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So far, we've
learned how to train
models to predict
some value.

How could we train
an Al agent to play
Breakout?



This class: Reinforcement Learning

* Deep Q-Learning with Atari Games
* Proximal Policy Optimization for Hide and Seek

 Other approaches to RL, and RLHF



Problem statement for RL

Learn a policy that, given state, outputs the
with maximum expected reward

— State: everything the agent knows about the
environment, e.g. images of current and past screens

: things the agent can do, e.g. move left, stay,
move right

— Policy: function that outputs an action given a state

— Reward: the thing that’s being maximized, e.g. the
score

— Expected Reward: maximize the sum of the current
reward and discounted future rewards, with the
expectation over possible sequences







Q-Learning

Learn Q (s, a;) — v: given a state s; and
action a;, what is the expected total future
reward value v?

If | move left/stay/right, what will be my time-
discounted score?

Once learned, the optimal policy is to choose
the action a; that maximizes Q(s¢, a;)




Discounted Rewards and Bellman Equation

The value function is the expected total rewards received from following the optimal policy

Q(se,ar) = E[R(sp, ae) + Z Y max R(s¢+iQrti)]
=1 t+1
E.g., suppose
* reward is points added to score
1
V=3

10 points are earned at t and again at t + 3, and at no other time.

What is the total discounted reward obtained at t?
13

10 + 10 = 5 = 10.125



Discounted Rewards and Bellman Equation

The value function is the expected total rewards received from
following the optimal policy

00

Q(sg ar) = E[R(sg, a) + Vi max R(S¢4i, Qr4q) ]

, At+i
=1

The Bellman Equation models this recursively, i.e. the
expected total rewards are the immediate rewards plus the
expected rewards at the next time step

Q(st, ar) = E[R(st, ap) + ymax Q(Se41, Ary1)]

At+1



How do we learn this Q function?

* Play lots of games, and use Bellman’s equation to update the
parameters of the Q-function

L; (0;) = Eq () [(yi —Q (s,a; 9«5))2}

Vrﬁ?iLi (93) — Eszamp(-);s"mﬁ {(? + H}ﬁx Q(Sfa af; 61'—1) — Q(S: a, 93)) VBiQ(Sa a, 91)]

\ }
Y \ Y }

How much we want to increase or decrease Q to match our How much changing each
“oracle” estimate from the next time step, i.e. difference parameter will change Q
between:

1. total reward under previous parameters (current reward, plus

prediction at t+1)
2. predicted reward under current parameters

[Minh et al. 2013, Deep Mind]



https://arxiv.org/pdf/1312.5602

What are some drawbacks to playing one game at a time
and learning from each step?

* May not be efficient

— Need to play a lot of games before you start making progress, and
could get stuck in some long games

— Consecutive states are very similar

 May be unstable

— Due to correlated consecutive states, may overfit to particular cases
or swing back and forth with each episode

[Minh et al. 2013, Deep Mind]



https://arxiv.org/pdf/1312.5602

Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do

Initialise sequence s; = {x; } and preprocessed sequenced ¢, = ¢(s1)

fort =1,7 do
With probability e select a random action a;
otherwise select a; = max, Q*(¢d(s¢),a; ) Generate next
Execute action a; in emulator and observe reward r; and image z; ., [~ action in episode
Set st4+1 = St, at, x¢4+1 and preprocess ¢;+1 = P(S¢+1) and store results
Store transition ( @y, a;, 1y, ¢ inD _
Sample random (Iflﬁitﬁil;zitciii l:(i)]t;’;rlfi)llsiti(;ms (pj,a;,7;,¢;11) from D Irain on random

AR ARNERC AR sample of stored
Sety; =4 ' , for terminal ;41 state/action/reward
J ri +ymaxye Q(¢jt+1,a’;0) for non-terminal ¢4 experiences

Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation 3

end for

end for

[Minh et al. 2013, Deep Mind]



https://arxiv.org/pdf/1312.5602

Modeling the Q function with a neural network
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[Minh et al. 2013, Deep Mind]
[Minh et al. 2015, Nature]



https://arxiv.org/pdf/1312.5602
https://media.telefonicatech.com/telefonicatech/uploads/2021/1/2531_DQNNaturePaper.pdf

* What should the reward for
a given timestep be?

 What is a reasonable
discount y factor? (assume
that one time step is one
animation frame or 1/15
second of normal play)

Reward is 1, O, or -1 for score
Increased, unchanged, or
decreased

y = 0.99



Reward improves overall, and Q-value improves stably
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[Minh et al. 2015, Nature]



https://media.telefonicatech.com/telefonicatech/uploads/2021/1/2531_DQNNaturePaper.pdf
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https://media.telefonicatech.com/telefonicatech/uploads/2021/1/2531_DQNNaturePaper.pdf

Simple code with nice explanation

https://medium.com/@shruti.dhumne/deep-g-network-dgn-
90e1a3799871



https://medium.com/@shruti.dhumne/deep-q-network-dqn-90e1a8799871
https://medium.com/@shruti.dhumne/deep-q-network-dqn-90e1a8799871

Q1-Q4
https://tinyurl.com/441-fa24-L.25

ofa0



https://tinyurl.com/441-fa24-L25



https://www.youtube.com/watch?v=kopoLzvh5jY




State encodes distances to
objects and positions of other
visible agents, boxes, and
ramps

Action is directly predicted
from state

(reward value of a state-
action pair is not modeled)

Teams keep challenging each
other to develop new
strategies

Q: What do you think is the
reward?

A: Hider = 0 if seen, 1 if not
Seeker =1 if sees, O if not

Policy Architecture

Generate masks from frontal
vision cone and line of sight
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Policy Optimization

Typically, optimize a value function Vy(s) and a policy function
g (ae|St)

§ =B, [V@ log ’J’Tg(at ‘ St)At} Eolve for pa”rameters that maximize
Advantage

Advantage is reward plus
improvement in expected future
reward

A =1+ V(Seq1) — V(S)

[Shulman et al. 2017]



https://arxiv.org/abs/1707.06347

Trust Region Policy Optimization (TRPO)

Improve likelihood of increasing advantage without diverging too
much from previous policy

maximaize
6

A
b~

mo(at | s¢)

_Wgﬂld(at ‘ St)

)

At — BKL[mg 1, (- | 5¢), ma (- | St)]_

[Shulman et al. 2017]



https://arxiv.org/abs/1707.06347

Proximal Policy Optimization (PPO)

Ly HEVEES(9) = B [L7H17(0) — e1Ly " (0) + e2S[mo] (s1)]

/ _ / Entropy bonus (don’t be
Value predICtIOFL Ioss2 too confident)
_ . : arg
Clipped advantage objective (Ve(St) -V )

LOHIP (0) = By [min(rs (0) Ar,clip(ro(6), 1 — e, 1+ 9 A)|

ri(f) = —relerlon

MOg1q (0t | 5t)

[Shulman et al. 2017]



https://arxiv.org/abs/1707.06347

Proximal Policy Optimization (PPO)

Ly HEVEES(9) = B [L7H17(0) — e1Ly " (0) + c2S[mg] (s1)]

/ : / EntropJ bonus (don’t be
Value prediction loss { fdent
Clipped advantage objective 00 confident)

Algorithm 1 PPO, Actor-Critic Style

for iteration=1,2,... do
for actor=1,2,..., N do
Run policy mg_, in environment for 7" timesteps

Compute advantage estimates }11, . ,AT
end for
Optimize surrogate L wrt 6, with K epochs and minibatch size M < NT
gold — 0

end for [Shulman et al. 2017]



https://arxiv.org/abs/1707.06347

Comparison on Atari Games

PPO beats updated version of Deep Q-Learning (A2C) in almost
all cases

A2C ACER PPO Tie

(1) avg. episode reward over all of training 1 18 30 0
(2) avg. episode reward over last 100 episodes 1 28 19 1

PPO learns faster than ACER (a different policy optimization
algorithm) but tends not to do better in the end



Another use of PPO

https://www.youtube.com/watch?v=L 4BPjLBF4E



https://www.youtube.com/watch?v=L_4BPjLBF4E

Comparing DQN and PPO

* PPO can handle continuous action space, while DQN can’t
easily (as it outputs value for each action)

* On-policy: PPO generates trajectories using the same policy
that it updates (on-policy), while DQN’s experience replay
updates based on a previous policies and sometimes tries
uniformly random actions (off-policy)

* PPO can often explore better, as it chooses next action
stochastically, rather than DQN’s e-greedy sampling (usually
best, else uniformly random action)



Four RL Approaches

* Behavioral cloning: Predict which action an expert
would take, given the current state

e Policy learning: Learn a value function (predicting
future reward) from state, and a policy function
that predicts which action maximizes value

* Q-learning: Learn which state-action pairs have the
highest value

 World Models: Learn value function and to predict
the next state given an action and current state;
then choose action that maximizes value of next
state

— “Model Free”

— "Model-based”



https://worldmodels.github.io/

Q5-Q8
https://tinyurl.com/441-fa24-1.25

ofa0



https://tinyurl.com/441-fa24-L25

RLHF: Reinforcement Learning with Human Feedback

ChatGPT improves on GPT by using RLHF, using PPO to generate
outputs that users prefer

Ranking Data

Converted from the human fraining - Reward Model
comparisons to scalar scores
using the Elo algorithm
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https://commons.wikimedia.org/wiki/File:RLHF _diagram.svg



Things to remember

Reinforcement learning applies when a
sequence of actions is needed to complete a
goal

Q-Learning predicts the long-term rewards that
will result from a given state and action

PPO predicts which action will result in the
highest value state

To better align with user preference, a common
solution is to train a model (self-supervised
and/or on datasets) and then tune it using RLHF
to create more preferred results
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Almost done!

* Thursday — Semester Wrap-up and Review
 Exam 3 — Thursday to Tuesday (Dec 5-10)
* Final Project — due Dec 15
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