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This class: Robust Estimation

* Robust statistics and quantiles

* Detecting outliers

* Robust fitting

— Reweighted least squares
— RANSAC



Example: moving average with 3-size window

Moving average
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11-element window for moving average




Moving average

Moving average is 2.0
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11-element window for moving average



Moving average

Moving average is not
robust to outliers
because these can pull
the average far in one
direction
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11-element window for moving average




Why are outliers common?

* Simple noise can sometimes lead to majorly wrong
values

— E.g. in estimating point clouds, slight errors in estimating
corresponding pixels can lead to large errors in 3D point
estimates

* Data may have missing values that are filled with
constants

— E.g. unknown salaries may be filled with “0”

e Data may have incorrectly entered values
— E.g. some salaries are entered in thousands or some
entries had typos
* Naturally occurring processes are not fully modeled

— E.g. stocks could split or merge, or a company could go
bankrupt, leading to misleading or exceptional price
changes

— Sensors may be occasionally blocked by another object,
or briefly output erroneous values
* Values could be correct but non-representative

— E.g. average net worth of Harvard drop-outs is very high
due to Bill Gates (5110B), Mark Zuckerburg (579B), and
Bom Kim (S2.8B)




Median is more robust

Moving median: return median within each window

* Mean(l, 2, 7)=3

e Median(1, 2, 7) =2
 Mean(1, 2, 96) =33
 Median(1, 2, 96) =2

data 1 2 3 3 1 1 2
mean 2 8/3 | 8/3 4/3 (4/3 |2
median 2 3 3 1 1 2
data 1 2 -50 (3 1 200 |2
mean -47/3 | .15 | -15 203/3 | 203/3 | 205/3
median 1 2 2 ? ? ?

2 2 3




Moving median vs. moving mean
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Moving median vs. moving mean
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Robust Min and Max Estimation

* Min of range
— True: 25
— Min data: 4
— 5th pct: 27
— 10" pct: 30

 Max of range
— True: 75
— Max data: 198
— 95t pct: 76
— 90" pct: 72

200 “clean” points in U(25, 75) + 20 outliers in U(0, 200)
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Robust Min and Max in clean data

e (min, 5th, 10th) =
(25, 28, 30)

* (max, 95th, 90th) =
(75, 72, 70)

Example of Robust Min and Max Estimation
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Example of Robust Min and Max Estimation
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Robust Min and Max, Corrected

* Corrected by assuming that distribution is uniform, so e.g.
max(x) = pct(x,90) + (pct(x, 90) — pct(x, 10)) %+ 0.1/0.8
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Detecting outliers

Outlier detection involves identifying which data points are
distractors, not just robustly estimating statistics

If we can detect and remove outliers, we can use any method for
further analysis

How might we detect outliers with PCA and/or Gaussian Mixture
Model?



Detecting outliers: low probability data points

* Estimate 40 component diagonal GMM

* Find 20 lowest probability examples (only considering features,
not labels)
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Detect outliers: PCA Reconstruction Error

 Compress to 100 PCA coefficients
e Reconstruct, and measure reconstruction error
 Show examples with highest reconstruction error
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Detect outliers: UMAP Embedding
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ldentifying outliers based on density

Based on neighborhood density:

1. Compute average density based
on some samples, e.g. inverse
density is average distance to K
neighbors

2. If point has much lower density
than its neighbors, it is an outlier

. ®
Based on a radius: PR .
1. Compute average number of AR Yo
. . . . )
points within some radius of o LWt
another point 4R
. L) [ ]

2. Any points that have much lower .33'.‘..5.3 *°. ° o

density than average are outliers Gesle e,

Figs: https://towardsdatascience.com/density-based-algorithm-for-outlier-detection-8f278d2f7983
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https://tinyurl.com/AML441-L11
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Robust estimation

* Fitting data with robustness to outliers



Least squares line fitting

*Data: (xla yl)ﬂ ) (xm yn) 4

*Line equation: y, =mx; + b I y=mx+b
*Find (m, b) to minimize |
. ) b ()
Ezzizl(yi—mxi—b) ’
- - ~ 2
2 Xq | Y,
E:Zil[[xi 1]|:b:|_yl) =l - : |:b:|_ X =HAp—yH2
X, 1_ 'V,
=y'y—2(Ap)' y +(Ap)’ (Ap)
dE

ZZ=2ATAp-2ATy =0
dp

A"Ap=A"y=p=(ATA)"A"y

Modified from S. Lazebnik
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Iteratively Reweighted Least Squares (IRLS) —

out

Goa

squared error

ier handling

solve an optimization involving a robust
norm, e.g. p=1
1. Initialize weightsw to 1
2. Solve for parameters [ that minimize weighed
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Robust least squares, aka M-estimation (another way to deal with outliers)

General approach:
minimize Zp(ui(Xi,H);O') 22 :Z?:l(yi_mxi_b)z
i

u, (x, 6) — residual of i*" point w.r.t. model parameters ¢
p — robust function with scale parameter o

2 2

) . U=
1.8} plu; JJ —

o2 + u? 1 The robust function p
| e Favors a configuration
with small residuals

e Constant penalty for large
residuals

Slide from S. Savarese



Robust Estimator

1. Initialize: e.g., choose 0 by least squares fit and
o=1.5- median(errar)

error(0,data.)’

2. Choose params to minimize: >

i

o’ +error(0,data,)’

— E.g., gradient descent
3. Compute new o =1.5-median(error)

4. Repeat (2) and (3) until convergence



RANSAC

(RANdom SAmple Consensus) :

Fischler & Bolles in ‘81.

Algorithm:

1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



RANSAC

Line fitting example

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

lllustration by Savarese



RANSAC

Line fitting example

Algorithm:
1. _Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



RANSAC

Line fitting example

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence




How to choose parameters?

 Number of samples N

— Choose N so that, with probability p, at least one random sample is free

from outliers (e.g. p=0.99) (outlier ratio: e )

* Number of sampled points s

— Minimum number needed to fit the model

e Distance threshold 6

— Choose ¢ so that a good point with noise is likely (e.g., prob=0.95) within threshold
— Zero-mean Gaussian noise with std. dev. o: t2=3.8402

proportion of outliers e

N =log(l—p)/ log(l ~(1-ef )

s 5% 10% 20% 25% 30% 40% 50%

2 2 3 5 6 7 1 17

3 3 4 7 9 11 19 35

4 3 5 9 13 17 34 72

5 4 6 12 17 26 57 146

- 6 4 7 16 24 37 97 293

Advancgd algquthms 4 8 o0 33 54 163 588
automatically find N and ¢ 8 5 9 26 44 78 272 1177

modified from M. Pollefeys



RANSAC conclusions
Good

e Robust to outliers

* Advanced forms can automatically estimate
thresholds and number of iterations

Bad

 Computational time grows quickly with fraction of
outliers and number of parameters



Colab demo

https://colab.research.google.com/drive/1bPRkR1Kzg7NKlsv4Avk
iI6YVOA1IMmVC7uH?usp=sharing
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Things to remember

Median and quantiles are
robust to outliers, while
mean/min/max aren’t

Outliers can be detected as
low probability points, low
density points, poorly
compressible points, or
through 2D visualizations

Least squares is not robust to
outliers. Use RANSAC or IRLS
or robust loss function
instead.
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= = = Ground Truth: m=1.00 b=0.00

Least Sguares: m=0.55 b=0.24
Robust Least Squares: m=0.96 b=0.03

¥

RANSAC: m=0.99 b=0.01
- F

* 5 *




Next:

e Exam 1: Thurs - Sun

e Next week: Decision trees and ensemble models
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