
Reinforcement
Learning

Applied Machine Learning
Derek Hoiem

How could we train
an AI agent to play
Breakout?

So far, we’ve
learned how to train
models to predict
some value.

This class: Reinforcement Learning

• Deep Q-Learning with Atari Games

• Proximal Policy Optimization for Hide and Seek

• Other approaches to RL, and RLHF

Problem statement for RL
Learn a policy that, given state, outputs the action
with maximum expected reward

– State: everything the agent knows about the
environment, e.g. images of current and past screens

– Action: things the agent can do, e.g. move left, stay,
move right

– Policy: function that outputs an action given a state
– Reward: the thing that’s being maximized, e.g. the

score
– Expected Reward: maximize the sum of the current

reward and discounted future rewards, with the
expectation over possible sequences

Q-Learning

Learn 𝑄𝑄 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡 → 𝑣𝑣: given a state 𝑠𝑠𝑡𝑡 and
action 𝑎𝑎𝑡𝑡, what is the expected total future
reward value 𝑣𝑣?

If I move left/stay/right, what will be my time-
discounted score?

Once learned, the optimal policy is to choose
the action 𝑎𝑎𝑡𝑡 that maximizes 𝑄𝑄 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡

Discounted Rewards and Bellman Equation
The value function is the expected total rewards received from following the optimal policy

𝑄𝑄 𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡 = 𝔼𝔼[𝑅𝑅 𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡 + �
𝑖𝑖=1

∞

𝛾𝛾𝑖𝑖 max
𝑎𝑎𝑡𝑡+𝑖𝑖

𝑅𝑅(𝑠𝑠𝑡𝑡+𝑖𝑖 ,𝑎𝑎𝑡𝑡+𝑖𝑖)]

E.g., suppose
• reward is points added to score
• 𝛾𝛾 = 1

2
• 10 points are earned at 𝑡𝑡 and again at 𝑡𝑡 + 3, and at no other time.

What is the total discounted reward obtained at 𝑡𝑡?

10 + 10 ∗
1
2

3
= 10.125

Discounted Rewards and Bellman Equation
The value function is the expected total rewards received from
following the optimal policy

𝑄𝑄 𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡 = 𝔼𝔼[𝑅𝑅 𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡 + �
𝑖𝑖=1

∞

𝛾𝛾𝑖𝑖 max
𝑎𝑎𝑡𝑡+𝑖𝑖

𝑅𝑅(𝑠𝑠𝑡𝑡+𝑖𝑖 ,𝑎𝑎𝑡𝑡+𝑖𝑖)]

The Bellman Equation models this recursively, i.e. the
expected total rewards are the immediate rewards plus the
expected rewards at the next time step

𝑄𝑄 𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡 = 𝔼𝔼[𝑅𝑅 𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡 + 𝛾𝛾max
𝑎𝑎𝑡𝑡+1

𝑄𝑄(𝑠𝑠𝑡𝑡+1,𝑎𝑎𝑡𝑡+1)]

How do we learn this Q function?
• Play lots of games, and use Bellman’s equation to update the

parameters of the Q-function

[Minh et al. 2013, Deep Mind]

How much we want to increase or decrease Q to match our
“oracle” estimate from the next time step, i.e. difference
between:
1. total reward under previous parameters (current reward, plus

prediction at t+1)
2. predicted reward under current parameters

How much changing each
parameter will change Q

https://arxiv.org/pdf/1312.5602

What are some drawbacks to playing one game at a time
and learning from each step?

• May not be efficient
– Need to play a lot of games before you start making progress, and

could get stuck in some long games
– Consecutive states are very similar

• May be unstable
– Due to correlated consecutive states, may overfit to particular cases

or swing back and forth with each episode

[Minh et al. 2013, Deep Mind]

https://arxiv.org/pdf/1312.5602

Deep Q-Learning with Experience Replay

[Minh et al. 2013, Deep Mind]

Generate next
action in episode
and store results

Train on random
sample of stored
state/action/reward
experiences

https://arxiv.org/pdf/1312.5602

Modeling the Q function with a neural network

[Minh et al. 2013, Deep Mind]
[Minh et al. 2015, Nature]

Outputs the value for
each action

Four grayscale
cropped frames

https://arxiv.org/pdf/1312.5602
https://media.telefonicatech.com/telefonicatech/uploads/2021/1/2531_DQNNaturePaper.pdf

• What should the reward for
a given timestep be?

• What is a reasonable
discount 𝛾𝛾 factor? (assume
that one time step is one
animation frame or 1/15
second of normal play)

Reward is 1, 0, or -1 for score
increased, unchanged, or
decreased

𝛾𝛾 = 0.99

Reward improves overall, and Q-value improves stably

A: Enemy appears
(scoring opportunity)

B: Enemy about to be hit by
torpedo (soon to score)

C: Scored! Back to
previous level

T-SNE of hidden state
for Space Invaders

[Minh et al. 2015, Nature]

https://media.telefonicatech.com/telefonicatech/uploads/2021/1/2531_DQNNaturePaper.pdf

[Minh et al. 2015, Nature]

100 = human level

https://media.telefonicatech.com/telefonicatech/uploads/2021/1/2531_DQNNaturePaper.pdf

Simple code with nice explanation

https://medium.com/@shruti.dhumne/deep-q-network-dqn-
90e1a8799871

https://medium.com/@shruti.dhumne/deep-q-network-dqn-90e1a8799871
https://medium.com/@shruti.dhumne/deep-q-network-dqn-90e1a8799871

Q1-Q4

https://tinyurl.com/441-fa24-L25

https://tinyurl.com/441-fa24-L25

Baker et al., 2020 Emergent Tool Use From Multi-Agent Autocurriculahttps://www.youtube.com/watch?v=kopoLzvh5jY

https://www.youtube.com/watch?v=kopoLzvh5jY

State encodes distances to
objects and positions of other
visible agents, boxes, and
ramps

Action is directly predicted
from state
(reward value of a state-
action pair is not modeled)

Teams keep challenging each
other to develop new
strategies

Q: What do you think is the
reward?
A: Hider = 0 if seen, 1 if not
 Seeker = 1 if sees, 0 if not

Policy Optimization
Typically, optimize a value function 𝑉𝑉𝜃𝜃(𝑠𝑠) and a policy function
𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)

[Shulman et al. 2017]

Solve for parameters that maximize
“Advantage”

𝐴𝐴𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝑉𝑉 𝑆𝑆𝑡𝑡+1 − 𝑉𝑉(𝑆𝑆) Advantage is reward plus
improvement in expected future
reward

https://arxiv.org/abs/1707.06347

Trust Region Policy Optimization (TRPO)
Improve likelihood of increasing advantage without diverging too
much from previous policy

[Shulman et al. 2017]

https://arxiv.org/abs/1707.06347

Proximal Policy Optimization (PPO)

[Shulman et al. 2017]

Clipped advantage objective
Value prediction loss Entropy bonus (don’t be

too confident)

https://arxiv.org/abs/1707.06347

Proximal Policy Optimization (PPO)

[Shulman et al. 2017]

Clipped advantage objective
Value prediction loss Entropy bonus (don’t be

too confident)

https://arxiv.org/abs/1707.06347

Comparison on Atari Games
PPO beats updated version of Deep Q-Learning (A2C) in almost
all cases

PPO learns faster than ACER (a different policy optimization
algorithm) but tends not to do better in the end

Another use of PPO
https://www.youtube.com/watch?v=L_4BPjLBF4E

https://www.youtube.com/watch?v=L_4BPjLBF4E

Comparing DQN and PPO
• PPO can handle continuous action space, while DQN can’t

easily (as it outputs value for each action)

• On-policy: PPO generates trajectories using the same policy
that it updates (on-policy), while DQN’s experience replay
updates based on a previous policies and sometimes tries
uniformly random actions (off-policy)

• PPO can often explore better, as it chooses next action
stochastically, rather than DQN’s 𝜖𝜖-greedy sampling (usually
best, else uniformly random action)

Four RL Approaches

• Behavioral cloning: Predict which action an expert
would take, given the current state

• Policy learning: Learn a value function (predicting
future reward) from state, and a policy function
that predicts which action maximizes value

• Q-learning: Learn which state-action pairs have the
highest value

• World Models: Learn value function and to predict
the next state given an action and current state;
then choose action that maximizes value of next
state

“Model Free”

“Model-based”

https://worldmodels.github.io/

Q5-Q8

https://tinyurl.com/441-fa24-L25

https://tinyurl.com/441-fa24-L25

RLHF: Reinforcement Learning with Human Feedback

ChatGPT improves on GPT by using RLHF, using PPO to generate
outputs that users prefer

https://commons.wikimedia.org/wiki/File:RLHF_diagram.svg

Things to remember

• Reinforcement learning applies when a
sequence of actions is needed to complete a
goal

• Q-Learning predicts the long-term rewards that
will result from a given state and action

• PPO predicts which action will result in the
highest value state

• To better align with user preference, a common
solution is to train a model (self-supervised
and/or on datasets) and then tune it using RLHF
to create more preferred results

Almost done!
• Thursday – Semester Wrap-up and Review
• Exam 3 – Thursday to Tuesday (Dec 5-10)
• Final Project – due Dec 15

	Reinforcement Learning�
	Slide Number 2
	This class: Reinforcement Learning
	Problem statement for RL
	Slide Number 5
	Q-Learning
	Discounted Rewards and Bellman Equation
	Discounted Rewards and Bellman Equation
	How do we learn this Q function?
	What are some drawbacks to playing one game at a time and learning from each step?
	Deep Q-Learning with Experience Replay
	Modeling the Q function with a neural network
	Slide Number 13
	Slide Number 14
	T-SNE of hidden state for Space Invaders
	Slide Number 16
	Simple code with nice explanation
	Q1-Q4
	Slide Number 19
	Slide Number 20
	Policy Optimization
	Trust Region Policy Optimization (TRPO)
	Proximal Policy Optimization (PPO)
	Proximal Policy Optimization (PPO)
	Comparison on Atari Games
	Another use of PPO
	Comparing DQN and PPO
	Four RL Approaches
	Q5-Q8
	RLHF: Reinforcement Learning with Human Feedback
	Things to remember
	Almost done!

