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Questions with < 60% mean score

Training test split - Multiple Choice

Why is it important to evaluate with a test set of examples that are different from the
examples used for training the model?

(a) Expected errors of the train set and test set are both good indicators of expected
a : : :
performance for future examples, but the test set gives a more conservative estimate

The expected error of the training set is lower than the expected error of a

O (b)

random sample from the same distribution

The expected error of the training set is higher than the expected error of a random
sample from the same distribution



Questions with < 60% mean score

Transformation / Normalization - Multiple Choice

Which of these classification methods will be most sensitive to a feature
normalization in which you subtract the mean and divide by the standard
deviation of each feature?

(a) Naive Bayes with Gaussian probability functions

O (b) K-nearest neighbor
(c) Linear SVM

(d) Linear logistic regression



Questions with < 60% mean score

Hyper-parameter - Multiple Choice

True/False: Although it may decrease the speed of prediction, increasing “K” in

KNN generally increases the accuracy of prediction.

True

O ralse



Questions with < 60% mean score

Support Vector Machine - Multiple Choice

Which of these are not theoretical justifications for SVM generalization?

(a) The final SVM model depends on a subset of training examples

The SVM model maximizes the likelihood of the training labels given the trainin
O ®) features ’ ’ ’

© SVM attempts to achieve at least some minimum confidence for each training
C
example

Save & Grade -

New variant



Reminder about grading

* Lowest exam score dropped

examl + exam?2 + final_proj + XP
300 + max(XP,400)

examl + exam2 + final_proj + XP
300 + max(XP,525)

e 3 credit: score

e 4 credit: score

Example for 3 credit version: Example for 4 credit version:

« Exam scores: 70, 75, 85 « Exam scores: 90, 75, 85

« HW scores: 90, 120, 0, 130, 90 « HW scores: 120, 0, 120, 130, 110

* Final project: 90 * Final project: 92

« Late days: 13 (-15 points) « Late days: 10

 Participation points: 30  Participation points: 16

« XP =90+120+130+90-15+30=445 « XP=120+0+120+130+110+16=496

« Grade = (75+85+90+445) / (300+445)=93.2% + Grade = (90+85+496+92) / (300+525)=92.5%



Deep Learning

Deep learning is a way of learning effective representations, most
effective when the inputs have important structures, such as images,
audio, text

e Today: Stochastic Gradient Descent (SGD)

* Thurs: MLPs and backpropagation

 Oct 21: Convolutional networks, residual blocks, advanced SGD
* Oct 23: Training and adapting deep networks, computer vision
* Oct 28: Representing words, transformer blocks

* Oct 30: More transformers, use in vision and language

* Nov 4: Foundation models: CLIP and GPT



Machine learning optimization

Optimization Solution Depends on Optimization Strategy is

Initialization or Randomized Important to Effectiveness?
Optimization?

KNN N/A No No
K-means Coordinate Descent Yes No
Linear Regression Iterative No No
Logistic Regression lterative No No
Linear SVM Iterative No No
Kernelized SVM Iterative No No
EM Algorithm Coordinate Descent Yes No
Decision Tree Greedy selection No No

« For methods we learned so far, one optimizer may be faster or more memory efficient than another, but they
will generally be able to achieve similar solutions.



Machine learning optimization

Optimization Solution Depends on Optimization Strategy is

Initialization or Randomized Important to Effectiveness?
Optimization?

KNN N/A No No
K-means Coordinate Descent Yes No
Linear Regression lterative No No
Logistic Regression Iterative No No
Linear SVM Iterative No No
Kernelized SVM Iterative No No
EM Algorithm Coordinate Descent Yes No
Decision Tree Greedy selection No No
MLPs, Deep Iterative Yes Yes
Networks

« For methods we learned so far, one optimizer may be faster or more memory efficient than other, but they
will generally be able to achieve similar solutions.
« For MLPs and deep networks, optimization is an important part of design.



This lecture

1. Batch gradient descent

2. PEGASOS: Stochastic Gradient Descent for SVM

3. Perceptrons



Gradient descent

gradient descent (f’ (x), x0, lr, niter)
x = x0
for t 1n range(niter):
X = X — lr*f" (x)

return X



Gradient descent

gradient descent (f’ (x), x0, lr, niter)
x = x0
for t 1n range(niter):
X = X — lr*f" (x)

return X

Learning rate: 0.1

Example: w0
fx)=x?—4x+1 =«
f,(x) — ZX - 4‘ 20

Example: https://towardsdatascience.com/gradient-descent-

algorithm-a-deep-dive-cf04e8115f21
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Gradient descent

gradient descent (f’ (x), x0, lr, niter)

x = x0
for t 1n range(niter):
X = X — lr*f" (x)

return X

Example:
fx) = x2—4x+1
f'(x)=2x—4

Example: https://towardsdatascience.com/gradient-descent-
algorithm-a-deep-dive-cf04e8115f21

Learning rate: 0.8

10
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Gradient descent challenge cases

Learning rate: 0.4
starting point: -0.5

30 4

step: 0 Ct
5 | result: -0.5 \,ﬁ\
20 Global Minimum
— ( Best One)
x
15 4
10 4
» Local
05 - U Minimum
05 0.0 05 10 15 20 e
X . . .
Saddle points (gradient = 0 in some parts of solution space) Multiple local minima

Many models we’ve learned so far (e.g., SVM, logistic regression, linear regression) are convex, so
they don’t have these challenges.

Example: https://towardsdatascience.com/gradient-descent-algorithm-a-deep-dive-cf04e8115f21  Fig: https://www.mltut.com/stochastic-gradient-descent-a-super-easy-complete-quide/
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INIMa

Gradient Descent Visualization with Local M

Figure source


https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

Learning rates and learning schedules

* Learning rate = step size that is multiplied by gradient
direction/magnitude

— Large rate allows big movements toward optimum but might over-step
— Small rate is less likely to over-step but could take longer

* Learning schedule: change learning rate over time
— Constant
— Exponential decay, e.g. Ir = Ir * 0.95
— Linear, e.g. Ir = Ir0 *(1 — iter / max_iter)



SVM Formulation

Prediction

y, = sign(w!x,, + b)

Optimization Known as “hinge loss”

/ Penalty is paid if margin is less than 1

N
1 1
w* = argmin E)LIIWII2 + Nz max(0,1 —y,(w'x,, + b))
n

w

Here, y € {—1,1} which is a common convention that simplifies notation for binary classifiers



Gradient descent with SVM

gradient descent(f’ (w,1,x,y), 1lr, niter)
W = zeros(x.shapell],)
for t 1n range(niter):
for 1 1n range(len(w)) :
wii] = w[1] - 1lr*f’ (w,1,x,V)

return X

N
1 1
fw,x,y) = §/1||W||2 + NZ max(0,1 —y,(wlx,)) Only examples with score
m of correct answer less
1 than.1 contribute to the
Frw,ix,y) = Awg+ 2 ) =00nWx,) < Dypty  Graden
n

Slow with large datasets, because need to compute scores for all examples in each step



Pegasos: Primal Estimated sub-GrAdient SOlver for SVM
(2011)

mm%|w|z = Y owi(x.y)) SVM problem that we want to solve
w ; m o« . . .
(x,y)ES (Minimize weights square + sum of
((w:(x,y)) = max{0.1 —y(w.x)} hinge losses on all samples)
. A 2 - .
flwiie) = Slwl* + e(w; (xi,, 3,) Problem in terms of one sample
Vi=Awy — Lyi, (We.X4,) < 1] ya, X, Gradient in terms of one sample

- Direction to move to improve solution

https://home.ttic.edu/~nati/Publications/PegasosMPB.pdf



https://home.ttic.edu/%7Enati/Publications/PegasosMPB.pdf

Pegasos algorithm: Stochastic Gradient Descent (SGD)

INPUT: S, AT Notation

INITIALIZE: Set w1 = 0

ForR t=1,2,....1 S: training set
Choose i € {1, ...,|S]|} uniformly at random. 1: regularization weight
| . - A
Set e = 53 T: number iterations

Ifyi, (We,x;,) < 1, then:
Set Wil < (1 — 'T]t)\)Wt + MNtYi, Xy .
Else (if y;, (w¢, x4,) > 1): x;,: features for example i,

Setwit1 = (1 —netA)wy Vi, label for example i;

N¢: step size (“learning rate”)

w;: model weights

OUTPUT: W4 1




Pegasos with mini-batch

e Calculating gradient based on multiple examples reduces

variance of gradient estimate

INPUT: S, N\, T,k
INITIALIZE: Set w1 = 0
For t=1.2,....7T

Choose A: C |m], where

Set Aj ={i € At y; <Wt,_X«gj> < 1}

Set nt = ﬁ

Setwiy1 +— (L—me N)we + 4>

OUTPUT: W11

At| = k, uniformly at random

Yi X4

k: batch size

m: number of training samples
A;: batch of examples

A7 : examples within margin

S: training set

A: regularization weight

T: number iterations

w;: model weights

x;: features for example i
y;: label for example i

1. step size (“learning rate”)



SGD applies to many losses

SVM (hinge loss)

Logistic regression / sigmoid loss

Hinge L1 regression

Margin loss between scores of
most likely and correct label

Variant of a logistic loss

Loss function

((z,yi) = max{0,1 — y;z}

Subgradient

— Ui X if Yiz << 1
Vit — .

0 otherwise

((z, Yi) = log(1 + q‘_"_y‘iz)

— Yq .
Vi = —reriT Xi

((z,y;) = max{0, |y; — z| — €}

X if z—y; >¢€
vi=1<¢ —x; if yj —2z > ¢
0 otherwise

((z,y:) = max 0y, yi) — zy; + 2y

vt = ¢(x4,9) — d(xi, yi)

where §j = arg max §(y, y;) — zZy; + 2y
Y

((z,yi) = log (1 + Z p‘““-’”‘“‘yi)

rEY,

Vi = ZT‘ prp(:)(}{g r‘] — C)(X’.! Eh)

where p,. = 7/ Z eJ
r

z is the score
for y=1



SGD is fast compared to other optimization approaches

astro-ph

primal objective

classification error%

covl
!
| —— Pegasos
'| ---. SDCA
A —e— SVM-Perf
it -e LASVM

Fig. 4 Comparison of linear SVM optimizers. Primal suboptimality (top row) and testing classification error
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(bottom row), for one run each of Pegasos, stochastic DCA, SVM-Perf, and LASVM, on the astro-ph (left),
CCAT (center) and covl (right) datasets. In all plots the horizontal axis measures runtime in seconds.

Dataset | Tramning Size | Testing Size | Features | Sparsity A
astro-ph 20882 32487 99757 0.08% | 5x107?
CCAT 781265 23149 47236 0.16% 107%
covl 522911 58101 54 22.22% 107¢

SDCA = stochastic dual

coordinate descent, another form
of stochastic gradient
optimization that chooses
learning rate dynamically




Experiments with Linear SVM

Dataset | Training Size | Testing Size | Features | Sparsity A
astro-ph 29882 32487 99757 0.08% | 5x 1077
CCAT 781265 23149 47236 0.16% 107%
covl 522911 58101 54 22.22% | 10~°
Training time and test error
Dataset Pegasos SDCA SVM-Perf LASVM
astto-ph | 0.04s (3.56%) | 0.03s(3.49%) | 0.1s(3.39%) | b4s (3.65%)
CCAT | 0.165(6.16%) | 0.36s(6.57%) | 3.6s(5.93%) > 18000s
covl | 0.325(23.2%) | 0.20s(22.9%) | 4.25(23.9%) | 210s (23.8%)




Effect of mini-batch size

i = With fixed
T computation, a
g . batch of 1-256 gets
= the lowest loss
N (but with GPUs,
g z- large batches can
) 1 sometimes reach

| l | | | | | | lower loss In less

1 16 256 4k 256 4k 64k 1M .

k (log scale) kT (log scale) Wa” CIOCk tlme due

to parallelization)

Fig. 7 The effect of the mini-batch size on the runtime of Pegasos for the astro-ph dataset. The first plot
shows the primal suboptimality achieved for certam fixed values of overall runtime k7", for various values of
the mini-batch size k. The second plot shows the primal suboptimality achieved for certain fixed values of £,
for various values of k7". Very similar results were achieved for the CCAT dataset.



Effect of sampling procedure: randomly ordered epochs is best

B = TUniformly random D

= = - New permutation every epoch
—&— Same permutation each epoch \

‘\ Use different random order for each “epoch”

Use same order for each epoch

Sampling with replacement

0.1

0.01
I

Epoch: one run through the training set

0.001
I

primal suboptimality (log scale)

le—4

epochs



Mini-Batch SGD vs. Full Batch Gradient Descent

 Mini-batch is faster

— Time to compute gradient is O(B) for —Batshpradisntdescsnt
batch size B, but standard error of — Mini-batch gradient Descent
gradient direction is 0(1/1/3) — Stochastic gradient descent

— E.g. batch size of 10000 vs 100 will
take 100 times longer but reduce
standard deviation by factor of 10
e Full batch is more stable, but the
instability of SGD can help escape
https://medium.com/analytics-vidhya/gradient-descent-

I OCda I minimad vs-stochastic-gd-vs-mini-batch-sgd-fbd3a2cb4ba4d

 We’ll discuss enhancements to SGD,
such as momentum later

e SGD training is highly parallelizable
(good for GPU processing)



Pegasos: take-ways and surprising facts

* SGD is very simple and effective optimization algorithm — step
toward better solution based on a small sample of training data

* Not very sensitive to mini-batch size (but larger batches can be
much faster with GPU parallel processing)

* The same learning schedule is effective across several problems

* Alarger training set makes it faster to obtain the same test
performance



Q1-Q2
https://tinyurl.com/441AML-L14
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Perceptron

Input Perceptron = thresholded linear prediction model for

classification

Weights

Classically, the loss is a hinge loss (like SVM), but we'll consider
MSE and logistic losses

X,
Output: sgn(w-x + b)
X3 >
sgn returns -1 for negative inputs and +1
Xo for positive inputs

Fig source: CS 440


https://courses.grainger.illinois.edu/cs440/fa2019/Lectures/lect26.html

Perceptron Update Rule with MSE Loss

Prediction: f(x) = wgxy + wix; + ... WyXx,, + b

Error: E(x) = (f(x) — y)?

prediction tasget
Update w;: take a step to decrease E'(x) Chain Rule:
L2 @ - ) e o
= 2 () — s
wi =w; —n(f(x) —y)x; (the 2 is folded into the learning rate)

N

Make error lower Learning rate



Perceptron Optimization by SGD (MSE Loss)

Randomly initialize weights, e.g. w ~ Gaus(mu=0, std=0.05)
For each iteration t:
Split data into batches
n=01/t
For each batch X,,:
For each weight wy;:

1
Wi =W; —1 |X_b|2anXb(f (Xn) = Yn)Xni



With different loss, the update changes accordingly

Logistic loss:

f(x) =wyxy +wix; + ... Wx,, + b

1
P(ylx) - 1+exp(—-yf(x))

E(x) = —log P(y|x)

, y €E{—1,1}

1
Wi = Ww; + le—blzxnexb VnXni(1 =Py = ynlxn))
A

decrease —logP(y|x) = increase logP(y|x)



Q3

https://tinyurl.com/441AML-L14
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Which of these can a perceptron solve (fit with zero training error)?
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Which of these can a perceptron solve (fit with zero training error)?

* Perceptron is linear, but we often need a non-linear prediction
function

Perceptron is often not enough
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Q4

https://tinyurl.com/441AML-L14
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Things to Remember

e Gradient descent iteratively steps
in direction of negative gradient of
loss

e Stochastic gradient descent
estimates gradient using small
batches of samples

— Faster than full gradient descent

* Linear models have limited ability
to fit the data — often need non-
linear models like multilayer
networks

X1

50 4

30

20 1

10 4

Learning rate: 0.1

0.2
0.4
0.6
0.8
1.0



Coming up

* Thursday: MLPs



	Optimization and Stochastic Gradient Descent
	Exam 1
	Questions with < 60% mean score
	Questions with < 60% mean score
	Questions with < 60% mean score
	Questions with < 60% mean score
	Reminder about grading
	Deep Learning
	Machine learning optimization
	Machine learning optimization
	This lecture
	Gradient descent
	Gradient descent
	Gradient descent
	Gradient descent challenge cases
	Gradient Descent Visualization with Local Minima
	Learning rates and learning schedules
	SVM Formulation
	Gradient descent with SVM
	Pegasos: Primal Estimated sub-GrAdient SOlver for SVM (2011)
	Pegasos algorithm: Stochastic Gradient Descent (SGD)
	Pegasos with mini-batch
	SGD applies to many losses
	SGD is fast compared to other optimization approaches
	Experiments with Linear SVM
	Effect of mini-batch size
	Effect of sampling procedure: randomly ordered  epochs is best
	Mini-Batch SGD vs. Full Batch Gradient Descent
	Pegasos: take-ways and surprising facts
	Q1-Q2
	Perceptron
	Perceptron Update Rule with MSE Loss
	Perceptron Optimization by SGD (MSE Loss)
	With different loss, the update changes accordingly
	Q3
	Demo
	Perceptron is often not enough
	Q4
	Things to Remember
	Coming up

