
⋅ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤1𝑓𝑓

= 2 𝑔𝑔 𝑥𝑥 − 𝑦𝑦 𝑤𝑤𝑓𝑓𝑓𝑓𝑥𝑥1

∂E
∂w2𝑓𝑓

=
𝜕𝜕E
∂𝑔𝑔 ⋅

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 ⋅

𝜕𝜕𝑓𝑓
𝜕𝜕𝑤𝑤2𝑓𝑓

= 2 𝑔𝑔 𝑥𝑥 − 𝑦𝑦 𝑤𝑤𝑓𝑓𝑓𝑓𝑥𝑥2

𝑔𝑔

𝑔𝑔 𝑥𝑥 = 𝑤𝑤𝑓𝑓𝑓𝑓𝑓𝑓(𝑥𝑥)

𝑤𝑤𝑓𝑓𝑓𝑓

∂E
∂w𝑓𝑓𝑓𝑓

=
𝜕𝜕E
∂𝑔𝑔 ⋅

𝜕𝜕𝑔𝑔
𝜕𝜕𝑤𝑤𝑓𝑓𝑓𝑓

= 2 ⋅ 𝑓𝑓(𝑥𝑥) (𝑔𝑔 𝑥𝑥 − 𝑦𝑦)

Same concept as before, but deeper
computation graph, i.e. application of chain
rule

Backpropagation: add second hidden node

𝑥𝑥1 𝑓𝑓

𝑥𝑥2

y

targetprediction

input

Error

E(𝒙𝒙, y;𝒘𝒘) = ((𝑔𝑔(x) − y)2

𝑤𝑤1𝑓𝑓

𝑤𝑤2𝑓𝑓

𝑓𝑓 𝑥𝑥 = 𝑤𝑤1𝑓𝑓𝑥𝑥1 + 𝑤𝑤2𝑓𝑓𝑥𝑥2

∂E
∂w1𝑓𝑓

=
𝜕𝜕E
∂𝑔𝑔 ⋅

𝜕𝜕𝑔𝑔
𝜕𝜕𝑓𝑓 ⋅

𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤1𝑓𝑓

= 2 𝑔𝑔 𝑥𝑥 − 𝑦𝑦 𝑤𝑤𝑓𝑓𝑓𝑓𝑥𝑥1

∂E
∂w2𝑓𝑓

=
𝜕𝜕E
∂𝑔𝑔 ⋅

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 ⋅

𝜕𝜕𝑓𝑓
𝜕𝜕𝑤𝑤2𝑓𝑓

= 2 𝑔𝑔 𝑥𝑥 − 𝑦𝑦 𝑤𝑤𝑓𝑓𝑓𝑓𝑥𝑥2

𝑔𝑔

𝑔𝑔 𝑥𝑥 = 𝑤𝑤𝑓𝑓𝑓𝑓𝑓𝑓(𝑥𝑥)

𝑤𝑤𝑓𝑓𝑓𝑓

∂E
∂w𝑓𝑓𝑓𝑓

=
𝜕𝜕E
∂𝑔𝑔 ⋅

𝜕𝜕𝑔𝑔
𝜕𝜕𝑤𝑤𝑓𝑓𝑓𝑓

= 2 ⋅ 𝑓𝑓(𝑥𝑥) (𝑔𝑔 𝑥𝑥 − 𝑦𝑦)

ℎ
𝑤𝑤1ℎ

𝑤𝑤2ℎ
𝑤𝑤ℎ𝑔𝑔

∂E
∂wℎ𝑔𝑔

=
𝜕𝜕E
∂𝑔𝑔 ⋅

𝜕𝜕𝑔𝑔
𝜕𝜕𝑤𝑤ℎ𝑔𝑔

= 2 ⋅ ℎ(𝑥𝑥) (𝑔𝑔 𝑥𝑥 − 𝑦𝑦)
∂E
∂w1ℎ

=
𝜕𝜕E
∂𝑔𝑔 ⋅

𝜕𝜕𝑔𝑔
𝜕𝜕𝑓𝑓 ⋅

𝜕𝜕ℎ
𝜕𝜕𝑤𝑤1ℎ

= 2 𝑔𝑔 𝑥𝑥 − 𝑦𝑦 𝑤𝑤ℎ𝑔𝑔𝑥𝑥1

∂E
∂w2ℎ

=
𝜕𝜕E
∂𝑔𝑔

⋅
𝜕𝜕𝜕𝜕
𝜕𝜕ℎ

⋅
𝜕𝜕ℎ
𝜕𝜕𝑤𝑤2ℎ

= 2 𝑔𝑔 𝑥𝑥 − 𝑦𝑦 𝑤𝑤ℎ𝑔𝑔𝑥𝑥2

Backpropagation: add ReLU activation

𝑥𝑥1 𝑓𝑓

𝑥𝑥2

y

targetprediction

input

Error

E(𝒙𝒙, y;𝒘𝒘) = ((𝑔𝑔(x) − y)2

𝑤𝑤1𝑓𝑓

𝑤𝑤2𝑓𝑓

𝑓𝑓 𝑥𝑥 = max(𝑤𝑤1𝑓𝑓𝑥𝑥1 + 𝑤𝑤2𝑓𝑓𝑥𝑥2 , 0)

∂E
∂w1𝑓𝑓

=
𝜕𝜕E
∂𝑔𝑔 ⋅

𝜕𝜕𝑔𝑔
𝜕𝜕𝑓𝑓 ⋅

𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤1𝑓𝑓

= 2 𝑔𝑔 𝑥𝑥 − 𝑦𝑦 𝑤𝑤𝑓𝑓𝑓𝑓𝑥𝑥1

∂E
∂w2𝑓𝑓

=
𝜕𝜕E
∂𝑔𝑔 ⋅

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 ⋅

𝜕𝜕𝑓𝑓
𝜕𝜕𝑤𝑤2𝑓𝑓

= 2 𝑔𝑔 𝑥𝑥 − 𝑦𝑦 𝑤𝑤𝑓𝑓𝑓𝑓𝑥𝑥2

𝑔𝑔

𝑔𝑔 𝑥𝑥 = 𝑤𝑤𝑓𝑓𝑓𝑓𝑓𝑓(𝑥𝑥)

𝑤𝑤𝑓𝑓𝑓𝑓

ℎ
𝑤𝑤1ℎ

𝑤𝑤2ℎ
𝑤𝑤ℎ𝑔𝑔

∂E
∂w1ℎ

=
𝜕𝜕E
∂𝑔𝑔 ⋅

𝜕𝜕𝑔𝑔
𝜕𝜕𝑓𝑓 ⋅

𝜕𝜕ℎ
𝜕𝜕𝑤𝑤1ℎ

= 2 𝑔𝑔 𝑥𝑥 − 𝑦𝑦 𝑤𝑤ℎ𝑔𝑔𝑥𝑥1

∂E
∂w2ℎ

=
𝜕𝜕E
∂𝑔𝑔

⋅
𝜕𝜕𝜕𝜕
𝜕𝜕ℎ

⋅
𝜕𝜕ℎ
𝜕𝜕𝑤𝑤2ℎ

= 2 𝑔𝑔 𝑥𝑥 − 𝑦𝑦 𝑤𝑤ℎ𝑔𝑔𝑥𝑥2

∂E
∂w𝑓𝑓𝑓𝑓

=
𝜕𝜕E
∂𝑔𝑔 ⋅

𝜕𝜕𝑔𝑔
𝜕𝜕𝑤𝑤𝑓𝑓𝑓𝑓

= 2 ⋅ 𝑓𝑓(𝑥𝑥) (𝑔𝑔 𝑥𝑥 − 𝑦𝑦)

∂E
∂wℎ𝑔𝑔

=
𝜕𝜕E
∂𝑔𝑔 ⋅

𝜕𝜕𝑔𝑔
𝜕𝜕𝑤𝑤ℎ𝑔𝑔

= 2 ⋅ ℎ(𝑥𝑥) (𝑔𝑔 𝑥𝑥 − 𝑦𝑦)

Since 𝑓𝑓(𝑥𝑥) and ℎ(𝑥𝑥) are changing, we need
to update their gradient equations

Backpropagation: add ReLU activation

𝑥𝑥1 𝑓𝑓

𝑥𝑥2

y

targetprediction

input

Error

E(𝒙𝒙, y;𝒘𝒘) = ((𝑔𝑔(x) − y)2

𝑤𝑤1𝑓𝑓

𝑤𝑤2𝑓𝑓

𝑓𝑓 𝑥𝑥 = max(𝑤𝑤1𝑓𝑓𝑥𝑥1 + 𝑤𝑤2𝑓𝑓𝑥𝑥2 , 0)

∂E
∂w1𝑓𝑓

=
𝜕𝜕E
∂𝑔𝑔 ⋅

𝜕𝜕𝑔𝑔
𝜕𝜕𝑓𝑓 ⋅

𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤1𝑓𝑓

= 2 𝑔𝑔 𝑥𝑥 − 𝑦𝑦 𝑤𝑤𝑓𝑓𝑓𝑓𝛿𝛿(𝑓𝑓 𝑥𝑥 > 0)𝑥𝑥1

∂E
∂w2𝑓𝑓

=
𝜕𝜕E
∂𝑔𝑔 ⋅

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 ⋅

𝜕𝜕𝑓𝑓
𝜕𝜕𝑤𝑤2𝑓𝑓

= 2 𝑔𝑔 𝑥𝑥 − 𝑦𝑦 𝑤𝑤𝑓𝑓𝑓𝑓𝛿𝛿(𝑓𝑓 𝑥𝑥 > 0)𝑥𝑥2

𝑔𝑔

𝑔𝑔 𝑥𝑥 = 𝑤𝑤𝑓𝑓𝑓𝑓𝑓𝑓(𝑥𝑥)

𝑤𝑤𝑓𝑓𝑓𝑓

ℎ
𝑤𝑤1ℎ

𝑤𝑤2ℎ
𝑤𝑤ℎ𝑔𝑔

∂E
∂w1ℎ

=
𝜕𝜕E
∂𝑔𝑔 ⋅

𝜕𝜕𝑔𝑔
𝜕𝜕𝑓𝑓 ⋅

𝜕𝜕ℎ
𝜕𝜕𝑤𝑤1ℎ

= 2 𝑔𝑔 𝑥𝑥 − 𝑦𝑦 𝑤𝑤ℎ𝑔𝑔𝛿𝛿(ℎ 𝑥𝑥 > 0)𝑥𝑥1

∂E
∂w2ℎ

=
𝜕𝜕E
∂𝑔𝑔

⋅
𝜕𝜕𝜕𝜕
𝜕𝜕ℎ

⋅
𝜕𝜕ℎ
𝜕𝜕𝑤𝑤2ℎ

= 2 𝑔𝑔 𝑥𝑥 − 𝑦𝑦 𝑤𝑤ℎ𝑔𝑔𝛿𝛿(ℎ 𝑥𝑥 > 0)𝑥𝑥2

∂E
∂w𝑓𝑓𝑓𝑓

=
𝜕𝜕E
∂𝑔𝑔 ⋅

𝜕𝜕𝑔𝑔
𝜕𝜕𝑤𝑤𝑓𝑓𝑓𝑓

= 2 ⋅ 𝑓𝑓(𝑥𝑥) (𝑔𝑔 𝑥𝑥 − 𝑦𝑦)

∂E
∂wℎ𝑔𝑔

=
𝜕𝜕E
∂𝑔𝑔 ⋅

𝜕𝜕𝑔𝑔
𝜕𝜕𝑤𝑤ℎ𝑔𝑔

= 2 ⋅ ℎ(𝑥𝑥) (𝑔𝑔 𝑥𝑥 − 𝑦𝑦)

Backpropagation: add ReLU activation

𝑥𝑥1 𝑓𝑓

𝑥𝑥2

y

targetprediction

input

Error

E(𝒙𝒙, y;𝒘𝒘) = ((𝑔𝑔(x) − y)2

𝑤𝑤1𝑓𝑓

𝑤𝑤2𝑓𝑓

𝑓𝑓 𝑥𝑥 = max(𝑤𝑤1𝑓𝑓𝑥𝑥1 + 𝑤𝑤2𝑓𝑓𝑥𝑥2 , 0)

∂E
∂w1𝑓𝑓

=
𝜕𝜕E
∂𝑔𝑔 ⋅

𝜕𝜕𝑔𝑔
𝜕𝜕𝑓𝑓 ⋅

𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤1𝑓𝑓

= 2 𝑔𝑔 𝑥𝑥 − 𝑦𝑦 𝑤𝑤𝑓𝑓𝑓𝑓𝛿𝛿(𝑓𝑓 𝑥𝑥 > 0)𝑥𝑥1

∂E
∂w2𝑓𝑓

=
𝜕𝜕E
∂𝑔𝑔 ⋅

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 ⋅

𝜕𝜕𝑓𝑓
𝜕𝜕𝑤𝑤2𝑓𝑓

= 2 𝑔𝑔 𝑥𝑥 − 𝑦𝑦 𝛿𝛿(𝑓𝑓 𝑥𝑥 > 0)𝑤𝑤𝑓𝑓𝑓𝑓𝑥𝑥2

𝑔𝑔

𝑔𝑔 𝑥𝑥 = 𝑤𝑤𝑓𝑓𝑓𝑓𝑓𝑓(𝑥𝑥)

𝑤𝑤𝑓𝑓𝑓𝑓

ℎ
𝑤𝑤1ℎ

𝑤𝑤2ℎ
𝑤𝑤ℎ𝑔𝑔

∂E
∂w1ℎ

=
𝜕𝜕E
∂𝑔𝑔 ⋅

𝜕𝜕𝑔𝑔
𝜕𝜕𝑓𝑓 ⋅

𝜕𝜕ℎ
𝜕𝜕𝑤𝑤1ℎ

= 2 𝑔𝑔 𝑥𝑥 − 𝑦𝑦 𝛿𝛿(ℎ 𝑥𝑥 > 0)𝑤𝑤ℎ𝑔𝑔𝑥𝑥1

∂E
∂w2ℎ

=
𝜕𝜕E
∂𝑔𝑔 ⋅

𝜕𝜕𝜕𝜕
𝜕𝜕ℎ ⋅

𝜕𝜕ℎ
𝜕𝜕𝑤𝑤2ℎ

= 2 𝑔𝑔 𝑥𝑥 − 𝑦𝑦 𝑤𝑤ℎ𝑔𝑔𝛿𝛿(ℎ 𝑥𝑥 > 0)𝑥𝑥2

∂E
∂w𝑓𝑓𝑓𝑓

=
𝜕𝜕E
∂𝑔𝑔 ⋅

𝜕𝜕𝑔𝑔
𝜕𝜕𝑤𝑤𝑓𝑓𝑓𝑓

= 2 ⋅ 𝑓𝑓(𝑥𝑥) (𝑔𝑔 𝑥𝑥 − 𝑦𝑦)

∂E
∂wℎ𝑔𝑔

=
𝜕𝜕E
∂𝑔𝑔 ⋅

𝜕𝜕𝑔𝑔
𝜕𝜕𝑤𝑤ℎ𝑔𝑔

= 2 ⋅ ℎ(𝑥𝑥) (𝑔𝑔 𝑥𝑥 − 𝑦𝑦)

Shared computation. Use
dynamic program for
efficiency

Backpropagation: General Concept

Each weight’s gradient is a product of the gradients on the path from the
weight’s input to the error function

The gradients can be computed using a kind of dynamic program, i.e.,
recursively propagating the gradient from the prediction error to the input

Another backpropagation example

x1

h2 g2

g1h1

x2

out

w1 w2

w3w4 w5 w6 w7

w8 w9

w0

Error gradient wrt w8 = 2*(out-y)*(___*___ + ____*____) * ____

Error gradient wrt w2 = 2*(out-y)*(____) * _____

Assume all linear layers (and linear activation, for simplicity), fill in the terms for the squared error gradients

w0 w9 w3 w7 x2

w3 h1

Grad loss wrt out
Grad out wrt g1

Grad g1 wrt w2

𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑤𝑤𝑤 ∗ 𝑔𝑔𝑔 + 𝑤𝑤𝑤 ∗ 𝑔𝑔𝑔

ℎ1 = 𝑤𝑤𝑤 ∗ 𝑥𝑥𝑥 + 𝑤𝑤𝑤 ∗ 𝑥𝑥𝑥

ℎ2 = 𝑤𝑤𝑤 ∗ 𝑥𝑥𝑥 + 𝑤𝑤𝑤 ∗ 𝑥𝑥𝑥

g1 = 𝑤𝑤𝑤 ∗ ℎ1 + 𝑤𝑤𝑤 ∗ ℎ2

g2 = 𝑤𝑤𝑤 ∗ ℎ1 + 𝑤𝑤𝑤 ∗ ℎ2

∂E/ ∂w2 = 𝜕𝜕E/ ∂out ⋅ 𝜕𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 ⋅ 𝜕𝜕g1/𝜕𝜕𝜕𝜕

∂E/ ∂w8 = 𝜕𝜕E/ ∂out ⋅ (𝜕𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 ⋅ 𝜕𝜕g1/𝜕𝜕h2 + 𝜕𝜕𝜕𝜕𝜕/𝜕𝜕𝜕2 ⋅ 𝜕𝜕𝜕2/𝜕𝜕𝜕𝜕) ⋅ 𝜕𝜕h2/𝜕𝜕𝑤𝑤𝑤

Another backpropagation example

x1

h2 g2

g1h1

x2

out

w1 w2

w3w4 w5 w6 w7

w8 w9

w0

Assume all linear layers (and linear activation, for simplicity), fill in the terms for the squared error gradients

𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑤𝑤𝑤 ∗ 𝑔𝑔𝑔 + 𝑤𝑤𝑤 ∗ 𝑔𝑔𝑔

ℎ1 = 𝑤𝑤𝑤 ∗ 𝑥𝑥𝑥 + 𝑤𝑤𝑤 ∗ 𝑥𝑥𝑥

ℎ2 = 𝑤𝑤𝑤 ∗ 𝑥𝑥𝑥 + 𝑤𝑤𝑤 ∗ 𝑥𝑥𝑥

g1 = 𝑤𝑤𝑤 ∗ ℎ1 + 𝑤𝑤𝑤 ∗ ℎ2

g2 = 𝑤𝑤𝑤 ∗ ℎ1 + 𝑤𝑤𝑤 ∗ ℎ2

∂E/ ∂w2 = 𝜕𝜕E/ ∂out ⋅ 𝜕𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 ⋅ 𝜕𝜕g1/𝜕𝜕𝜕𝜕

∂E/ ∂w8 = 𝜕𝜕E/ ∂out ⋅ (𝜕𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 ⋅ 𝜕𝜕g1/𝜕𝜕h2 + 𝜕𝜕𝜕𝜕𝜕/𝜕𝜕𝜕2 ⋅ 𝜕𝜕𝜕2/𝜕𝜕𝜕𝜕) ⋅ 𝜕𝜕h2/𝜕𝜕x2

Parts of the gradient path in
common don’t need to be
recomputed

Q4
ht tps:/ / t inyurl.com/441AML-L15

https://tinyurl.com/441AML-L15
https://tinyurl.com/441AML-L15
https://tinyurl.com/441AML-L15
https://tinyurl.com/441AML-L15

Good 3bluebrown video (for later)

https://www.youtube.com/watch?v=tIeHLnjs5U8

https://www.youtube.com/watch?v=tIeHLnjs5U8
https://www.youtube.com/watch?v=tIeHLnjs5U8

What is the benefit and cost of going from a perceptron to MLP?

Benefit
1. Much greater expressivity, can model non-linear functions

Cost
1. Optimization is no longer convex, globally optimum solution no longer

guaranteed (or even likely)
2. Larger model = more training and inference time
3. Larger model = more data required to obtain a good fit

In summary: MLP has lower bias and higher variance, and additional error due
to optimization challenges

MLP Optimization by SGD
For each epoch 𝑡𝑡:
 Split data into batches
 𝜂𝜂 = 0.001 (or some schedule)
 For each batch 𝑋𝑋𝑏𝑏:
 1. Compute output
 2. Evaluate loss
 3. Compute gradients with backpropagation
 4. Update the weights

Demo: Part 2
https://colab.research.google.com/drive/1nKNJyolqgzW53Rz59
M2BZtyQM8bbrExb?usp=sharing

https://colab.research.google.com/drive/1nKNJyolqgzW53Rz59M2BZtyQM8bbrExb?usp=sharing
https://colab.research.google.com/drive/1nKNJyolqgzW53Rz59M2BZtyQM8bbrExb?usp=sharing

Multi-Layer Network Demo

http://playground.tensorflow.org/

Slide: Lazebnik
Try many layers with sigmoid vs relu

http://playground.tensorflow.org/

Another application example: mapping position/rays to color

• L2 loss
• ReLU MLP with 4 layers and 256 channels (nodes per layer)
• Sigmoid activation on output
• 256 frequency positional encoding

Fourier Features (Tancik et al. 2020) NeRF (Mildenhall et al. 2020)

https://arxiv.org/pdf/2006.10739.pdf
https://arxiv.org/abs/2003.08934

Generalized insight from “Fourier Features”
• Input matters – it’s best to represent data in a way that makes it

linearly predictive, even if you have a non-linear model

• 𝑓𝑓 𝑥𝑥,𝑦𝑦 → 𝑅𝑅,𝐺𝐺,𝐵𝐵 requires a complex network to model because
𝑥𝑥𝑖𝑖𝑇𝑇𝑥𝑥𝑗𝑗 is a bad similarity function (maximized when 𝑥𝑥𝑗𝑗 is large,
instead of similar to 𝑥𝑥𝑖𝑖)

• Representing 𝑥𝑥 with a Fourier encoding, e.g. 𝛾𝛾 𝑥𝑥 =
sin 𝑥𝑥 , cos 𝑥𝑥 , sin 2𝑥𝑥 , cos 2𝑥𝑥 , … enables a simpler network

because 𝛾𝛾 𝑥𝑥𝑖𝑖 𝑇𝑇𝛾𝛾 𝑥𝑥𝑗𝑗 falls off smoothly as 𝑥𝑥𝑗𝑗 moves away from 𝑥𝑥𝑖𝑖
– This means the initial network layer can model similarity to different

positions with each hidden unit

HW 4 (due Nov 4)

HW 4

What to remember

• Perceptrons are linear prediction models

• MLPs are non-linear prediction models,
composed of multiple linear layers with non-
linear activations

• MLPs can model more complex functions, but
are harder to optimize

• Optimization is by a form of stochastic gradient
descent

• Deeper networks are subject to vanishing
gradient problems that are reduced (but not
eliminated) with ReLU activations

Figure source

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

Next lectures
• Convolutional networks (CNNs)
• Deep networks

– (Brief) history of deep networks
– What made deep networks work?
– Residual networks

• More about deep network optimization
– Improvements on SGD
– Normalization and data augmentation
– Linear probe and fine-tuning

• Mask-RCNN line of work

	MLPs and Backprop
	Multi-layer Perceptrons (MLPs)
	Perceptron
	Perceptron Training
	Perceptron Optimization by SGD
	Perceptron is often not enough
	Multi-Layer Perceptron (MLP)
	Example MLP for MNIST Digits
	Linear activation
	Sigmoid activation
	ReLU (Rectified Linear Unit) activation
	MLP Architectures: Hidden Layers and Nodes
	Application Example: Backgammon (1992)
	Q1-Q3
	Training of multi-layer networks
	Backpropagation
	Backpropagation: add “hidden” node
	Backpropagation: add second hidden node
	Backpropagation: add ReLU activation
	Backpropagation: add ReLU activation
	Backpropagation: add ReLU activation
	Backpropagation: General Concept
	Another backpropagation example
	Another backpropagation example
	Q4
	Good 3bluebrown video (for later)
	What is the benefit and cost of going from a perceptron to MLP?
	MLP Optimization by SGD
	Demo: Part 2
	Multi-Layer Network Demo
	Another application example: mapping position/rays to color
	Generalized insight from “Fourier Features”
	HW 4 (due Nov 4)
	HW 4
	What to remember
	Next lectures

