

Decision and Regression Trees

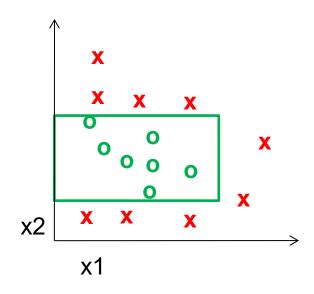
Applied Machine Learning Derek Hoiem

Dall-E: A dirt road splits around a large gnarly tree, fractal art

Recap of classification and regression

- Nearest neighbor is widely used
 - Super-powers: can instantly learn new classes and predict from one or many examples
- Naïve Bayes represents a common assumption as part of density estimation, more typical as part of an approach rather than the final predictor
 - Super-powers: Fast estimation from lots of data; not terrible estimation from limited data
- Logistic Regression is widely used
 - Super-powers: Effective prediction from high-dimensional features; good confidence estimates
- Linear Regression is widely used
 - Super-powers: Can extrapolate, explain relationships, and predict continuous values from many variables
- Almost all algorithms involve nearest neighbor, logistic regression, or linear regression
 - The main learning challenge is typically feature learning

- So far, we've seen two main choices for how to use features
 - Nearest neighbor uses all the features jointly to find similar examples
 - 2. Linear models make predictions out of weighted sums of the features
- If you wanted to give someone a rule to split the 'o' from the 'x', what other idea might you try?



```
If x2 < 0.6 and x2 > 0.2 and x2 < 0.7, 'o' Else 'x'
```

Can we learn these kinds of rules automatically?

Decision trees

- Training: Iteratively choose the attribute and split value that best separates the classes for the data in the current node
- Combines feature selection/modeling with prediction

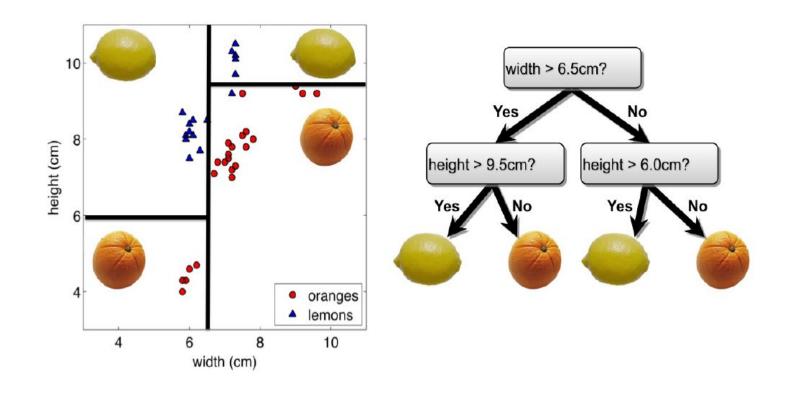
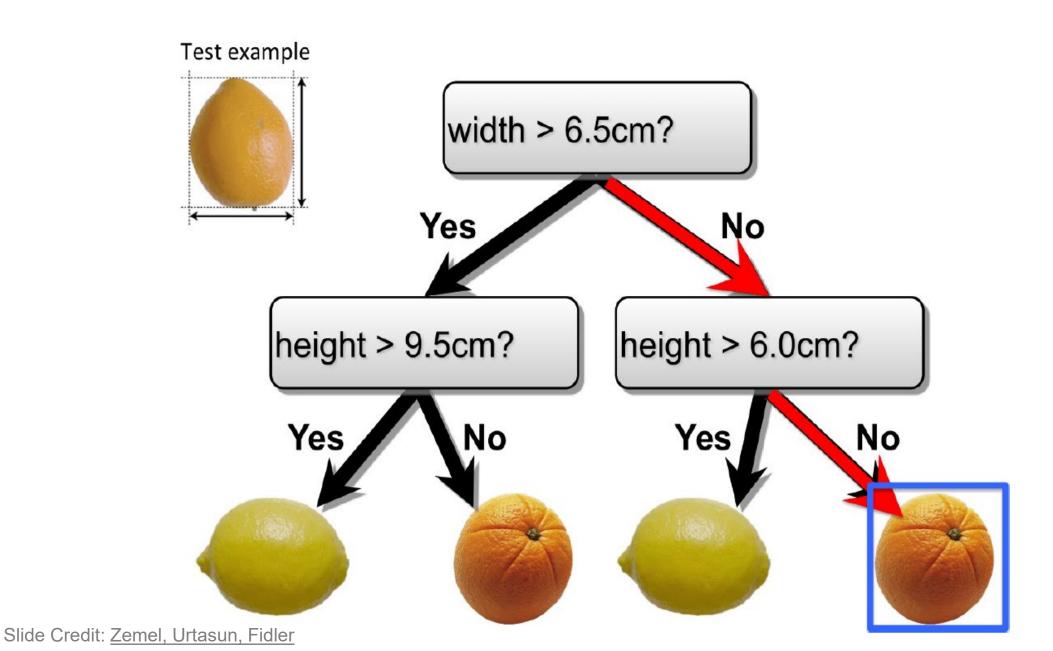


Fig Credit: Zemel, Urtasun, Fidler

Decision Tree Classification



Example with discrete inputs

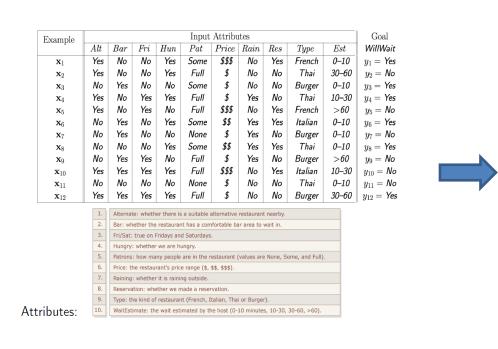
Example					Input	Attribu	ites				Goal
2310311	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWai
\mathbf{x}_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10	$y_1 = Ye$
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30–60	$y_2 = Nc$
\mathbf{x}_3	No	Yes	No	No	Some	\$	No	No	Burger	0–10	$y_3 = Ye$
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10–30	$y_4 = Ye$
\mathbf{x}_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	$y_5 = Nc$
\mathbf{x}_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0–10	$y_6 = Y_6$
\mathbf{x}_7	No	Yes	No	No	None	\$	Yes	No	Burger	0–10	$y_7 = Nc$
\mathbf{x}_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0–10	$y_8 = Y_8$
\mathbf{x}_9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	$y_9 = Nc$
\mathbf{x}_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10–30	$y_{10} = N_0$
\mathbf{x}_{11}	No	No	No	No	None	\$	No	No	Thai	0–10	$y_{11} = N_0$
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30–60	$\mid y_{12} = Y\epsilon$

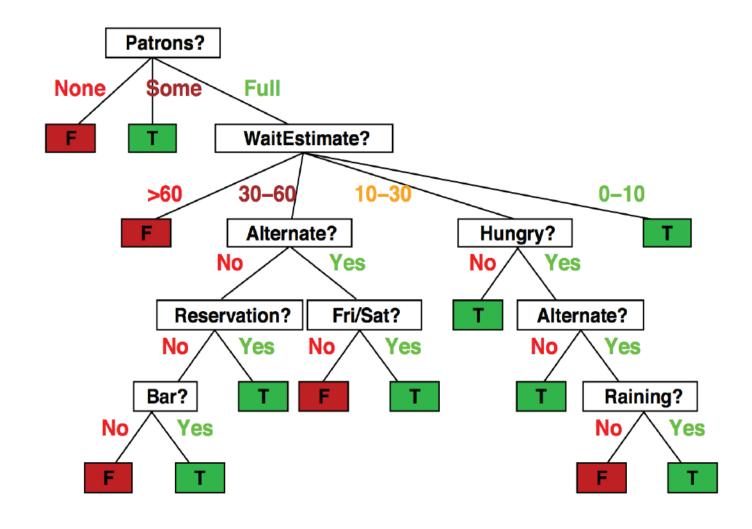
1.	Alternate: whether there is a suitable alternative restaurant nearby.
2.	Bar: whether the restaurant has a comfortable bar area to wait in.
3.	Fri/Sat: true on Fridays and Saturdays.
4.	Hungry: whether we are hungry.
5.	Patrons: how many people are in the restaurant (values are None, Some, and Full).
6.	Price: the restaurant's price range (\$, \$\$, \$\$\$).
7.	Raining: whether it is raining outside.
8.	Reservation: whether we made a reservation.
9.	Type: the kind of restaurant (French, Italian, Thai or Burger).
10.	WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).

Attributes:

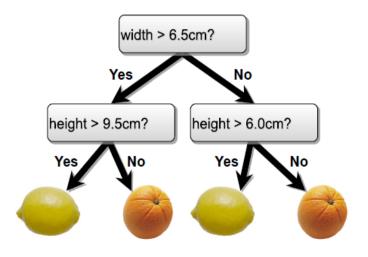
Example with discrete inputs

• The tree to decide whether to wait (T) or not (F)





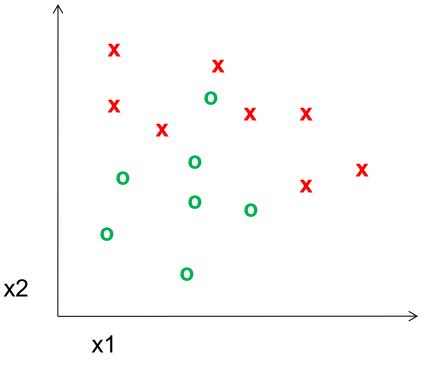
Decision Trees

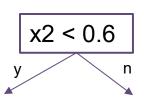


- Internal nodes test attributes
- Branching is determined by attribute value
- Leaf nodes are outputs (class assignments)

Training

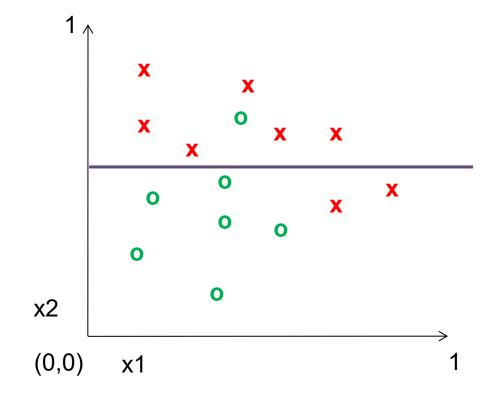
- 1. If labels in the node are mixed:
 - a. Choose attribute and split values based on data that reaches each node
 - b. Branch and create 2 (or more) nodes
- Return





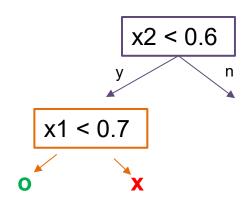
Training

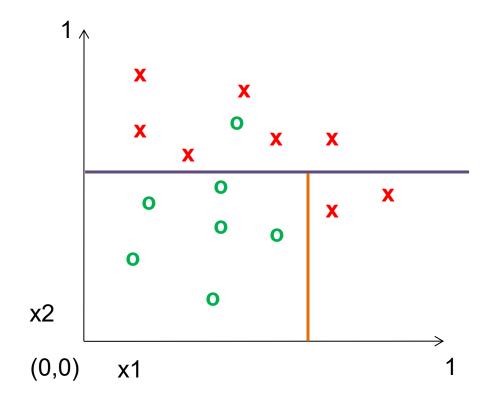
- 1. If labels in the node are mixed:
 - a. Choose attribute and split values based on data that reaches each node
 - b. Branch and create 2 (or more) nodes
- Return



Training

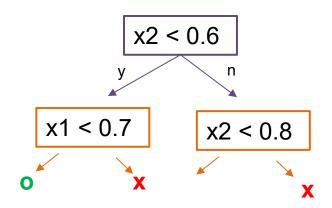
- 1. If labels in the node are mixed:
 - a. Choose attribute and split values based on data that reaches each node
 - b. Branch and create 2 (or more) nodes
- 2. Return

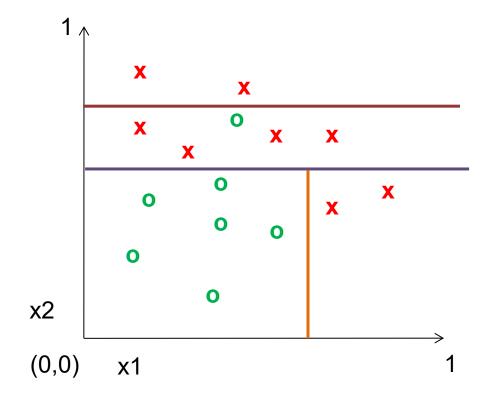




Training

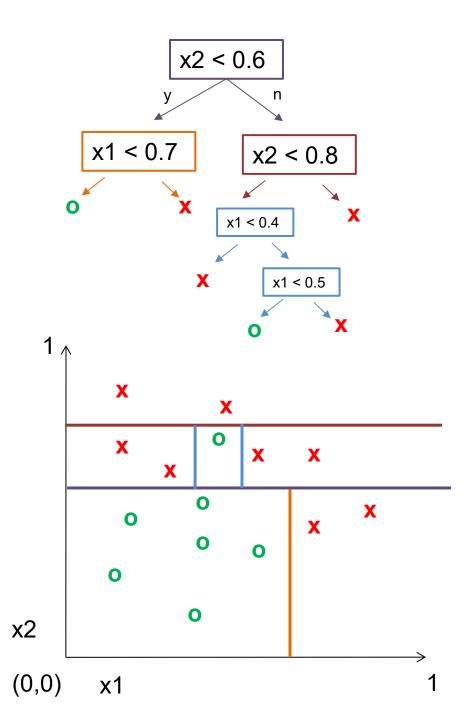
- 1. If labels in the node are mixed:
 - a. Choose attribute and split values based on data that reaches each node
 - b. Branch and create 2 (or more) nodes
- Return





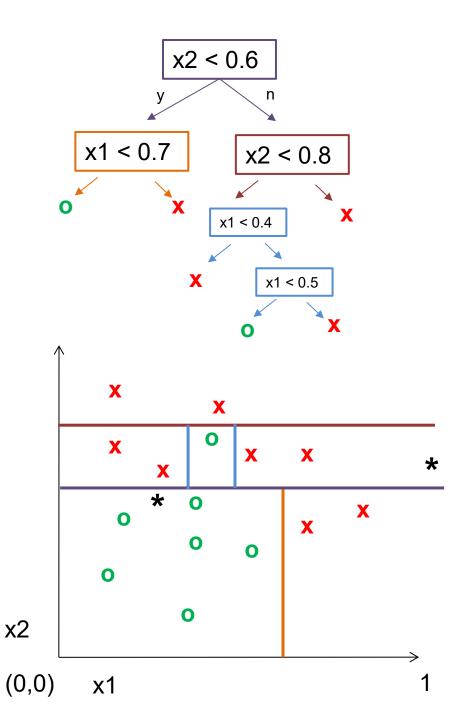
Training

- 1. If labels in the node are mixed:
 - a. Choose attribute and split values based on data that reaches each node
 - b. Branch and create 2 (or more) nodes
- 2. Return



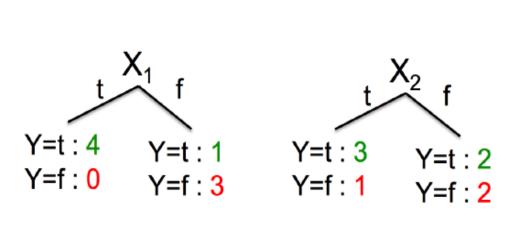
Prediction

- 1. Check conditions to descend tree
- 2. Return label of leaf node



How do you choose what/where to split?

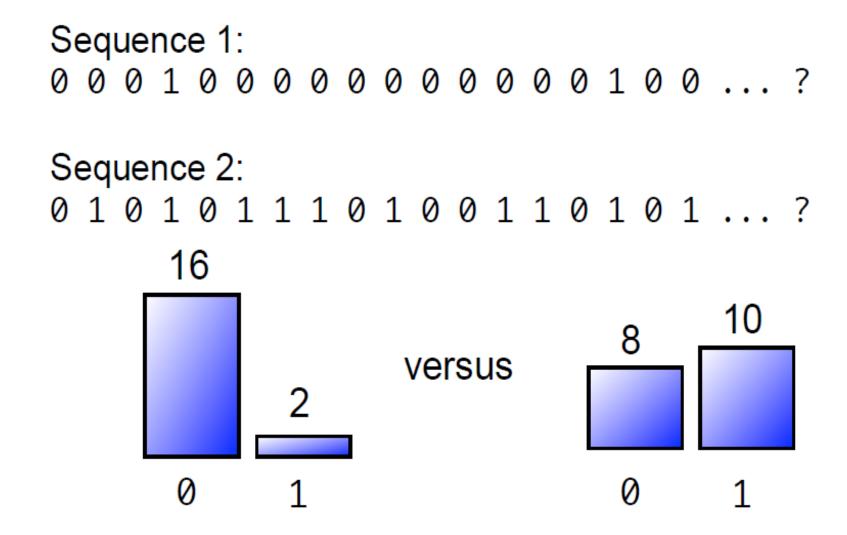
• Which attribute is better to split on, X_1 or X_2 ?



X ₁	X ₂	Υ
Т	Т	Т
Т	F	Т
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F
F	Т	F
H	F	IL

Idea: Use counts at leaves to define probability distributions, so we can measure uncertainty

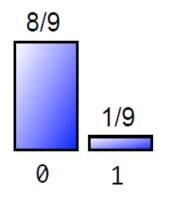
Quantifying Uncertainty: Coin Flip Example

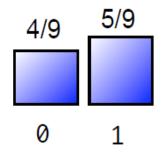


Quantifying Uncertainty: Coin Flip Example

Entropy H:

$$H(X) = -\sum_{x \in X} p(x) \log_2 p(x)$$





$$-\frac{8}{9}\log_2\frac{8}{9} - \frac{1}{9}\log_2\frac{1}{9} \approx \frac{1}{2} \qquad -\frac{4}{9}\log_2\frac{4}{9} - \frac{5}{9}\log_2\frac{5}{9} \approx 0.99$$

$$-\frac{4}{9}\log_2\frac{4}{9} - \frac{5}{9}\log_2\frac{5}{9} \approx 0.99$$

Why does entropy have that equation?

- p(x) is the probability that X has value x
- $-\log_2 p(x)$ is the number of binary search steps needed to identify value *x*
- Entropy is expectation of the number of binary search steps (i.e. bits) needed to identify the value of X

- How surprised are we by a new value in the sequence?
- How much information does it convey?

Entropy Explanation

Q: Why is entropy $H(X) = -\sum_{x} p(x) \log_2 p(x)$?

A: Entropy = average number of bits needed to encode X

E.g.

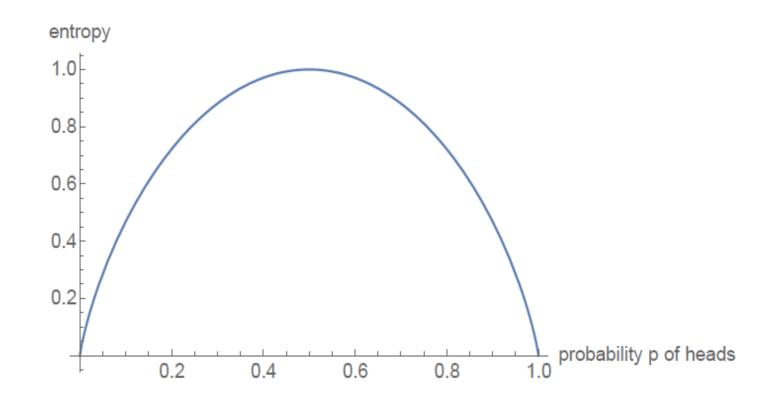
X=	1	2	3	4
P(X)	50%	25%	0%	25%
Encoding	0	1-0		1-1
Bits Used	1	2	0	2

Expected bits = 0.5 * 1 + 0.25 * 2 + 0 * 0 + 0.25 * 2 = 1.5

Entropy = $-0.5 * \log_2 0.5 - 0.25 * \log_2 0.25 - 0 - 0.25 * \log_2 0.25 = 1.5$

Quantifying Uncertainty: Coin Flip Example

Entropy:
$$H(X) = -\sum_{x \in X} p(x) \log_2 p(x)$$



Entropy of a Joint Distribution

• Example: $X = \{\text{Raining, Not raining}\}, Y = \{\text{Cloudy, Not cloudy}\}$

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

$$H(X,Y) = -\sum_{x \in X} \sum_{y \in Y} p(x,y) \log_2 p(x,y)$$

$$= -\frac{24}{100} \log_2 \frac{24}{100} - \frac{1}{100} \log_2 \frac{1}{100} - \frac{25}{100} \log_2 \frac{25}{100} - \frac{50}{100} \log_2 \frac{50}{100}$$

$$\approx 1.56 \text{bits}$$

Slide Source: Zemel, Urtasun, Fidler

Specific Conditional Entropy

• Example: $X = \{\text{Raining, Not raining}\}, Y = \{\text{Cloudy, Not cloudy}\}$

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

• What is the entropy of cloudiness Y, given that it is raining?

$$H(Y|X = x) = -\sum_{y \in Y} p(y|x) \log_2 p(y|x)$$

$$= -\frac{24}{25} \log_2 \frac{24}{25} - \frac{1}{25} \log_2 \frac{1}{25}$$

$$\approx 0.24 \text{bits}$$

• We used: $p(y|x) = \frac{p(x,y)}{p(x)}$, and $p(x) = \sum_{y} p(x,y)$ (sum in a row)

Conditional Entropy

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

• The expected conditional entropy:

$$H(Y|X) = \sum_{x \in X} p(x)H(Y|X = x)$$
$$= -\sum_{x \in X} \sum_{y \in Y} p(x,y) \log_2 p(y|x)$$

Slide Source: Zemel, Urtasun, Fidler

Conditional Entropy

• Example: $X = \{\text{Raining, Not raining}\}, Y = \{\text{Cloudy, Not cloudy}\}$

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

• What is the entropy of cloudiness, given the knowledge of whether or not it is raining?

$$H(Y|X) = \sum_{x \in X} p(x)H(Y|X = x)$$

$$= \frac{1}{4}H(\text{cloudy}|\text{is raining}) + \frac{3}{4}H(\text{cloudy}|\text{not raining})$$

$$\approx 0.75 \text{ bits}$$

Slide Source: Zemel, Urtasun, Fidler

Conditional Entropy

- Some useful properties:
 - H is always non-negative
 - ► Chain rule: H(X,Y) = H(X|Y) + H(Y) = H(Y|X) + H(X)
 - ▶ If X and Y independent, then X doesn't tell us anything about Y: H(Y|X) = H(Y)
 - ▶ But Y tells us everything about Y: H(Y|Y) = 0
 - ▶ By knowing X, we can only decrease uncertainty about Y: $H(Y|X) \le H(Y)$

Information Gain

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

 How much information about cloudiness do we get by discovering whether it is raining?

$$IG(Y|X) = H(Y) - H(Y|X)$$

 $\approx 0.25 \text{ bits}$

- Also called information gain in Y due to X
- If X is completely uninformative about Y: IG(Y|X) = 0
- If X is completely informative about Y: IG(Y|X) = H(Y)
- How can we use this to construct our decision tree?

Terminology Recap

- Entropy, H(X): measures uncertainty of X
- Specific conditional entropy, H(X|Y=y): measures uncertainty of X if Y is known to have a particular value
- Conditional entropy H(X|Y): measures expected uncertainty of X if I know Y
- Information gain I(X|Y):
 measures how much knowing Y
 would reduce my uncertainty in
 X

$$H(X) = -\sum_{x} P(X = x) \log_2 P(X = x)$$

$$H(X|Y = y) = -\sum_{x} P(X = x|Y = y) \log_2 P(X = x|Y = y)$$

$$H(X|Y) = -\sum_{y} H(X|Y = y)P(Y = y)$$

$$I(X|Y) = H(X) - H(X|Y)$$

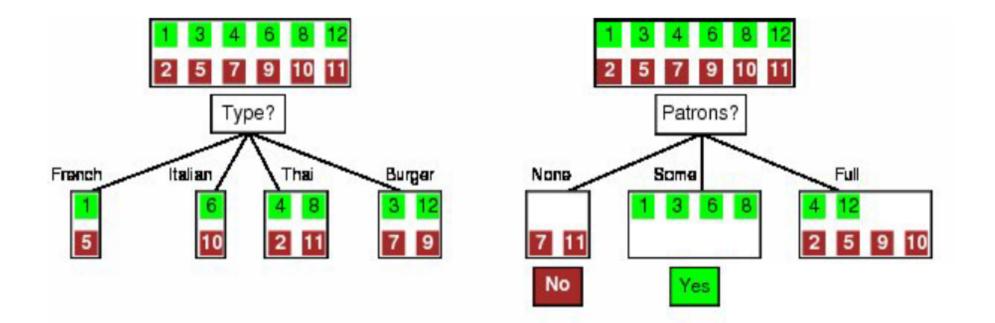
Constructing decision tree

Training

- 1. If labels in the node are mixed:
 - a. Choose attribute and split valuesbased on data that reaches eachnode
 - b. Branch and create 2 (or more) nodes
- 2. Return

- 1. Measure information gain
 - For each discrete attribute: compute information gain of split
 - For each continuous attribute: select most informative threshold and compute its information gain. Can be done efficiently based on sorted values.
- 2. Select attribute / threshold with highest information gain

https://tinyurl.com/441AML-L12



Q3 answer explained

$$IG(Y) = H(Y) - H(Y|X)$$

$$IG(type) = 1 - \left[\frac{2}{12}H(Y|Fr.) + \frac{2}{12}H(Y|It.) + \frac{4}{12}H(Y|Thai) + \frac{4}{12}H(Y|Bur.)\right] = 0$$

$$IG(Patrons) = 1 - \left[\frac{2}{12}H(0,1) + \frac{4}{12}H(1,0) + \frac{6}{12}H(\frac{2}{6},\frac{4}{6})\right] \approx 0.541$$

What if you need to predict a continuous value?

Regression Tree

- Same idea, but choose splits to minimize sum squared error $\sum_{n \in node} (f_{node}(x_n) y_n)^2$
- $-f_{node}(x_n)$ typically returns the mean prediction value of data points in the leaf node containing x_n
- What are we minimizing?

Q4

https://tinyurl.com/441AML-L12

What does a regression tree minimize?

Conditional variance Var(y|x) according to clustering given by tree:

$$\sum_{n} (f(x_n) - y_n)^2$$
 where $f(x_n)$ is mean of y_i 's with corresponding x_i in the same node as x_n

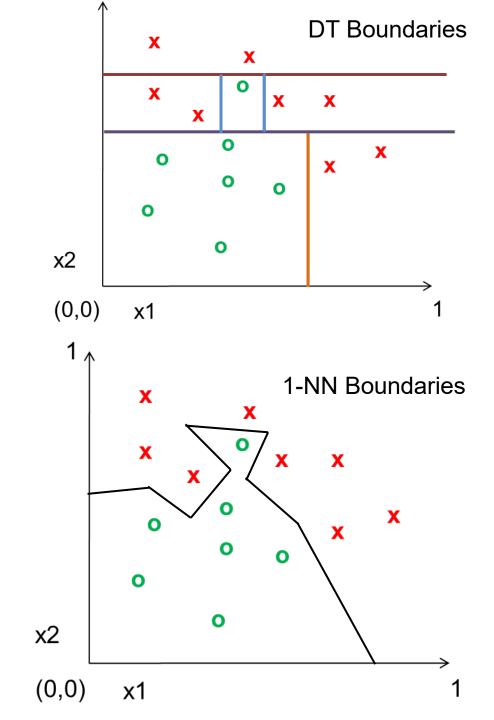
Variants

- Different splitting criteria, e.g. Gini index: $1 \sum_i p_i^2$ (very similar result, a little faster to compute)
- Most commonly, split on one attribute at a time
 - In case of continuous vector data, can also split on linear projections of features
- Can stop early
 - when leaf node contains fewer than N_{min} points
 - when max tree depth is reached
- Can also predict multiple continuous values or multiple classes

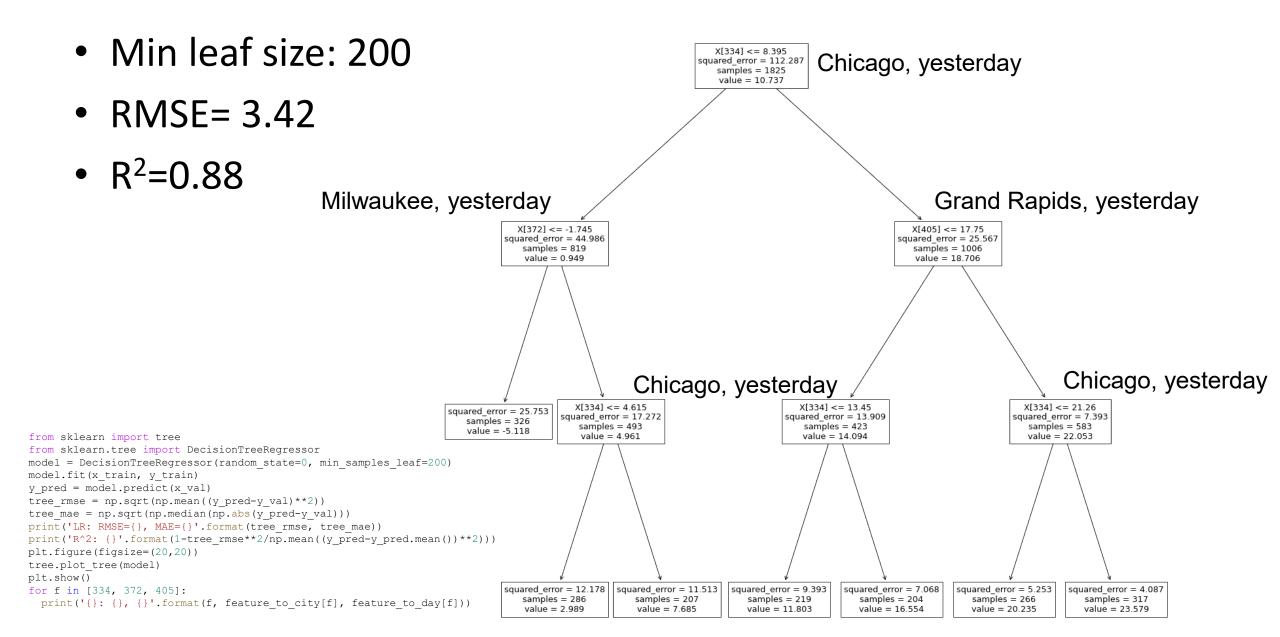
Decision Tree vs. 1-NN

- Both have piecewise-linear decisions
- Decision tree is typically "axisaligned"
- Decision tree has ability for early stopping to improve generalization

 True power of decision trees arrives with ensembles (lots of small or randomized trees)



Regression Tree for Temperature Prediction



```
from sklearn import tree
from sklearn.tree import DecisionTreeRegressor
model = DecisionTreeRegressor(random state=0, min samples leaf=200)
model.fit(x train, y train)
y pred = model.predict(x val)
tree rmse = np.sqrt(np.mean((y pred-y val)**2))
tree mae = np.sqrt(np.median(np.abs(y pred-y val)))
print('LR: RMSE={}, MAE={}'.format(tree rmse, tree mae))
print('R^2: {}'.format(1-tree rmse**2/np.mean((y pred-
y pred.mean())**2)))
plt.figure(figsize=(20,20))
tree.plot tree(model)
plt.show()
for f in [334, 372, 405]:
 print('{}: {}, {}'.format(f, feature to city[f], feature to day[f
]))
```

Classification/Regression Trees Summary

- Key Assumptions
 - Samples with similar features have similar predictions
- Model Parameters
 - Tree structure with split criteria at each internal node and prediction at each leaf node
- Designs
 - Limits on tree growth
 - What kinds of splits are considered
 - Criterion for choosing attribute/split (e.g. gini impurity score is another common choice)
- When to Use
 - Want an explainable decision function (e.g. for medical diagnosis)
 - As part of an ensemble (as we'll see Thursday)
- When Not to Use
 - One tree is not a great performer, but a forest is

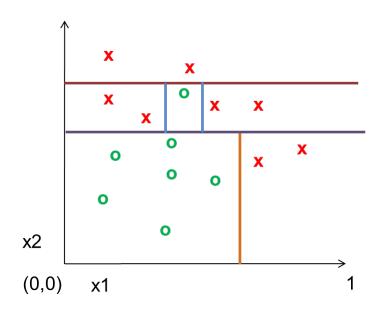
https://tinyurl.com/441AML-L12

Things to remember

 Decision/regression trees learn to split up the feature space into partitions with similar values

Entropy is a measure of uncertainty

 Information gain measures how much particular knowledge reduces prediction uncertainty



$$H(X) = -\sum_{x \in X} p(x) \log_2 p(x)$$

$$IG(Y|X) = H(Y) - H(Y|X)$$

Thursday

• Ensembles: model averaging and forests