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What is a probability

* A belief, a confidence, a likelihood

e “There’s a 60% chance it will rain tomorrow.”

— Based on the information | have, if we were to simulate the future 100 times, I'd
expect it to rain 60 of them.

— | think it’s a little more likely to rain than not

* You have a 1/18 chance of rolling a 3 with two dice.
— If you roll an infinite number of pairs of dice, 1 out of 18 of them will sum to 3.

* Probabilities are expectations, according to some information and
assumptions.

— E.g., it will either rain tomorrow or not



Why do we care about probability in machine learning?

ML problems are often formulated as maximizing a conditional
probability P(y|X), e.g. the probability of the true label given
features, or maximizing the data likelihood P (X)

* Algorithms involving probabilistic objectives include logistic
regression, naive Bayes, decision trees, boosting, random
forests, deep networks, EM algorithm, and more



Example

There are two movies showing:
“Bumblebee”, with 40 attendees, and

“Apocalypse” with 60 attendees.

What is the probability that a random
person is watching Apocalypse?
P(X=A)
— Out of all events, what fraction satisfy
the criterion

Movie Attendees

Bumblebee (40

Apocalypse |60

100 total people

Of those 60 are watching
Apocalypse

SOP(M=A)=60/100 = 0.6



Joint Probability
Movie |Adult |Child
Suppose we also know whether
each movie-goer is a child or Bumble 20 20
adult bee
Apocal 50 10
ypse

What is the probability that a
movie-goer watches Bumblebee
and is an adult?

— QOut of all events, what fraction
satisfy all criteria

P(M = B,Age = Adult) = 20/ (20 + 20 + 50 + 10) = 0.2



Conditional Probability
Movie |Adult |Child

Given that a movie-goer is a

child, what is the probability Bumble |, |,
that he or she is watching bee

?
Bumblebee: Apocal |0 |44
— Out of all events that satisfy the YPS€E

condition, what fraction satisfy
the criterion

P(M = B | Age = Child) = 20/ (20 + 10) = 0.667



Conditional Probability

, _ Movie |Adult |Child
If | know a movie-goer watching
Bumblebee, what is the Bumble 50 50
probability he or she is a child? bee
— Out of all events that satisfy the Apocal
. . . 50 10
condition, what fraction satisfy ypse

the criterion

P(M = B | Age = Child) = 20/ (20 + 20) = 0.5



Relationships between joint and conditional/marginal
orobabilities

Joint probability is the product of the conditional probability and the
probability that the condition is true.

P(X,Y) = P(X|Y)P(Y) = P(Y|X)P(X)

This extends to many variables with a chain rule.
P(X,Y,Z) =P X|Y,Z)P(Y|Z)P(Z)

Marginalize out a variable by summing over its possible values

P(X) = z PX,Y =y;) = z PX|Y =y)P(y = y;)



P(Movie,Age)

Adult Child
Bumblebee |0.2 0.2
Apocalypse |0.5 0.1

From the joint probability table, you can always compute
probabilities of subsets of variables or conditional probabilities

with those variables.

P(Adult) = 0.2 + 0.5 P(Bumblebee) = 0.2 + 0.2

P(Adult | Bumblebee) = 0.2/(0.2 + 0.2)



A is independent of B if (and only if)

P(A,B) = P(A)P(B)

P(A|B) = P(4), P(B|A) = P(B)



A and B are conditionally independent of C if (and only if)

P(A,B|C) = P(A|C)P(B|C)



Estimate a discrete probability function by counting

Movie Age

1
- P(M=B)=W26(Mn=3>

A A

A A

B A 1

—— P(M=B,A=C)=W25(Mn=B,An=C)
n




Probability density functions of continuous variables

What if the variable is continuous?

Movie Age
Precise values may never occur and be . 0
infinitesimally unlikely, e.g.

P(Age = 11.05) = 0 B 38

A 22

We replace the probability function with the R 9
probability density function, which can be

integrated over a range to give a probability. B 25

11
P(10 < Age < 11) = f p(Age = a)da A
10




Probability density function (PDF) = Probability

— Probability Density Function
Integrated Probability
Integral = 0.0124
-3 -2 -1 0 1 2 3
X

P(0.95 < X < 1) ~ 0.012

0.40

0351

0.30

— Probability Density Function
Integrated Probability

Integral = 0.0199

-2 -1 0 il 2 3
X

P(0 < X < 0.05) = 0.02
P(-0.05< X < 0.05) =~ 0.04



How to estimate probability density functions from
samples

1. Discretize and count (histogram)

Kernel Density Estimation with Data Points
0.4+t Histogra m . , .

031

2. Kernel density estimation

>
=
?0.2f
[
(]

0.1r

3. Fit parameters of a model L

Gaussian: u = —0.015 o = 1.004



What must be true about probability functions?

1. Probabilities cannot be negative

2. The sum (for discrete) or integral (for continuous) must be 1
* For discrete, this means that each value must be between 0 and 1
e But values can be greater than 1 in a probability density function



Expectation and Variance

* The expected value or mean of a random variable X € {v; ..., vy} is the average value we’d get if we
took an infinitely large sample:

E(X) = lim 1 2 X; = Z P(X =v))v;

M—-oo M
xi~P(X) i=1.N

* We can take the expectation of a function f(X):

E(fO0) = ) P(X = v)f(w)

i=1.N

 The variance of X measures the expected square difference of the values from the mean

Var(X) = E((E(X) — X)?) = Z P(X = v)(E(x) — 1)

i=1.N

* We can also take the mean or variance of a sample S = [sy, ..., Sk ], called the empirical mean or
variance

ES) =% Y s Var§)= ¢ ¥ (E(S)~5)?

i=1.K i=1.K



How do we measure the amount of data required to store
a value of a variable?

* First, let’s consider the likelihood of a set of values x ~ P(X): P(x) = []; P(x;), assuming the values are
independent. However, this will become inconveniently small, so we can equivalently consider log P(x) =
Y.;log P(x;). The expected value of this log likelihood gives us a measure of predictability.

* Entropy H(X) is the expected negative log likelihood of variable X € {v4, ..., vy}
HOO = ) =P(X = v log, P(OX = 1)

i=1.N

* Greater entropy means that the value of X is less predictable
— IfH(X) =0, then P(X = x;) = 1 for some x; (and O for others)

— IfH(X) =log, P(N), then P(X = x;) = %for all N values

* If the values are less predictable, more bits are needed. Shannon’s source coding theorem shows that the
minimum expected number of bits required to encode a string of K i.i.d. values sampled from P(X) is KH(X)
— Complicated to prove, but think of each bit as dividing the possible values into two equally likely sets
— E.g.let P(X=1)=1/4, P(X=2)=1/4, P(X=3)=0, P(X=4)=1/2. One bit can split ([1,2], 4) and, if needed, a second bit can split between 1
and 2. To encode, 1200, 201, 4> 1. This requires 1.5 bits on average. H(X) = 0.25%* 2+ 0.25%*2+ 0.5« 1 = 1.5. 1-1-1-01-
00-10-1=4,4,4,2,1,4,2

x ~ P(X) means that x is drawn (randomly sampled) from the distribution P (X)



Typical machine learning problem: predict Y from X

* Given some features X, we want to predict target variable vy, e.g.
— X = email text and header; y=spam or not spam
— X = meteorological data; y = next day’s high temperature
— X =image of a handwritten number; y=0, 1, ..., or 9

* We often frame this probabilistically

— To predict, selecty = argmax, P(y|X), i.e. choose the y that is most
likely given X

— To train, optimize parameters that maximize the likelihood of the labels of
the training data given the features of the training data



Basics of vector/matrix multiplication

* WTx=W'x=ZiWiXi

* Element (i,j) of AB is the dot product of the ith row of A with the
jth column of B

AB # BA
e [fAis N X M size matrixand BisM X K, then ABisN X K

e IfAis N X M size matrixand B is L X K with L # M then A cannot
be multiplied by B



Partial derivatives

e XTEE
6Wl ow; L



Classification by maximizing label likelihood

Suppose we want to predict a label y; € {—1, 1} from an image X;. Given a set of N training examples, solve for model parameters w to maximize P(y; ... yp|X1.. Xn)- l.e.,
find the model parameters that make the training labels most likely, given the training features.

1. Assume each training sample is a sample from an identical and independent distribution (iid assumption): P(y; ... ¥ | X1.. Xn) = [li=1 ny PVi1X:)
2. Maximizing a product is hard because the derivative is complicated. Instead, we can maximize a sum of logs
og | | Pilxd = ) log Pyl
i=1.N i=1.N
3. We need a function (a.k.a. a model) to output the probability given the label. Let’s use linear logistic regression
P(y; = 1|X;)
X, w) =wl'X; =logP(y; = 1|X;) —logP(y_i = —1|X;) =lo
f&X; i =logP(y; = 1]X;) —log P(y |X; Pl = —11X)
4, This is called a logistic score or logit. We can convert the logit to a probability:
1 1 P(y; = 11X;)
— = — = — — = P(y; = 1|X;)
1+ exp (—log P(y; = 1|X;) ) 14 Py = —11X;) P(y; = 11X) + P(y; = —1]X;)
P(y; = —1]X;) P(y; = 11X;)
5. This function o(x) = 1/(1 + exp(—x)) is called a sigmoid. So a(W'X;) = P(y; = 1]X). Also, a(—w'X;) = P(y; = —1|X).
6. Now we can write our objective in terms of parameters, image features, and labels:

1

Wope = argmax,, ) log(yo(WTXy)) = argmin, > ~log(yig(W'X,))
i

7. The argmin expression is the “loss”. We can optimize by taking the derivative of this expression wrt w and performing gradient descent.



Problems

https://us.prairielearn.com/pl/course instance/157430/assessm
ent/2432153



https://us.prairielearn.com/pl/course_instance/157430/assessment/2432153
https://us.prairielearn.com/pl/course_instance/157430/assessment/2432153
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