MLPs and
Backprop

Applied Machine Learning
Derek Hoiem

Dall-E

Multi-layer Perceptrons (MLPs)

* Recap of Perceptrons and SGD

e What is an MLP

— Layers
— Activations
— Losses

* How do we optimize with SGD and back-propagation

Perceptron

Input Perceptron = thresholded linear prediction model for

classification

Weights

Very similar to linear logistic regression, though perceptron does
not imply a particular error or training objective

X,
Output: sgn(w-x + b)
X3 >
sgn returns -1 for negative inputs and +1
Xo for positive inputs

Fig source: CS 440

https://courses.grainger.illinois.edu/cs440/fa2019/Lectures/lect26.html

Perceptron Training

Prediction: f(x) = wgxy + wix; + ... WyXx,, + b

Error: E(x) = (f(x) — y)?
.

prediction target
Update w;: take a step to decrease E (x) Chain Rule:
R UCREIE s IR e
= 2 () — s

Wi = W}, ﬂg(x) V)X

Make error lower Learning rate

Perceptron Optimization by SGD

Randomly initialize weights, e.g. w ~ Gaus(mu=0, std=0.05)
For each iteration t:
Split data into batches
n=01/t
For each batch X,,:
For each weight wy;:

1
Wi =W; —1 |X_b|2anXb(f (Xn) = Yn)Xni

Perceptron is often not enough

* Perceptron is linear, but we often need a non-linear prediction

function

0
(%)
T
=]

Not even close

0.9

Ix

class

0.9

Tx

Which of these can a perceptron solve (fit with zero training error)?

Yes

Multi-Layer Perceptron (MLP)

Look up: activate Apply: activated

Inputs ~ conceptbasedon concepts influence Nodes in hidden
Input pattern prediction layer(s) encode latent
Age Output relationships
0.6 Latent = hidden, not
Canilop explicitly identified
“Probability of
< beingAlive”
age
. Dependent
Ind?pendent Weights Weights variable
variables
Prediction

© Eric Xing @ CMU, 2006-2011

Fig source: CS 440

https://courses.grainger.illinois.edu/cs440/fa2019/Lectures/lect26.html

Example MLP for MNIST Digits

X0

* Input: # of features (one |x,| = 784 Input Values (28x28=784)
per pixel) 1
X1 = WioXxo
Wio.shape = (256, 784) Fully Connected Layer (784->256)
* Fully connected (FC) |%1| = 256
layer(s): linear feature 1
transformations X = max(xy,0) ReLU Activation
 Non-linear activation: " 9;13 = szfl% . — }L 256510
. . = , u onnected Layer ->
enables complex functions 32: &pf_ 1(0) Y Y
. 31—
to be modeled by multiple 1
FC Iayers Xout = 1/(1 + exp(=x3) Sigmoid Activation Output (10)
|xout| =10

: score per cl
Output: score per class Total parameters: (256 x (784+1)) + (10 x (256+1)), +1 is for bias terms

Linear activation

* A no-op activation (i.e. nothing happens)
* Could be used for information compression or data alignment
 Multiple stacked linear layers are equivalent to a single linear layer

Linear Function

) = x
. [=1

linear(x)
o

Sigmoid activation

e Maps any value to 0 to 1 range
* Traditionally, a common choice for internal layers
« Common choice for output layer to map to a probability

If f(x) = log PIE;y::_l:{T;), then P(y = 1|x) = sigmoid(f(x))
* But weak gradients at extrema make it difficult to optimize if there are many layers (“vanishing

gradient problem”)

fx) = 1+ exp(—x)

f(x) = fl)d—fx)

-8

Fig source

https://towardsdatascience.com/derivative-of-the-sigmoid-function-536880cf918e

RelLU (Rectified Linear Unit) activation

* Maps negative values to zero; others pass through
e Typical choice for internal layers in current deep networks
* Results in sparse network activations, and all positive values have gradient of 1

. f(x) = max(0, x)

a =max(0, z)

£=

f(x)=6(x>0)

Fig source

https://medium.com/@toprak.mhmt/activation-functions-for-deep-learning-13d8b9b20e

MLP Architectures: Hidden Layers and Nodes

Number of internal (“hidden”) layers

Without hidden layers, neural networks (a.k.a. perceptron or linear logistic regressor) can fit
linear decision boundaries

With enough nodes in one hidden layer, any Boolean function can be fit but the number of nodes
required grows exponentially in the worst case (because the nodes can enumerate all joint
combinations)

Every bounded continuous function can be approximated with one hidden sigmoid layer and one
linear output layer

Any function can be approximated to arbitrary accuracy by a network with two hidden layers
with sigmoid activation (Cybenko 1988)

Does it ever make sense to have more than two internal layers?

Number of nodes per hidden layer (often called the “width”)

More nodes means more representational power and more parameters

Each layer has an activation function

Application Example: Backgammon (1992)

198 inputs: how many pieces on each

space

— Later versions had expert-defined
features

 1internal FC layer with sigmoid

activation
 Reinforcement learning: reward is

evaluation of game position or result

Network competed well with world
experts, demonstrating power of ML

After each turn, the learning algorithm updates each weight in the neural net according to the following rule:

¢
wipy —wp = o(Yipy — %) Y NTFVLY

k=1

where:

wiy1 — wy is the amount to change the weight from its value on the previous turn.
Yi1 — Y; is the difference between the current and previous turn's board evaluations.
o is a "learning rate" parameter.

A is a parameter that affects how much the present difference in board evaluations should feed back to previous
estimates. A = 0 makes the program correct only the previous turn's estimate; A = 1 makes the program attempt to
correct the estimates on all previous turns; and values of A between 0 and 1 specify different rates at which the
importance of older estimates should "decay” with time.

VuYk is the gradient of neural-network output with respect to weights: that is, how much changing the weight affects the

output.?!

=it

21022 1N MG

£

IT 16 15 14 13

O

g 9

o

white pieces move
counterclockwise

black pieces

1 2 3 4 5 @ o8 % 1 o1z
move clockwise
—ul
Program Hidden units Training Opponents Results
games
TD-Gammon 40 200,000 other Tied for best
0.0 programs
TD-Gammon 80 300,000 Robertie, -13 pts /51
1.0 Magriel, Davis games
TD-Gammon 40 800,000 various -7 pts / 38
2.0 Grandmasters games
TD-Gammon 80 1,500,000 Robertie -1 pts /40
21 games
TD-Gammon 80 1,500,000 Kazaros +6 pts /20
3.0 games

https://en.wikipedia.org/wiki/TD-Gammon

Fig source

https://en.wikipedia.org/wiki/TD-Gammon
https://en.wikipedia.org/wiki/TD-Gammon
https://en.wikipedia.org/wiki/TD-Gammon
https://medium.com/clique-org/td-gammon-algorithm-78a600b039bb

Q1-Q3
https://tinyurl.com/441 AML-L135

=] =] [n]
[=]

https://tinyurl.com/441AML-L15
https://tinyurl.com/441AML-L15
https://tinyurl.com/441AML-L15
https://tinyurl.com/441AML-L15

Training of multi-layer networks

Find network weights to minimize the training error between true
and estimated labels of training examples, e.g.:

E(w)= Z ~f (%))’

i=1

OFE

Update weights by gradient descent: W< W-— Ota—
W

Back-propagation: gradients are computed in the direction from
output to input layers and combined using chain rule

Stochastic gradient descent: compute the weight update w.r.t. a
small batch of examples at a time, cycle through training examples
in random order in multiple epochs

Slide: Lazebnik

Backpropagation

input f(X) — Wlfxl + szxz

@ Wi prediction target
1 ’@ Error @
()

i E(x,y; w) = ((f(x) — y)?

0E _aE af
awlf_af aW1f

=2(f(x) —y) - xq

Apply chain rule to compute gradient
(amount that an increase in the weight will
increase the error)

0E JE Of

aWZf B af | asz

=2(f(x) —y) - x;

Backpropagation: add “hidden” node

input f(x) = wirxy +wypx,

g(x) — ngf(x)

prediction target

f

OE _ 9E dg Of
dw,f 0g Of Owys

= 2 (g(x) — y)ngxl

OE OE dg Of

E(x,y;w) = (9(x) —y)°

JE OE 0dg
ang ag ang

=2-f(x) (g(x) —y)

Same concept as before, but deeper
computation graph, i.e. application of chain
rule

Backpropagation: add second hidden node

input f(x) = wirxy +wypx,

0E OE ag of
dwis 0g 0Of 0wy,
0E OE ag of

Owyr g Of 0wy

=2 (g(x) — Y)ngx1

=2 (g(x) — y)wsgx,

JE OE dg o0h
Owi, 0g Of Owyy

=2 (g(x) — y)wpgxy

OE OE dg oh
5W2h_ag dh aWZh

=2(gx) — :V)Whgxz

g(x) = ngf(x)

prediction target

Error @

E(x,y;w) = (9(x) —y)°

JE 0E 0g
Owrg, 0g O0wgg

=2-f(x) (g(x) —y)

O0E JE dg

oWy =37 Wng =2-h(x) (gx) —y)

Backpropagation: add ReLU activation

input flx) = maX(Wlfxl T WarXy, 0) g(x) = ngf(x)

prediction target

Error @

E(x,y;w) = (9(x) —y)°

0E O0E dg Of
owyr g Of 0wy

OE OE ag Of 0E OE dg
A An Ar AT 2 (g(x) = yIwpgx,

=2(g(x) - :V)ngxl

T PR T QL ORE)

Since f(x) and h(x) are changing, we need
to update their gradient equations

dwWin 09 Of Owi, T T TV RGT™1 OE :aE. dg
aWhg ag aWhg

=2-h(x) (g(x) = y)

OE OE dg oh
5W2h_ag dh aWZh

=2(g(x) — :V)Whgxz

Backpropagation: add ReLU activation

f(x) = max(wypxy + wapxs,0) g(x) = wrgf (%)

input

prediction target

Error @

E(x,y;w) = (9(x) —y)°

0E OE ag of
owy; 0g Of Owis
0E OE ag of
Owpr g Of 0wy

=2 (g(0) — Vw8 (f(x) >

0E 0E ag
ang ag ang

=2 (g(x) — YWy 8(f(x) > 0) =2-f(x) (g(x) —y)

JE _GE dg Ooh
anh_ag df Owyy

=2 (g(x) — Y)Wy (h(x) > 0)x; dE O0E dg

OWng, 09 0Wng

=2-h(x) (g(x) = y)

OE OE dg oh

0wy B ag ‘oh OWs,p, =2(g() - y)Whg (h(x) > 0)x,

Backpropagation: add ReLU activation

input f(x) = max(wqpx; + wyrxy, 0) g(x) = Wrgf (%)

prediction target

Error @

E(x,y;w) = (9(x) —y)°

=2 (g(x) = ¥Iwrg6(f (x) > 0)x,

Of | owyf
o ca sococs oo 0 B 99) (g - y)
; = =2-f(x)(g(x) -y
1 Shared computation. Use Owrg 09 Owyg
dynamic program for
efficiency JE 0E dg
Gwng 39 awhg—Z h(x) (9(x) —)

=2 (g(x) — yIwpgb(h(x) > 0)x;

Backpropagation: General Concept

Each weight’s gradient is a product of the gradients on the path from the
weight’s input to the error function

The gradients can be computed using a kind of dynamic program, i.e.,
recursively propagating the gradient from the prediction error to the input

Another backpropagation example

Assume all linear layers (and linear activation, for simplicity), fill in the terms for the squared error gradients

hl = wl=*x1+ w5 *x2
h2 = w4 *x1 + w8 * x2
gl = w2x*hl+ w7 *h2
g2 = wb6x*hl+ w9 * h2

out = w3x*gl+w0x*g2

9E/ dw2 = AE/ dout - dout/dgl - dgl/dw2

Error gradient wrt w2 = 2*(out-y)*(_ w3) * h1

Grad loss wrt outT Grad g1 wrt w2
Grad out wrt g1

Error gradient wrt w8 = 2*(out-y)*(W0 * W9 + w3 * w7 y=* X2
0E/ 0w8 = 0E/ dout - (dout/dgl - dgl/0h2 + dout/dg2 - dg2/0h2) - dh2/0w8

Another backpropagation example

Assume all linear layers (and linear activation, for simplicity), fill in the terms for the squared error gradients

hl = wl=*x1+ w5 *x2
h2 = w4 *x1 + w8 * x2
gl = w2x*hl+ w7 xh2
g2 = wb6x*hl + w9 * h2

out = w3*gl+w0x*g2

JdE/ ow?2 0gl/ow?2

< JE/ dout - dout/ogl .

Parts of the gradient path in
common don’t need to be
recomputed

0E/ w8 =< 9E/ dout - (dout/dgl - dg1/dh2 + dout/dg2 - dg2/dh2) - dh2 /dx2

Q4

https://tinyurl.com/441 AML-L135

=] =] [n]
[=]

https://tinyurl.com/441AML-L15
https://tinyurl.com/441AML-L15
https://tinyurl.com/441AML-L15
https://tinyurl.com/441AML-L15

Good 3bluebrown video (for later)

https://www.youtube.com/watch?v=tleHLnjs5U8

https://www.youtube.com/watch?v=tIeHLnjs5U8
https://www.youtube.com/watch?v=tIeHLnjs5U8

What is the benefit and cost of going from a perceptron to MLP?

Benefit

1. Much greater expressivity, can model non-linear functions

Cost

1. Optimization is no longer convex, globally optimum solution no longer
guaranteed (or even likely)

2. Larger model = more training and inference time
3. Larger model = more data required to obtain a good fit

In summary: MLP has lower bias and higher variance, and additional error due
to optimization challenges

MLP Optimization by SGD

For each epoch t:

Split data into batches

n = 0.001 (or some schedule)

For each batch X,,:
1. Compute output
2. Evaluate loss
3. Compute gradients with backpropagation
4. Update the weights

Demo: Part 2

https://colab.research.google.com/drive/1nKNJyolggzW53Rz59
M2BZtyQM8bbrExb?usp=sharing

https://colab.research.google.com/drive/1nKNJyolqgzW53Rz59M2BZtyQM8bbrExb?usp=sharing
https://colab.research.google.com/drive/1nKNJyolqgzW53Rz59M2BZtyQM8bbrExb?usp=sharing

Multi-Layer Network Demo

INPUT + — 1 HIDDEN LAYER OUTPUT

Test loss 0.020

Which properties do
Training loss 0.013

you want to feed in?
+

4 neurons

* This is the output

b
frOm oe Neuron.]
Hover to see it o
- larger.
sin(X,)
Colors shows
- data, neuron and F I -I
AT weight values. L < !

[] Showtestdata [] Discretize output

http://playground.tensorflow.org/

Try many layers with sigmoid vs relu
Slide: Lazebnik

http://playground.tensorflow.org/

Another application example: mapping position/rays to color

No Fourier features

With Fourier features

(a) Coordinate-based MLP (b) Image regression (c) 3D shape regression (d) MRI reconstruction (e) Inverse rendering
(z,y)— RGB (z,y,z) — occupancy (z,y,z)— density (xz,y,z)— RGB, density
L2 loss

ReLU MLP with 4 layers and 256 channels (nodes per layer)
Sigmoid activation on output

256 frequency positional encoding
Fourier Features (Tancik et al. 2020) NeRF (Mildenhall et al. 2020)

https://arxiv.org/pdf/2006.10739.pdf
https://arxiv.org/abs/2003.08934

Generalized insight from “Fourier Features”

* |nput matters —it’s best to represent data in a way that makes it
linearly predictive, even if you have a non-linear model

fgx y) = R, G, B requires a complex network to model because
X;

X is a bad similarity function (maximized when x; is large,
mstead of similar to x;)

* Representing x with a Fourier encoding, e.g. y(x) =
sin(x), cos(x),sin(2x),cos(2x), ...] enables a simpler network

pecause y(xl-)Ty(xj) falls off smoothly as x; moves away from x;

— This means the initial network layer can model similarity to different
positions with each hidden unit

HW 4 (due Nov 4)

1. Model Complexity with Tree Regressors [30 pts]

One measure of a tree’s complexity is the maximum tree depth. Train tree, random forest, and
boosted tree regressors on temperature regression (data), using all default parameters except:
e max depth={2,4,8,16,32}
® random state=0

e Forrandom forest: max features=1/3

For each method, train one model using the training set and measure RMSE on the training
and validation sets. Plot the max_depth vs RMSE for all methods on the same plot using the
provided plot depth error function. You should have six lines (train/val for each model
type), each with 5 data points (one for each max depth value). Include the plot and answer the
analysis questions in the report.

HW 4

2,

MLPs with MNIST [40 pts]

For this part, you will want to use a GPU to improve runtime. Google Colab provides limited free
GPU acceleration to all users. It can be run with CPU, but will be a few times slower. See Tips
for detailed guidance on this problem. Note that this problem may require tens of minutes of
computation.

First, use PyTorch to implement a Multilayer Perceptron network with one hidden layer (size 64)
with RelLU activation. Set the network to minimize cross-entropy loss, which is the negative log
probability of the training labels given the training features. This objective function takes
unnormalized logits as inputs. Do not use MLP in sklearn for this HW - use Torch.

a.

a.

Finally, see if you can improve the model by adjusting the learning rate, the hidden layer size,
adding a hidden layer, or trying a different optimizer such as Adam (recommended). Report the

Using the train/val split provided in the starter code, train your network for 100 epochs with
learning rates of 0.01, 0.1, and 1. Use a batch size of 256 and the 5GD optimizer. After
each epoch, record the mean training and validation loss and compute the validation error of
the final model. The mean validation loss should be computed after the epoch is complete.
The mean training loss can either be computed after the epoch is complete, or, for efficiency,
computed using the losses accumulated during the training of the epoch. Plot the training
and validation losses using the display error curwves function.

Based on the loss curves, select the learning rate and number of epochs that minimizes the
validation loss. Retrain that model (if it's not stored), and report training loss, validation loss,
training error, validation error, and test error. You should be able to get test error lower than
2.5%.

Improve MNIST Classification Performance using MLPs [up to 30 pts]

trainfval/test loss and the train/valftest classification error for the best model. Report your

hyperparameters (network layers/size, optimizer type, learning rate, data augmentation, etc.).
You can also use an ensemble of networks to achieve lower error for this part. Describe your
method and report your valftest error. You must select a model using the validation set and then
test your selected model with the test set. Points are awarded as follows: +10 for test error <

2.2%, +10 for test error < 2.0%, +10 for test error < 1.8%.

c. Positional encoding [30 pts]
Advanced

Because linear functions are easier to represent in MLPs, it can help to represent features in a
way that makes them more useful linearly. An example is the use of positional encoding to
represent a pixel position, as described in hitps //arxiv org/pdf/2006 10739 pdf

For this problem, use positional encoding to predict RGB values given pixel coordinate of this
image. You can resize the image to a smaller size for speed (e.g. 64 pixels on a side). In this
problem, the network is acting as a kind of encoder — you train it on the same pixels that you
will use for prediction.

1. Create an MLP that predicts the RGB values of a pixel from its position (x,y). Display
the RGB image generated by the network when it receives each pixel position as an
input.

2. Write code to extract a sinusoidal positional encoding of (%, y). See this page for details.

Create an MLP that predicts a pixel's RGB values from its positional encoding of (X, y).

Display the RGB image generated by the network when it receives each pixel position as

an input.

L

The paper uses these MLP design parameters: L2 loss, RelL) MLP with 4 layers and 256
channels {nodes per layer), sigmoid activation on output, and 256 frequencies.

What to remember

* Perceptrons are linear prediction models

 MLPs are non-linear prediction models,
composed of multiple linear layers with non-
linear activations

Py Output

0.6
Gender

* MLPs can model more complex functions, but
are harder to optimize o

“Probability of
beingAlive”

* Optimization is by a form of stochastic gradient
descent

* Deeper networks are subject to vanishing
gradient problems that are reduced (but not
eliminated) with ReLU activations

Figure source

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

Next lectures

e Convolutional networks (CNNs)

* Deep networks
— (Brief) history of deep networks
— What made deep networks work?

— Residual networks

* More about deep network optimization
— Improvements on SGD
— Normalization and data augmentation

— Linear probe and fine-tuning
 Mask-RCNN line of work

	MLPs and Backprop
	Multi-layer Perceptrons (MLPs)
	Perceptron
	Perceptron Training
	Perceptron Optimization by SGD
	Perceptron is often not enough
	Multi-Layer Perceptron (MLP)
	Example MLP for MNIST Digits
	Linear activation
	Sigmoid activation
	ReLU (Rectified Linear Unit) activation
	MLP Architectures: Hidden Layers and Nodes
	Application Example: Backgammon (1992)
	Q1-Q3
	Training of multi-layer networks
	Backpropagation
	Backpropagation: add “hidden” node
	Backpropagation: add second hidden node
	Backpropagation: add ReLU activation
	Backpropagation: add ReLU activation
	Backpropagation: add ReLU activation
	Backpropagation: General Concept
	Another backpropagation example
	Another backpropagation example
	Q4
	Good 3bluebrown video (for later)
	What is the benefit and cost of going from a perceptron to MLP?
	MLP Optimization by SGD
	Demo: Part 2
	Multi-Layer Network Demo
	Another application example: mapping position/rays to color
	Generalized insight from “Fourier Features”
	HW 4 (due Nov 4)
	HW 4
	What to remember
	Next lectures

