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Last class: EM

True or False

1. The EM algorithm is a method for maximum likelihood estimation
in the presence of missing or incomplete data. True

2. The EM algorithm guarantees convergence to the global maximum
of the likelihood function for any given dataset False

3. The E-step of the EM algorithm computes the maximum likelihood
estimate of the parameters given the observed data. False

4. In the EM algorithm, the likelihood of the observed data increases
after each iteration of the algorithm. True



This class — PDF Estimation

* We often want to estimate P(x) for some observation x
— For classification, e.g. we may want P(x | y)
— For outlier/anomaly detection, e.g. we want to know if P(x) is small
— For prediction, we want to know which answer or action is most likely
— Model dependencies and mutual information

* For discrete variables, this just involves counting, but
continuous variables are more tricky

* We consider models and methods for estimating P(x)

PDF = probability density function



Basic rules of PDFs

1 [p(x)=1 (but p(x) can be greater than 1)
2. p(x) =0Vx
That’s it!

A common implicit assumption of pdfs is smoothness, i.e.
p(x + €) = p(x) for some small €



Probability density function (PDF) = Probability

— Probability Density Function
Integrated Probability
Integral = 0.0124
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1D PDFs
* E.8.

— X IS @ temperature
— Intensity

— Sensor reading Wo 40 o0 W0 100 -500-100 0 00 0o
— Height of a person

— Number of dolphins in a body of
water
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e x could be continuous or have
too many possible values to
count frequency for each

— E.g. how many people are in NYC
at a given day in the year
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https://www.researchgate.net/figure/1D-posterior-PDFs-for-some-model-parameters-from-left-to-right-M-1-m-H-top_fig11_343459282
https://www.researchgate.net/figure/1D-posterior-PDFs-for-some-model-parameters-from-left-to-right-M-1-m-H-top_fig11_343459282

How to estimate probability density functions from

samples

1. Fit parameters of a model
Gaussian: u = —0.015 o = 1.004

2. Discretize and count (histogram)

3. Kernel density estimation
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Kernel Density Estimation with Data Points




Methods to estimate PDFs

Parametric Models

Semi-Parametric

Non-Parametric

Can fit a broad

distribution

in high dimensions

Descriotion Assumes a fixed range of functions Can fit any
P form for density with limited distribution
parameters
: . Discretization,
Gaussian, Mixture of :
Examples : ) kernel density
exponential Gaussians L.
estimation
Model is able to : :
: . Low dimensional or
Good when approximately fit - 1-D data
. smooth distribution
the distribution
Model cannot Distribution is not -
. . Data is high
Not good when approximate the smooth, challenging | . .
dimensional




Gaussian distribution

e Easy to estimate parameters
* Symmetric, unimodal
 Products of Gaussian variables is Gaussian

e Sums of Gaussian random variables are
Gaussian

 The sum of many random variables is
approximately Gaussian (Central Limit
Theorem)

— Often used as a noise model

e Light tail (values become small quickly away
from the mean)
 Examples of distributions fit well by Gaussian
— Heights of adult males
— Image intensity noise
— Weights of newborn babies

p(xn |,LI,O'2)= ) CXP| —




Exponential distribution

e Mean=std=1/1
N / Ae ™ >0
* Positive flz; \) =
. - 0 x < (
* Heavy-tailed (significantly non-zero
values far from mean)
 Examples of variables that have " — jz?ﬁi
exponential distributions . — A=15
— When events occur with uniform |
likelihood, the time to next event, e.g. to 1.0
emit radioactive particles, when customer g
next enters a shop & o
— Frequency of words in a collection of |
documents 0.4 -
— Amount of money spent per customer at 0.2
supermarket 0o




Beta distribution

* RangeisOto1l

* Lots of different shapes, depending f(z; o, B) = constant - 2~ (1 — )P~
on parameters

 Used when a variable has a finite
range of possible values
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Estimating parameters of models

e Usually computable in closed form

e Easy to look up the MLE estimates (parameter values that
maximize data likelihood)



Mixture of Gaussians

mixture component
component model component prior
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Mixture of Gaussians

* With enough components, can represent any probability
density function

— Widely used as general purpose pdf estimator

* Bias toward smooth density functions



Estimate Mixture of Gaussians with EM Algorithm

1. Initialize parameters

2. Compute likelihood of hidden variables for current
parameters

(1)
= p(z, :nfz|xn,u(t),(s2 ,Tc(t))

3. Estimate new parameters for each model, weighted by
likelihood

A 2(Z+1)
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“Normalized Histograms”, Discretized Functions

1. Convert a continuous value to discrete values
— Divide into equal sized bins
— Divide data into equal sized chunks and put bin boundaries around it
— Perform K-means

2. Count occurrence within each bin
3. p(x) = (bin count)/(total count)/(bin size)
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Guidelines of how to “bin” or discretize 1-D data

1. Is the x-axis meaningfully interval-scaled (time, dollars, cm)? — Equal width

2. Is the distribution very skewed/heavy-tailed and you're exploring
tails/quantiles”? — Equal count (or log-transform + equal width)

3. Comparing multiple groups on one axis? — Equal width (shared edges)

4. Tails important but width hides them? — Show both: equal width for overall
shape + equal count (or ECDF) for tail detail

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9041617/



https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9041617/

Kernel density estimation

* p(x) is weighted count of
points near x, divided by

. - 1 1 r — £y
numbgr of po!nts | fh(iﬂ):;ZKh(m_mi):_hZK(m
* Potential for fine-granularity =1 =1
ike histograms, but no defined
poundaries

* Bandwidth controls | E
smoothness
— One rule of thumb for Gaussian il [ ] I [ |3

Histogram Kernel Density

kernel (@) R
3n

* Can be computed efficiently in
combination with fine
discretizations



Q1-2

https://tinyurl.com/AML441-L10

=135

[ ]yt


https://tinyurl.com/AML441-L10
https://tinyurl.com/AML441-L10
https://tinyurl.com/AML441-L10
https://tinyurl.com/AML441-L10

How to select parameters and evaluate

* Hyperparameters
— Histogram: num bins
— Kernel Density: bandwidth
— MoG: num components
— Also may set priors on bin count or variance

* To select hyperparameters:
— Split data into a train and val set

— For each candidate parameter:
* Fitto train
 Compute average log likelihood on val
* Record best

— Fit with best parameter on train+val

 To compare different models
— Evaluate average log likelihood on a held out test set



) . https://colab.research.google.com/drive/1H4 jS10
Let’s experiment xiOxZkfvh5w5KEWF2zFsdaxty ?usp=sharing
Methods Data
e Gaussian * Student exam scores
* Histogram, equal size bins * Image intensities
* Histogram, equal data bins * Government payroll data*

e KDE * Penguins
e Mixture of Gaussians * Simple distributions

https://tinyurl.com/AML441-L10
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Thttps://data.ct.gov/Government/State-Employee-Payroll-Data-Calendar-Year-2015-thr/virr-yb6n/data
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Estimating probability for more than 1 dimension

* Estimate for each dimension and
assume dimensions are independent

P(.’Xfl,xz,X3) — P(xl)P(xZ)P(xB)

Fig src
e Use a multidimensional model

— (@Gaussian

— Mixture of Gaussian

* Project to lower dimension/manifold

(e.g. PCA) and then estimate

* Non-linear compression, e.g. with auto-
encoder (e.g. with deep network)

. " Latent
Input Encoder S Decoder Output
Space


https://deepai.org/machine-learning-glossary-and-terms/gaussian-mixture-model
https://deepai.org/machine-learning-glossary-and-terms/gaussian-mixture-model

Next week

* Robust estimation
 Exam (optional Q&A in class period in lecture room)
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