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Preliminaries



Discrete Fourier Transform
- As a matrix multiplication

Real Imaginary
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Short-Time Fourier Transform

○ Overlap-and-Add

- Windowing and overlap-and-add

A bell-shaped curve

Element-wise multiplication

Windowed signal

Real

Image

Magnitudes

t-th column vector
in the spectrogram

multiply

multiply
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Short-Time Fourier Transform

○ Trade-off between 
time and frequency resolutions

○ Which one do you like
 the best?

- Resolution control
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Audio and Machine Learning
- From IEEE’s perspective: EDICS
○ IEEE Signal Processing Society; Audio and Acoustic Signal Processing Technical Committee

9

Audio signal processing
Signal enhancement, restoration, and extraction
Audio and speech source separation
Audio and speech coding, transmission, and representations
Audio and speech quality and intelligibility measures
Auditory modeling and hearing instruments
System identification and dereverberation
Acoustic sensor array processing
Fundamental theory and algorithms for audio and acoustic signal processing

Acoustic scenes and events
Audio captioning, retrieval, and understanding
Sound event and anomaly detection and sound scene classification
Sound generation and synthesis

Acoustic environment processing
Modeling, analysis, and synthesis of acoustic environments
Spatial audio recording and reproduction
Active noise control; acoustic echo and feedback cancellation 

Music analysis, processing, and generation
Music analysis
Music signal processing, production, and separation
Audio- and symbolic-domain music generation and content creation

Applications and other topics in audio and acoustic signal processing
Bioacoustics and medical acoustics
Audio security
Audio for video and multimedia
Data and open source for audio and acoustic signal processing
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Audio Signal Processing 
Problems



A Real-World Use Case
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Speech Separation

Speaker Diarization

Speech Enhancement

Speaker Localization



ML/NN for Speech Enhancement
- Learning a generalist
○ A typical supervised setup 

Artificial filtering
The goal is to learn another parametric function 
(e.g., a neural network)

○ Issues
The deformation function                might be too artificial

• Reverberation, band-pass filtering, etc.
Big data and big models

• Deep learning advancements have relied on the big labeled data, i.e., 
• So the big models generalize well

Do we always need a big model?
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Speech
Enhancement

Model

Noisy Speech

Clean Speech Estimate

Zero-Shot PSE
Primit ive NMF models / Test-Time Model Adaptation / Test-Time Model Select ion

Few-Shot PSE
Target Speaker Extraction as PSE / Self-Supervised Learning Data Purification /  Contrastive Mixtures

Motivation
Efficiency / Performance / Fairness /  Privacy



ML/NN for Speech Enhancement
- Generalists vs. Specialists
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M. Kolbæk, Z. H. Tan and J. Jensen, "Speech Intelligibility Potential of General and Specialized Deep Neural Network Based Speech Enhancement Systems," IEEE/ACM TASLP, 2017.

A Universal Speech 
Enhancement System

User A’s
Clean Speech

Specialist 
A

Specialist 
B

Specialist 
C

User B + Drone

User B’s
Clean Speech

User A + Dog Barking

User C + Bird Song

User C’s
Clean Speech

Zero-Shot PSE
Primit ive NMF models / Test-Time Model Adaptation / Test-Time Model Select ion

Few-Shot PSE
Target Speaker Extraction as PSE / Self-Supervised Learning Data Purification /  Contrastive Mixtures

Motivation
Efficiency / Performance / Fairness /  Privacy



ML/NN for Speech Enhancement
- Specialist Results
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Noise Types Mixture
(Input)

Results from 
the Best 

Specialist

Results from 
the Worst 
Specialist

Bird Singing

Typing

Motorcycle



ML/NN for Speech Enhancement
- SPL and the geometry of the sources and sensors
○ Sound Pressure Level (SPL) is inverse-proportional to the distance from the source

MLSP 2012

2m

1m

0.8m

2.24m

2.15m
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ML/NN for Speech Enhancement
- A clustering approach
○ Inter-channel Level Differences (ILD) can serve as a feature

○ The goal is to estimate source-wise distributions from their mixture
What kind of problem is it?
Clustering!

MLSP 2012

Left Right

ILD dist. of 2nd source

ILD dist. of 1st source

ILD distribution of mixture signals
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ML/NN for Speech Enhancement
- The same pairwise MRF design

MLSP 2012
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ML/NN for Speech Enhancement
- The mixing environment (multiple sources)

MLSP 2012

4.45m

2.5m

3.55m1m

1m

2m

0.15m

3m

0.03m
~ 0.07m

1.65m
1.7m

1.5m

3m
2m

3m

1.4m
0.5m

1m

Mixture Vanilla 
GMM

MRF 
Smoothing

SDR
0.06 8.08

+8.02
10.42

+10.36
+2.34

+Improvement from mixture
+Improvement by MRF smoothing
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Neural Speech and Audio Coding
- Autoencoders vs. traditional codecs
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SPL 2020

Encoder  Decoder  

Code

Transmission
(or storing)

Loss 
Function

B
ac

kp
ro

pa
ga

tio
n

Encoder Decoder  

Code

Transmission
(or storing)

Subjective
Evaluation

Module 1

Module 2

Module K

Module 1

Module 2

Module K
R

ec
on

fig
ur

e 
M

od
ul

es



Neural Speech and Audio Coding
- End-to-end CNN autoencoder
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SPL 2020
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Perceptual Nature of Audio
- Objective metrics are not good enough
○ Time domain loss functions

SPL 2020

Original Contaminated (version 1) Contaminated (version 2)

SNR = 20.14 SNR = 18.30



Perceptual Nature of Audio
- You can’t hear some tones!
○ Which one is completely silent?

SPL 2020

5600 – 5760Hz

2400 – 2560Hz

0 – 160Hz

800 – 960Hz

7840 – 8000Hz
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Perceptual Nature of Audio
- You can’t hear some tones!
○ Which one doesn’t have an interfering beep?

SPL 2020

785Hz        –40Hz

785Hz        –20Hz

785Hz        +30Hz

785Hz        +10Hz

785Hz        -10Hz

785Hz        +20Hz
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Perceptual Nature of Audio
- Psychoacoustics
○ Psychoacoustics for MPEG audio coding technology (simultaneous masking)
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https://en.wikipedia.org/wiki/Masking_threshold

No reason to spend many bits
to encode these tones!



Perceptual Nature of Audio
- Our PAM-1 implementation (in TensorFlow)
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Perceptual Nature of Audio
- Psychoacoustic loss for neural audio coding
○ Priority weighting

Allows error in the masked area
• Can reduce bitrates; Can reduce model sizes

○ Noise modulation
Iteratively penalizes the highest NMR

○ Competes with MP3
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PAM weights

Mask

Log PSD
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Acoustic Echo Cancelation
Active Noise Cancellation
Spatial Audio



AEC and ANC
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Delay

Leakage Path

Enhancement Path

Source 
of Interest

Playback from 
remote speakers

Playback in the 
reverberant room



AEC and ANC
- Music-version of AEC
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Source 
of Interest

Playback in the 
reverberant room

? ?

?
?

?



Spatial Audio
- Stereo to surround extension
○ Music upmixing is not well defined

○ Our goal: to disentangle music and spatial information in the latent space
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ICASSP 2022

Spatial images



Spatial Audio
- Disentanglement in the latent space: a VAE-based approach
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Decoder

Dense Block

…

Reparameterization

…

5-channel output 

Dense Block

Conv Layer

5-channel input

Downmix

5-channel input
Concatenation

Stereo

“Hey, Jude”

“Let it be”
“Let it be”

(with “Hey, Jude”’s 
spatial rendering)



A line represents a 50-
dimensional latent vector.

(a) Same music, different spatial map (b) Different music, same spatial map

Upmixing via Style-Transfer
- Latent space visualization
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Each dot represents a
dimension-reduced latent vector

(c) Colored by music content (d) Colored by spatial images
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Music Signal Processing



SpaIn-Net
- Spatially-Informed Stereophonic Music Source Separation
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SpaIn-Net
Audio Examples

Gtr1 Gtr2 Piano Bass

Ground-Truth

XUMX 
Baseline

D1-CAT 
(Proposed)

Input 
Mixture:

ICASSP 2022



Neural Pitch Correction?
- It’s a data-intensive regression problem
○ Traditional autotuners:

Require specifying the pitches of the 
melody beforehand
Snap pitches to a grid
Robotic and musically limiting

○ Proposed approach:
Doesn’t require reference pitches

• Uses backing and vocal track overtones
Preserves nuances while detecting 
unintended pitch shifts
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Lights, Ellie Goulding performed 
by Smule, Inc. user applying 
Auto-Tune effect



The Neural Pitch Correction System
- Input to the system
○ Input consists of three CQT spectrograms

Backing track
De-tuned singing voice
The mismatch of the binarized CQT
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Backing Track Detuned
(CQT)

Autotuned
(CQT)

Detuned
(Binary CQT)

Autotuned
(Binary CQT)



Experimental Results
- Sound examples
○ On artificially detuned test signals

Original intonation sample→ detuned version → autotuned version

○ Real-world examples
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ICASSP 2020
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Detection and Classification of 
Acoustic Scenes and Events



DCASE
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Virtual Sound Space
(Binaural Rendering)

Resynthesis

Resynthesis!
Amplification
Announcement
Directional

Event Detection

Source Tracking

Anomaly Detection
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