Reinforcement
Learning

Applied Machine Learning
Derek Hoiem

So far, we've
learned how to train
models to predict
some value.

How could we train
an Al agent to play
Breakout?

This class: Reinforcement Learning

* Deep Q-Learning with Atari Games
* Proximal Policy Optimization for Hide and Seek

 Other approaches to RL, and RLHF

Problem statement for RL

Learn a policy that, given state, outputs the
with maximum expected reward

— State: everything the agent knows about the
environment, e.g. images of current and past screens

: things the agent can do, e.g. move left, stay,
move right

— Policy: function that outputs an action given a state

— Reward: the thing that’s being maximized, e.g. the
score

— Expected Reward: maximize the sum of the current
reward and discounted future rewards, with the
expectation over possible sequences

Q-Learning

Learn Q (s, a;) — v: given a state s; and
action a;, what is the expected total future
reward value v?

If | move left/stay/right, what will be my time-
discounted score?

Once learned, the optimal policy is to choose
the action a; that maximizes Q(s¢, a;)

Discounted Rewards and Bellman Equation

The value function is the expected total rewards received from following the optimal policy

Q(se,ar) = E[R(sp, ae) + Z Y max R(s¢+iQrti)]
=1 t+1
E.g., suppose
* reward is points added to score
1
V=3

10 points are earned at t and again at t + 3, and at no other time.

What is the total discounted reward obtained at t?
13

10 + 10 = 5 = 10.125

Discounted Rewards and Bellman Equation

The value function is the expected total rewards received from
following the optimal policy

00

Q(sg ar) = E[R(sg, a) + Vi max R(S¢4i, Qr4q)]

, At+i
=1

The Bellman Equation models this recursively, i.e. the
expected total rewards are the immediate rewards plus the
expected rewards at the next time step

Q(st, ar) = E[R(st, ap) + ymax Q(Se41, Ary1)]

At+1

How do we learn this Q function?

* Play lots of games, and use Bellman’s equation to update the
parameters of the Q-function

L; (0;) = Eq () [(yi —Q (s,a; 9«5))2}

Vrﬁ?iLi (93) — Eszamp(-);s"mﬁ {(? + H}ﬁx Q(Sfa af; 61'—1) — Q(S: a, 93)) VBiQ(Sa a, 91)]

\ }
Y \ Y }

How much we want to increase or decrease Q to match our How much changing each
“oracle” estimate from the next time step, i.e. difference parameter will change Q
between:

1. total reward under previous parameters (current reward, plus

prediction at t+1)
2. predicted reward under current parameters

[Minh et al. 2013, Deep Mind]

https://arxiv.org/pdf/1312.5602

What are some drawbacks to playing one game at a time
and learning from each step?

* May not be efficient

— Need to play a lot of games before you start making progress, and
could get stuck in some long games

— Consecutive states are very similar

 May be unstable

— Due to correlated consecutive states, may overfit to particular cases
or swing back and forth with each episode

[Minh et al. 2013, Deep Mind]

https://arxiv.org/pdf/1312.5602

Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do

Initialise sequence s; = {x; } and preprocessed sequenced ¢, = ¢(s1)

fort =1,7 do
With probability e select a random action a;
otherwise select a; = max, Q*(¢d(s¢),a;) Generate next
Execute action a; in emulator and observe reward r; and image z; ., [~ action in episode
Set st4+1 = St, at, x¢4+1 and preprocess ¢;+1 = P(S¢+1) and store results
Store transition (@y, a;, 1y, ¢ inD _
Sample random (Iflﬁitﬁil;zitciii l:(i)]t;’;rlfi)llsiti(;ms (pj,a;,7;,¢;11) from D Irain on random

AR ARNERC AR sample of stored
Sety; =4 ' , for terminal ;41 state/action/reward
J ri +ymaxye Q(¢jt+1,a’;0) for non-terminal ¢4 experiences

Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation 3

end for

end for

[Minh et al. 2013, Deep Mind]

https://arxiv.org/pdf/1312.5602

Modeling the Q function with a neural network

Four grayscale
cropped frames

Convl Conv2 FC1
— 16 8x8 Filters S 32 4x4 Filters —_ 256 Units |—>
Stride 4, RelLU Stride 2, RelLU RelLU

Input
B4x84x4 Imagseq

Output
Actions

Outputs the value for
each action

Convolution Convolution Fully connected
- b v

"n
=
=
8
15
5
o
aQ
2
©
(=1

L

o
| |
/I
-~
-
BiRonagaee:

|l i) e I _-'.
| f B o [/
I g |/
Ty i/ /7 |-
i W
.—r'-"./ v L ™ -.] L]
. 5'/ i e . W
0 d—m L\
A
=)] il .
)\, g
\ W,] e .

A v
AR 4" N i1 /,/ /18 {, v e}
\\ o q\ = v /] ¢ </

1) T L B L] . /
\D 4 \o T Y
| a ./ . L

ER R £
+ [+ + *
CELEEE

[Minh et al. 2013, Deep Mind]
[Minh et al. 2015, Nature]

https://arxiv.org/pdf/1312.5602
https://media.telefonicatech.com/telefonicatech/uploads/2021/1/2531_DQNNaturePaper.pdf

* What should the reward for
a given timestep be?

 What is a reasonable
discount y factor? (assume
that one time step is one
animation frame or 1/15
second of normal play)

Reward is 1, O, or -1 for score
Increased, unchanged, or
decreased

y = 0.99

Reward improves overall, and Q-value improves stably

__Average Reward on Breakout __Average Reward on Seaquest Average Q on Breakout

@ 250 ¢ 1800 4 o 9 Average Q on Seaquest

g 1 81600 | ns 1{ Tas| & T sl

5200 ¢ 1 G400 ' Yog g .l Pt T L 7|

e L " — Tiet = o o

3155. TT t1 @ 1200 ‘_* | I L o5/ o 2 6|

T . LAl 1000 p A T s ,.r"f g 5 '

o 1 iiv ' o [Ty i g 2] = [i

z o1l i i = 800 | i [#] T 4 F

o 100 # 4 i] ' T LI < {5} i = F

v ' L e 600 b LN e s] @ P, a 3 ’

® pot ! © gonl , AVIIRD 3 - I R - .

E"‘ 5{] L :.l. E‘.l 413'3 P g LT l ‘! E i E 2 '.,

T o o 200 [4N ' A I N ‘,.r-""’ 2 10f

< ol A : < ﬂ"" — . - 0! — — : 0¥ — — '
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70O 80 90 100 0 10 20 30 40 50 60 70 80 90 100

Training Epochs Training Epochs Training Epochs Training Epochs

10.9
10.8 B
10.7 K
10.6 A -
10.5 I
10.4
10.3
10.2
10.1 £y
10t~ -
9.9 '\l
9.8 .
0 S 10 15 20 25 30
Frame #

A: Enemy appears B: Enemy about to be hit by C: Scored! Back to
(scoring opportunity) torpedo (soon to score) previous level

et

Py
I L St
P

X
il
"‘\

s e T

N Tl

" O TL Lk s
ul ..{

Faar st Ty v

T-SNE of hidden state
for Space Invaders

[Minh et al. 2015, Nature]

https://media.telefonicatech.com/telefonicatech/uploads/2021/1/2531_DQNNaturePaper.pdf

Video Pinball]
Boxing B
Breakout |
Star Gunner |
Robotank |
Atlantis |
Crazy Climber |
Gopher |
Demon Attack |
Name This Game |
Krull 7|
Assault ']
Road Runner |
Kangaroo |
James Bond |
Tennis |
Pong |
Space Invaders |
Beam Rider |
Tutankham |
Kung-Fu Master |
Freeway |
Time Pilot |
Enduro |
Fishing Derby |
Up and Down |
Ice Hockey |
Qbert |
H.ER.O.]
Asterix |
Battle Zone |
Wizard of Wor |
Chopper Command |
Centipede |
Bank Heist |
River Raid |
Zaxxon |
Amidar |
Alien 7|
Venture |
Seaquest |
Double Dunk |
Bowling |
Ms. Pac-Man |
Asteroids || 7%
Frostbite |} 6%
Gravitar | [5% DQN

Private Eye ||-2% .
Montezuma's Revenge || 0% : Best linear learner
T 1 1

100 200 300 400 500 600 1,|mn 4,5150% [Mlnh et al. 2015, Nature]

\

]

At human-level or above

Below human-level

100 = human level

Rl L

=——.
Iy
£ 5 ¥

= —

https://media.telefonicatech.com/telefonicatech/uploads/2021/1/2531_DQNNaturePaper.pdf

Simple code with nice explanation

https://medium.com/@shruti.dhumne/deep-g-network-dgn-
90e1a3799871

https://medium.com/@shruti.dhumne/deep-q-network-dqn-90e1a8799871
https://medium.com/@shruti.dhumne/deep-q-network-dqn-90e1a8799871

Q1-Q4
https://tinyurl.com/441-fa24-L.25

ofa0

https://tinyurl.com/441-fa24-L25

https://www.youtube.com/watch?v=kopoLzvh5jY

State encodes distances to
objects and positions of other
visible agents, boxes, and
ramps

Action is directly predicted
from state

(reward value of a state-
action pair is not modeled)

Teams keep challenging each
other to develop new
strategies

Q: What do you think is the
reward?

A: Hider = 0 if seen, 1 if not
Seeker =1 if sees, O if not

Policy Architecture

Generate masks from frontal
vision cone and line of sight

x
x W
Masked Residual Self
Attention across entities
! (N ! S/
o ‘\ A
J J

Masked (_>

Average Pooling LSTM

~
EY
of self
Entity Embeddings
Circular 1D \. Fully
Convolution Connected T ™
'
; "_]
L Fully \
| Connected # agents-1 N
el
® M
of other agents
Fully _
X, ¥, size
of boxes
Fully o
Connected # ramps

M,
of ramps

((

Movement Grabbing
Action Action

Locking
Action

Policy Optimization

Typically, optimize a value function Vy(s) and a policy function
g (ae|St)

§ =B, [V@ log ’J’Tg(at ‘ St)At} Eolve for pa”rameters that maximize
Advantage

Advantage is reward plus
improvement in expected future
reward

A =1+ V(Seq1) — V(S)

[Shulman et al. 2017]

https://arxiv.org/abs/1707.06347

Trust Region Policy Optimization (TRPO)

Improve likelihood of increasing advantage without diverging too
much from previous policy

maximaize
6

A
b~

mo(at | s¢)

_Wgﬂld(at ‘ St)

)

At — BKL[mg 1, (- | 5¢), ma (- | St)]_

[Shulman et al. 2017]

https://arxiv.org/abs/1707.06347

Proximal Policy Optimization (PPO)

Ly HEVEES(9) = B [L7H17(0) — e1Ly " (0) + e2S[mo] (s1)]

/ _ / Entropy bonus (don’t be
Value predICtIOFL Ioss2 too confident)
_ . : arg
Clipped advantage objective (Ve(St) -V)

LOHIP (0) = By [min(rs (0) Ar,clip(ro(6), 1 — e, 1+ 9 A)|

ri(f) = —relerlon

MOg1q (0t | 5t)

[Shulman et al. 2017]

https://arxiv.org/abs/1707.06347

Proximal Policy Optimization (PPO)

Ly HEVEES(9) = B [L7H17(0) — e1Ly " (0) + c2S[mg] (s1)]

/ : / EntropJ bonus (don’t be
Value prediction loss { fdent
Clipped advantage objective 00 confident)

Algorithm 1 PPO, Actor-Critic Style

for iteration=1,2,... do
for actor=1,2,..., N do
Run policy mg_, in environment for 7" timesteps

Compute advantage estimates }11, . ,AT
end for
Optimize surrogate L wrt 6, with K epochs and minibatch size M < NT
gold — 0

end for [Shulman et al. 2017]

https://arxiv.org/abs/1707.06347

Comparison on Atari Games

PPO beats updated version of Deep Q-Learning (A2C) in almost
all cases

A2C ACER PPO Tie

(1) avg. episode reward over all of training 1 18 30 0
(2) avg. episode reward over last 100 episodes 1 28 19 1

PPO learns faster than ACER (a different policy optimization
algorithm) but tends not to do better in the end

Another use of PPO

https://www.youtube.com/watch?v=L 4BPjLBF4E

https://www.youtube.com/watch?v=L_4BPjLBF4E

Comparing DQN and PPO

* PPO can handle continuous action space, while DQN can’t
easily (as it outputs value for each action)

* On-policy: PPO generates trajectories using the same policy
that it updates (on-policy), while DQN’s experience replay
updates based on a previous policies and sometimes tries
uniformly random actions (off-policy)

* PPO can often explore better, as it chooses next action
stochastically, rather than DQN’s e-greedy sampling (usually
best, else uniformly random action)

Four RL Approaches

* Behavioral cloning: Predict which action an expert
would take, given the current state

e Policy learning: Learn a value function (predicting
future reward) from state, and a policy function
that predicts which action maximizes value

* Q-learning: Learn which state-action pairs have the
highest value

 World Models: Learn value function and to predict
the next state given an action and current state;
then choose action that maximizes value of next
state

— “Model Free”

— "Model-based”

https://worldmodels.github.io/

Q5-Q8
https://tinyurl.com/441-fa24-1.25

ofa0

https://tinyurl.com/441-fa24-L25

RLHF: Reinforcement Learning with Human Feedback

ChatGPT improves on GPT by using RLHF, using PPO to generate
outputs that users prefer

Ranking Data

Converted from the human fraining - Reward Model
comparisons to scalar scores
using the Elo algorithm

T

Human
Annotators

Odd ybnoiyy
Buiuie) sapinb

Y

Prompt Data ;g _ Aligned Model
Pairs of prompts —> 8Su perwsed Model The learned RL policy
and responses after applying RLHF

W

https://commons.wikimedia.org/wiki/File:RLHF _diagram.svg

Things to remember

Reinforcement learning applies when a
sequence of actions is needed to complete a
goal

Q-Learning predicts the long-term rewards that
will result from a given state and action

PPO predicts which action will result in the
highest value state

To better align with user preference, a common
solution is to train a model (self-supervised
and/or on datasets) and then tune it using RLHF
to create more preferred results

ully connected
i
7 =m
i
S OE 0 |0 =
:
! om
!
(]

nnnnnnnnnnnnnnnnnnnnnnnn
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

Policy Architecture

Reward Model

training X Aligned Model
pts — > Supervised Model The learned RL policy
ssssssssssss

Almost done!

* Thursday — Semester Wrap-up and Review
 Exam 3 — Thursday to Tuesday (Dec 5-10)
* Final Project — due Dec 15

	Reinforcement Learning�
	Slide Number 2
	This class: Reinforcement Learning
	Problem statement for RL
	Slide Number 5
	Q-Learning
	Discounted Rewards and Bellman Equation
	Discounted Rewards and Bellman Equation
	How do we learn this Q function?
	What are some drawbacks to playing one game at a time and learning from each step?
	Deep Q-Learning with Experience Replay
	Modeling the Q function with a neural network
	Slide Number 13
	Slide Number 14
	T-SNE of hidden state for Space Invaders
	Slide Number 16
	Simple code with nice explanation
	Q1-Q4
	Slide Number 19
	Slide Number 20
	Policy Optimization
	Trust Region Policy Optimization (TRPO)
	Proximal Policy Optimization (PPO)
	Proximal Policy Optimization (PPO)
	Comparison on Atari Games
	Another use of PPO
	Comparing DQN and PPO
	Four RL Approaches
	Q5-Q8
	RLHF: Reinforcement Learning with Human Feedback
	Things to remember
	Almost done!

