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How could we train 
an AI agent to play 
Breakout?

So far, we’ve 
learned how to train 
models to predict 
some value.



This class: Reinforcement Learning

• Deep Q-Learning with Atari Games

• Proximal Policy Optimization for Hide and Seek

• Other approaches to RL, and RLHF



Problem statement for RL
Learn a policy that, given state, outputs the action 
with maximum expected reward

– State: everything the agent knows about the 
environment, e.g. images of current and past screens

– Action: things the agent can do, e.g. move left, stay, 
move right

– Policy: function that outputs an action given a state
– Reward: the thing that’s being maximized, e.g. the 

score
– Expected Reward: maximize the sum of the current 

reward and discounted future rewards, with the 
expectation over possible sequences





Q-Learning

Learn 𝑄𝑄 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡 → 𝑣𝑣: given a state 𝑠𝑠𝑡𝑡 and 
action 𝑎𝑎𝑡𝑡, what is the expected total future 
reward value 𝑣𝑣?

If I move left/stay/right, what will be my time-
discounted score?

Once learned, the optimal policy is to choose 
the action 𝑎𝑎𝑡𝑡 that maximizes 𝑄𝑄 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡
  



Discounted Rewards and Bellman Equation
The value function is the expected total rewards received from following the optimal policy

𝑄𝑄 𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡 = 𝔼𝔼[𝑅𝑅 𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡 + �
𝑖𝑖=1

∞

𝛾𝛾𝑖𝑖 max
𝑎𝑎𝑡𝑡+𝑖𝑖

𝑅𝑅(𝑠𝑠𝑡𝑡+𝑖𝑖 ,𝑎𝑎𝑡𝑡+𝑖𝑖)]

E.g., suppose 
• reward is points added to score
• 𝛾𝛾 = 1

2
• 10 points are earned at 𝑡𝑡 and again at 𝑡𝑡 + 3, and at no other time. 

What is the total discounted reward obtained at 𝑡𝑡?

10 + 10 ∗
1
2

3
= 10.125



Discounted Rewards and Bellman Equation
The value function is the expected total rewards received from 
following the optimal policy

𝑄𝑄 𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡 = 𝔼𝔼[𝑅𝑅 𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡 + �
𝑖𝑖=1

∞

𝛾𝛾𝑖𝑖 max
𝑎𝑎𝑡𝑡+𝑖𝑖

𝑅𝑅(𝑠𝑠𝑡𝑡+𝑖𝑖 ,𝑎𝑎𝑡𝑡+𝑖𝑖)]

The Bellman Equation models this recursively, i.e. the 
expected total rewards are the immediate rewards plus the 
expected rewards at the next time step

𝑄𝑄 𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡 = 𝔼𝔼[𝑅𝑅 𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡 + 𝛾𝛾max
𝑎𝑎𝑡𝑡+1

𝑄𝑄(𝑠𝑠𝑡𝑡+1,𝑎𝑎𝑡𝑡+1)]



How do we learn this Q function?
• Play lots of games, and use Bellman’s equation to update the 

parameters of the Q-function

[Minh et al. 2013, Deep Mind]

How much we want to increase or decrease Q to match our 
“oracle” estimate from the next time step, i.e. difference 
between:
1. total reward under previous parameters (current reward, plus 

prediction at t+1)
2. predicted reward under current parameters

How much changing each 
parameter will change Q

https://arxiv.org/pdf/1312.5602


What are some drawbacks to playing one game at a time 
and learning from each step?

• May not be efficient
– Need to play a lot of games before you start making progress, and 

could get stuck in some long games
– Consecutive states are very similar

• May be unstable
– Due to correlated consecutive states, may overfit to particular cases 

or swing back and forth with each episode

[Minh et al. 2013, Deep Mind]

https://arxiv.org/pdf/1312.5602


Deep Q-Learning with Experience Replay

[Minh et al. 2013, Deep Mind]

Generate next 
action in episode 
and store results

Train on random 
sample of stored 
state/action/reward 
experiences 

https://arxiv.org/pdf/1312.5602


Modeling the Q function with a neural network

[Minh et al. 2013, Deep Mind]
[Minh et al. 2015, Nature]

Outputs the value for 
each action

Four grayscale 
cropped frames

https://arxiv.org/pdf/1312.5602
https://media.telefonicatech.com/telefonicatech/uploads/2021/1/2531_DQNNaturePaper.pdf


• What should the reward for 
a given timestep be?

• What is a reasonable 
discount 𝛾𝛾 factor?  (assume 
that one time step is one 
animation frame or 1/15 
second of normal play)

Reward is 1, 0, or -1 for score 
increased, unchanged, or 
decreased

𝛾𝛾 = 0.99



Reward improves overall, and Q-value improves stably

A: Enemy appears 
(scoring opportunity)

B: Enemy about to be hit by 
torpedo (soon to score)

C: Scored! Back to 
previous level



T-SNE of hidden state 
for Space Invaders

[Minh et al. 2015, Nature]

https://media.telefonicatech.com/telefonicatech/uploads/2021/1/2531_DQNNaturePaper.pdf


[Minh et al. 2015, Nature]

100 = human level

https://media.telefonicatech.com/telefonicatech/uploads/2021/1/2531_DQNNaturePaper.pdf


Simple code with nice explanation

https://medium.com/@shruti.dhumne/deep-q-network-dqn-
90e1a8799871 

https://medium.com/@shruti.dhumne/deep-q-network-dqn-90e1a8799871
https://medium.com/@shruti.dhumne/deep-q-network-dqn-90e1a8799871


Q1-Q4

https://tinyurl.com/441-fa24-L25 

https://tinyurl.com/441-fa24-L25


Baker et al., 2020 Emergent Tool Use From Multi-Agent Autocurriculahttps://www.youtube.com/watch?v=kopoLzvh5jY

https://www.youtube.com/watch?v=kopoLzvh5jY





State encodes distances to 
objects and positions of other 
visible agents, boxes, and 
ramps

Action is directly predicted 
from state
(reward value of a state-
action pair is not modeled)

Teams keep challenging each 
other to develop new 
strategies

Q: What do you think is the 
reward?
A: Hider = 0 if seen, 1 if not
   Seeker = 1 if sees, 0 if not



Policy Optimization
Typically, optimize a value function 𝑉𝑉𝜃𝜃(𝑠𝑠) and a policy function 
𝜋𝜋𝜃𝜃(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡)

[Shulman et al. 2017]

Solve for parameters that maximize 
“Advantage”

𝐴𝐴𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝑉𝑉 𝑆𝑆𝑡𝑡+1 − 𝑉𝑉(𝑆𝑆) Advantage is reward plus 
improvement in expected future 
reward

https://arxiv.org/abs/1707.06347


Trust Region Policy Optimization (TRPO)
Improve likelihood of increasing advantage without diverging too 
much from previous policy

[Shulman et al. 2017]

https://arxiv.org/abs/1707.06347


Proximal Policy Optimization (PPO)

[Shulman et al. 2017]

Clipped advantage objective
Value prediction loss Entropy bonus (don’t be 

too confident)

https://arxiv.org/abs/1707.06347


Proximal Policy Optimization (PPO)

[Shulman et al. 2017]

Clipped advantage objective
Value prediction loss Entropy bonus (don’t be 

too confident)

https://arxiv.org/abs/1707.06347


Comparison on Atari Games
PPO beats updated version of Deep Q-Learning (A2C) in almost 
all cases 

PPO learns faster than ACER (a different policy optimization 
algorithm) but tends not to do better in the end



Another use of PPO
https://www.youtube.com/watch?v=L_4BPjLBF4E 

https://www.youtube.com/watch?v=L_4BPjLBF4E


Comparing DQN and PPO
• PPO can handle continuous action space, while DQN can’t 

easily (as it outputs value for each action)

• On-policy: PPO generates trajectories using the same policy 
that it updates (on-policy), while DQN’s experience replay 
updates based on a previous policies and sometimes tries 
uniformly random actions (off-policy)

• PPO can often explore better, as it chooses next action 
stochastically, rather than DQN’s 𝜖𝜖-greedy sampling (usually 
best, else uniformly random action)



Four RL Approaches

• Behavioral cloning: Predict which action an expert 
would take, given the current state

• Policy learning: Learn a value function (predicting 
future reward) from state, and a policy function 
that predicts which action maximizes value

• Q-learning: Learn which state-action pairs have the 
highest value

• World Models: Learn value function and to predict 
the next state given an action and current state; 
then choose action that maximizes value of next 
state

“Model Free”

“Model-based”

https://worldmodels.github.io/


Q5-Q8

https://tinyurl.com/441-fa24-L25 

https://tinyurl.com/441-fa24-L25


RLHF: Reinforcement Learning with Human Feedback

ChatGPT improves on GPT by using RLHF, using PPO to generate 
outputs that users prefer

https://commons.wikimedia.org/wiki/File:RLHF_diagram.svg



Things to remember

• Reinforcement learning applies when a 
sequence of actions is needed to complete a 
goal

• Q-Learning predicts the long-term rewards that 
will result from a given state and action

• PPO predicts which action will result in the 
highest value state

• To better align with user preference, a common 
solution is to train a model (self-supervised 
and/or on datasets) and then tune it using RLHF 
to create more preferred results



Almost done!
• Thursday – Semester Wrap-up and Review
• Exam 3 – Thursday to Tuesday (Dec 5-10)
• Final Project – due Dec 15
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