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Recap of classification and regression

Nearest neighbor is widely used
— Super-powers: can instantly learn new classes and predict from one or many examples

Naive Bayes represents a common assumption as part of density estimation, more typical as
part of an approach rather than the final predictor

— Super-powers: Fast estimation from lots of data; not terrible estimation from limited data

Logistic Regression is widely used
— Super-powers: Effective prediction from high-dimensional features; good confidence estimates

Linear Regression is widely used

— Super-powers: Can extrapolate, explain relationships, and predict continuous values from many
variables

Almost all algorithms involve nearest neighbor, logistic regression, or linear regression
— The main learning challenge is typically feature learning



 So far, we’ve seen two main
choices for how to use features X
1. Nearest neighbor uses all the X X x
. . . . . (0]
features jointly to find similar o © X
examples ©0 o
o
2. Linear models make predictions ol X X x X
out of weighted sums of the »
features
* |f you wanted to give someone a If x2 < 0.6 and x2 > 0.2 and x2 < 0.7, ‘0

Else “x'

rule to split the ‘0’ from the X/,
what other idea might you try?

Can we learn these kinds of rules automatically?



Decision trees

* Training: lteratively choose the attribute and split value that
best separates the classes for the data in the current node

 Combines feature selection/modeling with prediction
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Fig Credit: Zemel, Urtasun, Fidler
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Decision Tree Classification

Test example

width > 6.5cm?

height > 9.5cm? height > 6.0cm?

Slide Credit: Zemel, Urtasun, Fidler
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Example with discrete inputs

Example _ Input Attributes _ Goal
Alt | Bar | Fri  Hun | Pat | Price| Rain| Res = Type Est WillWait

X1 Yes| No No | Yes| Some| $$8 No | Yes French| 0-10 | y, = Yes
X9 Yes  No | No Yes Full $ No | No Thai | 30-60 | 1= No
X3 No | Yes No | No Some| § No | No | Burger| 0-10 | y3= Yes
X4 Yes | No | Yes| Yes| Full $ Yes | No Thai | 10-30 | y4= Yes
X5 Yes | No | VYes| No | Full | $$3 | No | Yes French| >60 | y;= No
X6 No | Yes No Yes| Some $§ Yes | Yes ltalian | 0-10 | ys = Yes
X7 No | Yes No NMNo| None $ Yes | No Burger | 0-10 | y;= No
X3 No| No No Yes| Some| $$ | Yes | Yes  Thai 0-10 | ys = Yes
Xg No | Yes| Yes| No | Full $ Yes | No  Burger| >60 | yy= No
X10 Yes | Yes Yes Yes| Full | $3% | No | Yes ltalian | 10-30 | yip = No
X1 No| No |  No No | None $ No | No Thai 0-10 | y;; = No
X19 Yes | Yes Yes Yes| Full $ No | No | Burger | 30-60 | y12 = Yes

1. Alternate: whether there is a suitable alternative restaurant nearby.

2. Bar: whether the restaurant has a comfortable bar area to wait in.

3. Fri/Sat: true on Fridays and Saturdays.

4. Hungry: whether we are hungry.

5. Patrons: how many people are in the restaurant (values are None, Some, and Full).

6. | | Price: the restaurant's price range (%, $%, $%%).

/. Raining: whether it is raining outside.

8. Reservation: whether we made a reservation.

9. Type: the kind of restaurant (French, Italian, Thai or Burger).

Attrl butes: 10. | | WaitEstimate; the wait estimated by the host (0-10 minutes, 10-30, 30-60, =60).

Slide Credit: Zemel, Urtasun, Fidler
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Example with discrete inputs

Example Input Attributes
Alt | Bar | Fri |Hun | Pat |Price|Rain| Res  Type Est

X1 Yes No| No| Yes| Some 3$$5| No | Yes French | 0-10
X Yes | No| No | Yes| Full $ No | No Thai | 30-60
X3 No | Yes| No | No | Some $ No | No | Burger | 0-10
X4 Yes | No | Yes| Yes| Full $ Yes | No | Thai | 10-30
X5 Yes| No| Yes| No | Full | $88| No Yes French >60
X6 No | Yes| No | VYes| Some| $$ | Yes| Yes| |Italian 0-10
X7 No | Yes| No| No| None| $ | Yes| No | Burger 0-10
Xg No | No| No | Yes| Some| $$ | Yes| Yes| Thai | 0-10
Xy No | Yes| Yes| No | Full 5 Yes | No | Buiger | >60
X10 Yes | Yes| Yes| Yes| Full | $$$ | No Yes [ltalian | 10-30
X1 No| No| No| No| None| $ | No| No| Thai | 0-10
X12 Yes | Yes| Yes| Yes| Full 5 No | No  Burger | 30-60

1. | | Alternate: whether there is a suitable alternative restaurant nearby.

2 Bar: whether the restaurant has a comfortable bar area to wait in.

3. Fri/Sat: true on Fridays and Saturdays.

4. | | Hungry: whether we are hungry.

5. | | Patrons: how many people are in the restaurant (values are None, Some, and Full).

6 Price: the restaurant's price range ($, $$, $$$).

7 Raining: whether it is raining outside.

8. | | Reservation: whether we made a reservation.

9. | | Type: the kind of restaurant (French, Ttalian, Thai or Burger).

Attri b utes: 10. | | WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60)

Figure Source: Zemel, Urtasun, Fidler

Goal
WillWait
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1= No
yz = Yes
yy = Yes
y; = No
yg = Yes
yr = No
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¥y = No
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11 = No
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@ The tree to decide whether to wait (T) or not (F)
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Decision Trees

Eﬂidth >6.5cm? ]

Yes No

[height>9.5cm? ] ‘heighDB‘{]cm? J

“ @ - @

@ Internal nodes test attributes
@ Branching is determined by attribute value

@ Leaf nodes are outputs (class assignments)

Figure Source: Zemel, Urtasun, Fidler
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Decision tree algorithm

Training
Recursively, for each node in tree:
1. If [abels in the node are mixed:

a. Choose attribute and split values
based on data that reaches each

node
b. Branch and create 2 (or more)
nodes
2. Return

X2

x1
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Decision tree algorithm

Training
Recursively, for each node in tree:

1. If labels in the node are mixed:

a. Choose attribute and split values
based on data that reaches each

node
b. Branch and create 2 (or more)
nodes
2. Return

X2

(0,0)

x2 <0.6

2N

x1<0.7 x2<0.8
g .
X < ™
x1<04
<
X x1<0.5
 \
o) X
X
X
X °1x x
X
o
o X
O o
o
o
X1



Decision tree algorithm

Prediction
1.Check conditions to descend tree

2.Return label of leaf node

X2

(0,0)

x1



How do you choose what/where to split?

@ Which attribute is better to split on, X; or X537

X, | % | Y
T T
y T F

1 X

t f t A2 f LI
/\ /\ T F
Y=ti4 o y=ti1 o Y=t:3 vyt [F T
Y=f: 0 Y=f:3 Y=f:1 Y=f:2 . =
F | T
FF

Idea: Use counts at leaves to define probability distributions, so we can measure
uncertainty

Slide Source: Zemel, Urtasun, Fidler
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Quantifying Uncertainty: Coin Flip Example

Sequence 1:
200100000000000100 ... 7

Sequence 2:
1010111010011 0101...7

16

3 10

VEIrsus ‘ I '

0 1

Slide Source: Zemel, Urtasun, Fidler
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Quantifying Uncertainty: Coin Flip Example

Entropy H.:

Why does entropy have that
equation?
* p(x) is the probability that X
has value x
* —log, p(x) is the number of
& binary search steps needed to
0 1 identify value x
0 1 « Entropy is expectation of the

8 1 1 1 A ; number of binary search steps
9 9

8/9

> log, = ~ 0.09 (i.e. bits) needed to identify the

8
—— log, R
9 9 9 9 value of X

P 4
logy 9 9 9 log,

@ How surprised are we by a new value in the sequence?

@ How much information does it convey?

Slide Source: Zemel, Urtasun, Fidler
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Entropy Explanation

Q: Why is entropy H(X) = — )., p(x)log, p(x) ?
A: Entropy = average number of bits needed to encode X

E. g . X= 1 2 3 4
P(X) 50% 25% 0% 25%
Encoding 0 1-0 1-1
Bits Used 1 2 0 2

Expected bits=05*14+025x24+0x0+ 0252 =1.5
Entropy = —0.5 *log, 0.5 — 0.25 = log, 0.25 — 0 — 0.25 = log, 0.25 = 1.5



Quantifying Uncertainty: Coin Flip Example

Entropy: H(X)=- Z p(x) log, p(x)

xcX

entropy

1.0
o.sf-
o.ef—
0.45-

0.2}

0 probability p of heads

Slide Source: Zemel, Urtasun, Fidler
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Entropy of a Joint Distribution

@ Example: X = {Raining, Not raining}, Y = {Cloudy, Not cloudy}

Cloudy |Not Cloudy

Raining | 24/100 | 1/100

Not Raining| 25/100 50/100

HIX.Y) = =) ) plx.y)logy p(x.y)

xeXyeY

04 % 1, 1 25 25 50 50
= ——lo - 0g, — — — lo — 0gy ——

100 °22700 ~ 100 22700 100 2700 100 22700
~  1.56bits

Slide Source: Zemel, Urtasun, Fidler
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Specific Conditional Entropy

@ Example: X = {Raining, Not raining}, Y = {Cloudy, Not cloudy}

-
o

Cloudy |Not Cloudy

Raining | 24/100 | 1/100

Not Raining| 25/100 50/100

@ What is the entropy of cloudiness Y, given that it is raining?

HYIX =x) = =) p(y|x)log, p(y|x)
yeY

%, 24 1, 1

= ——logy — — —log, —

o5 08255 T o5 982 5p
~ 0.24bits

@ We used: p(y|x) = pg?;')’}, and  p(x)=>_, p(x.y) (sumin a row)

Slide Source: Zemel, Urtasun, Fidler
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Conditional Entropy

Cloudy |Not Cloudy

Raining | 24/100 | 1/100

Not Raining| 25/100 50/100

@ [he expected conditional entropy:

HIYIX) = 37 pO)H(YIX = x)

xeX

= =) ) p(x,y)logy p(ylx)

xeEXyeY

Slide Source: Zemel, Urtasun, Fidler
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Conditional Entropy

@ Example: X = {Raining, Not raining}, Y = {Cloudy, Not cloudy}

Cloudy [Not Cloudy

Raining | 24/100 | 1/100

Not Raining| 25/100 50/100

@ What is the entropy of cloudiness, given the knowledge of whether or not it
is raining?

H(Y|X) = Zp H(Y|X = x)
xeX
1 L 3 -
= 1H(c|oudy|l5 raining) -+ HH(cloudy\not raining)
~ 0.75 bits

Slide Source: Zemel, Urtasun, Fidler
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Conditional Entropy

@ Some useful properties:

» H is always non-negative
» Chainrule: H(X,Y)=H(X|Y)+ H(Y)=H(Y|X)+ H(X)

» |f X and Y independent, then X doesn't tell us anything about Y:
H(Y|X)= H(Y)

» But Y tells us everything about Y: H(Y|Y) =0

» By knowing X, we can only decrease uncertainty about Y':

H(Y'|X) < H(Y)

Slide Source: Zemel, Urtasun, Fidler
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Information Gain

Cloudy |Not Cloudy

Raining | 24/100 | 1/100

Not Raining| 25/100 50/100

@ How much information about cloudiness do we get by discovering whether it
is raining?

IG(Y|X) = H(Y)—-H(Y|X)
~ (.25 bits
Also called information gain in Y due to X

o
@ If X is completely uninformative about Y: IG(Y|X) =0
o If X is completely informative about Y: IG(Y|X) = H(Y)

@ How can we use this to construct our decision tree?

Slide Source: Zemel, Urtasun, Fidler
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Terminology Recap

uncertainty of X

e Specific conditional entropy,
H(X|Y = y): measures HX|Y =y) =— ) P(X = x|V = y)log, P(X = x|V =
uncertainty of X if Y is known A= Z ( " yloes =y
to have a particular value

* Conditional entropy H(X|Y): H(X|Y) = _z H(X|Y = y)P(Y =)
measures expected uncertainty >
of X if | know Y

* Information gain I(X|Y):
measures how much knowing Y [(X|Y) =HX) - HX|Y)
would reduce my uncertainty in
X

* Entropy, H(X): measures H(X) = —z P(X =x)log, P(X = x)
X



Constructing decision tree

Training

Recursively, for each node in tree:

1.

d.

If labels in the node are mixed:

Choose attribute and split values
based on data that reaches each
node

Branch and create 2 (or more)
nodes

2. Return

=)

1. Measure information gain
» For each discrete attribute: compute

information gain of split
For each continuous attribute: select
most informative threshold and
compute its information gain. Can
be done efficiently based on sorted
values.

2. Select attribute / threshold with
highest information gain



Q1-Q3
https://tinyurl.com/441AML-L12
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dEHEO LI

Patrons?

Full

NEEE [BE
7] BEOD
B [

Q3 answer explained

IG(Y) = H(Y) — H(Y|X)

2 2 4 4
IG =1-|— )+ —= )+ — i)+ — )| =
(type) [12H(Y\Fr)+ 12H(Y\1t)+ 12H(Y|Thal)—|— 12H(Y\Bur )] 0
2 4 6 24
IG(P =1-|-—H(O, — H(1. —H(-.=)| =0.
(Patrons) [12H(0’1)+ 12!1’(1__0)—|— 12H(6’6)] 0.541

Slide Source: Zemel, Urtasun, Fidler
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What if you need to predict a continuous value?

* Regression Tree

— Same idea, but choose splits to minimize sum squared error

2nenode Snode(Xn) — :Vn)z
— frode (X)) typically returns the mean prediction value of data points

in the leaf node containing x,,
OO0
|
=]

— What are we minimizing?

Q4

https://tinyurl.com/441AML-L12
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What does a regression tree minimize?

Conditional variance Var(y|x) according to clustering given by tree:

E (f (:z:n)—yq,l)2 where f(xy,) is mean of y;’s with corresponding «; in the same node as zy,

n



Variants

Different splitting criteria, e.g. Gini index: 1 — Zipiz (very
similar result, a little faster to compute)
Most commonly, split on one attribute at a time

— In case of continuous vector data, can also split on linear projections
of features

Can stop early
— when leaf node contains fewer than N,_.. points
— when max tree depth is reached

Can also predict multiple continuous values or multiple classes



Decision Tree vs. 1-NN

* Both have piecewise-linear
decisions

* Decision tree is typically “axis-
aligned”

* Decision tree has ability for early
stopping to improve generalization

* True power of decision trees arrives
with ensembles (lots of small or
randomized trees)

DT Boundaries

v

(0,0) «x1

1-NN Boundaries

v

(0,0)




Regression Tree for Temperature Prediction

e Min leaf size: 200

* RMSE=
* R?2=0.88

from sklearn import tree

3.42

from sklearn.tree import DecisionTreeRegressor
model = DecisionTreeRegressor (random state=0, min samples leaf=200)

model.fit (x train, y train)
y _pred = model.predict (x val)

tree rmse = np.sqrt(np.mean((y_pred-y val)**2))

tree mae = np.sqrt(np.median(np.abs(y_pred-y val)))
print ('"LR: RMSE={}, MAE={}'.format (tree rmse,
{}'.format (1—tree_rmse**2/np.mean( (y_pred-y pred.mean())**2)))

print ('R"2:

plt.figure(figsize=(20,20)

tree.plot tree(model)

plt.show()

for £ in [334,
print (" {}: {},

372, 405]:
{}'.format (f,

feature to cityl[f],

X[372] ==-1.745
squared_error = 44.986
samples = 819
value = 0.949

X[334] ==8.395
squared_error = 112.287
samples = 1825
value = 10.737

Chicago, yesterday

squared_error = 25.753
samples = 326
value = -5.118

tree mae))

feature to day[f]))

X[334] == 4.615
squared_error = 17.272
samples = 493
value = 4,961

Chicago, yesterday

Milwaukee, yesterday / \ Grand Rapids, yesterday

X[405] == 17.75
squared_error = 25.567
samples = 1006
value = 18.706

X[334] == 1345
squared_error = 13.909
samples = 423
value = 14.094

Chicago, yesterday

X[334] ==21.26
squared_error = 7.393
samples = 583
value = 22.053

AARA

squared_error = 12.178
samples = 286
value = 2.989

squared_error = 11.513
samples = 207
value = 7.685

squared_error = 9.393
samples = 219
value = 11.803

squared_error = 7.068
samples = 204
value = 16.554

squared_error = 5.253
samples = 266
value = 20.235

squared_error = 4.087
samples = 317
value = 23.579




from sklearn import tree
from sklearn.tree import DecisionTreeRegressor
model = DecilsionTreeRegressor (random state=0, min samples leaf=200)
model.fit (x train, y train)
y pred = model.predict (x val)
tree rmse = np.sqrt(np.mean((y pred-y val) **2))
tree mae = np.sqrt(np.median(np.abs(y pred-y val)))
print ('LR: RMSE={}, MAE={}'.format (tree rmse, tree mae))
print ('R*2: {}'.format (l-tree rmse**2/np.mean((y pred-
y pred.mean())**2)))
plt.figure(figsize=(20,20))
tree.plot tree (model)
plt.show ()
for £ in [334, 372, 405]:
print ("{}: {}, {}'.format (£, feature to city[f], feature to dayl[f

1))



Classification/Regression Trees Summary

* Key Assumptions
— Samples with similar features have similar predictions

e Model Parameters

— Tree structure with split criteria at each internal node and prediction at each leaf
node

* Designs
— Limits on tree growth
— What kinds of splits are considered

— Criterion for choosing attribute/split (e.g. gini impurity score is another common
choice)

* When to Use
— Want an explainable decision function (e.g. for medical diagnosis)
— As part of an ensemble (as we’ll see Thursday)

* When Not to Use
— One tree is not a great performer, but a forest is



Q5-Q8
https://tinyurl.com/441AML-L12
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Things to remember

* Decision/regression trees
learn to split up the feature
space into partitions with
similar values

* Entropy is a measure of
uncertainty

* Information gain measures
how much particular
knowledge reduces prediction
uncertainty




Thursday

* Ensembles: model averaging and forests
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