
Transformers
in Vision and
Language
Applied Machine Learning
Derek Hoiem

Dall-E

Transformers: general data processors
● Input tokens can represent anything: image

patches, text tokens, audio, controls, etc.

● Invariant to order of tokens: add positional
embedding to distinguish pos/type of input

● Transformer block:
○ Apply multi-head attention
○ Apply 2-layer MLP with ReLU to each token separately
○ Residual and layer norm (over all tokens) after each

● Can stack any number of transformer blocks

2
Attention is all you need

https://arxiv.org/abs/1706.03762

Positional encodings

● Transformer processing does not depend
on position of token
○ This is kind of similar to convolution, as each

“patch” or token vector is processed
independently, but no overlap between
patches

○ But to compare between tokens, relative
position may be important

● Sinusoidal encoding (on right) is such that
a dot product between encodings
corresponds to positional similarity

● Learned or even fixed random encodings
also work similarly in practice

Q1

https://tinyurl.com/441-fa24-L19

https://tinyurl.com/441-fa24-L19

Remember from last class
Sub-word tokenization based on byte-pair
encoding is an effective way to turn natural
text into a sequence of integers

Attention is a general processing
mechanism that regresses or clusters values

Input
(k,q,v) iter 1 iter 2 iter 3 iter 4

1.000 1.497 1.818 1.988 2.147

9.000 8.503 8.182 8.012 7.853

8.000 8.128 8.141 8.010 7.853

2.000 1.872 1.859 1.990 2.147

Learned vector embeddings of these
integers model the relationships between
words

Stacked transformer blocks are a powerful
network architecture that alternates
attention and MLPs

Paris – France
+ Italy = Rome

Chair is broken
ch##, ##air, is, brok##, ##en

Further reading: http://nlp.seas.harvard.edu/annotated-transformer/

http://nlp.seas.harvard.edu/annotated-transformer/

• WordPiece tokens (integers) are
mapped to learned 512-d vectors

• Positional encoding added to each
vector

• N=6 transformer blocks applied to
input

• Until <EOS> is output:
– Process input + output so far
– Output most likely word (after more

attention blocks and linear model)

Attention is all you need

Language Transformer: Complete Architecture

Self-
Attention

Cross-
Attention

Self-
Attention

https://arxiv.org/abs/1706.03762

• English-German
– 4.5M sentence pairs
– 37K tokens

• English-French
– 36M sentences
– 32K tokens

• Base models trained on 8 P100s for 12
hours

• Big models (2x token dim, 3x training steps)
trained for 3.5 days

• Adam optimizer: learning rate ramps up for
4K iterations, then down

• Regularization: drop-out, L2 weight, label
smoothing

Attention is all you need

Application to Translation

Self-
Attention

Cross-
Attention

Self-
Attention

https://arxiv.org/abs/1706.03762

Results

Today’s Lecture

• BERT: Large Language Model

• ViT (Vision Transformer): Image classification

• CNN vs Transformer comparison

• Unified-IO: Sequence-to-sequence vision-language

BERT (Devlin et al. 2019)

https://arxiv.org/abs/1810.04805

https://arxiv.org/abs/1810.04805

Why is BERT worth knowing?

BERT is a significant breakthrough in NLP
• One of the first LLMs
• Transformer-based architecture
• Pre-training on large amounts of text data via masking

objective
• Fine-tuned to achieve SotA for many tasks
• Still widely used

(100+K citations)

Overview of BERT
• Uses standard transformer blocks

– Base: 12 layers, 768-dim, 12 heads; 110M parameters
– Large: 24 layers, 1024-dim, 16 heads; 340M parameters

• WordPiece: 30K tokens
– Special [CLS] and [SEP] tokens
– Positional and sentence embeddings

• Pre-trained with masked language modeling (MLM) and next
sentence prediction

• Fine-tuned for other tasks

BERT: Input representation

• WordPiece: 30K tokens
– Special tokens

• [CLS] at start to encode sentence summary
• [SEP] to separate sentences or question and answer

– Positional and sentence embeddings

Pre-training with masked language modeling (MLM)
• Randomly select 15% of text tokens

to be “masked” and predicted by
based on surrounding tokens

• Masked tokens are replaced by
– [MASK] token (80% of the time)
– Random token (10%)
– Unchanged token (10%)

• Only masked tokens are predicted

[cls] My dog is cute [sep] He likes play ##ing [sep]

[cls] [MASK] dog is grave [sep] He likes play ##ing [sep]

Masking
example:

Pre-training with next sentence prediction
• Input is two sentences A and B
• Replace B with a random

sentence 50% of the time
• Predict whether B is the

original sentence or not (via
[CLS] token)

Pre-training and fine-tuning
• Pre-train on MLM and NSP tasks

– BooksCorpus: 800M words
– English Wikipedia: 2.5B words
– Important to use full documents, not just shuffled sentences
– BERTBASE trained on 16 TPU chips; BERTLARGE on 64 chips; 4 days each

• Fine-tune on each task, takes a few hours on a GPU
– Paraphrasing
– Entailment
– Question answering
– …

BERT results

GLUE: General Language Understanding Evaluation – many tasks
SQuAD: question
answering dataset

MNLI: whether a sentence entails, contradicts, or is unrelated to another
QQP: whether two sentences are semantically equivalent
QNLI: question answering
SST-2: positive or negative sentiment
CoLA: whether sentence is grammatically correct
STS-B: sentence similarity score
MRPC: whether one sentence paraphrases another
RTE: whether a sentence entails a hypothesis

Key Take-aways from BERT
• Bi-directional masked language modeling is highly effective

pre-training
– Does not require supervision
– Learns general representations

• Same idea has been adopted for vision, but with much higher
masking ratio (~80% of patches masked)

ViT: Vision Transformers (Dosovitskiy et al. 2021)

https://arxiv.org/abs/2010.11929

https://arxiv.org/abs/2010.11929

Why is ViT worth knowing about?

1. Shows that the same exact Transformer blocks
can be used for vision, paving the way for
multimodal processing

2. Transformers work as well as CNNs but are more
computationally efficient

3. Vision and language are easier to combine using
transformers

(33K citations)

ViT Overview
• Image is divided into patches

(e.g., 16x16)
• Each patch projects into a fixed

length vector
• Positional encoding added to

each patch
• Extra [CLS] token to encode

image summary
• Multiple layers of standard

transformer (same as for
language)

• For classification, final
prediction is linear layer
applied to [class] token

Different size models,
same pretraining

Same model, different
pretraining dataset

Big convolutional
networks

$30K $120K

Information is integrated
among distant patches

Visualizing transformer (Chefer et al. 2021)
Visualizations for overall and class-specific feature importance

CNNs vs. Transformers

• CNNs encode position as an index in the feature map. Transformers do not care about index
order but encode positional embeddings
- Surprisingly, even when positional embeddings are not used, transformer models still work well

• CNNs encode a bias that nearby pixels are most related. Transformers enable combining
information from distant patches, with positional embedding providing a weak prior to
consider nearby patches
– CNNs can only use information in neighboring pixels/cells, but the receptive field (pixel area

considered) grows larger as network gets deeper

• In practice, CNNs and Transformers perform similarly for pure vision tasks, but Transformers
are faster to train
– Hybrids are possible, e.g. apply shallow CNN before first patch embedding

• Transformers operate on “tokens”, which is very general and can be applied to any modality

Q2-4

https://tinyurl.com/441-fa24-L19

https://tinyurl.com/441-fa24-L19

Unified-IO: <text, image> to <text, image> (Lu et al. 2022)

3B parameters

Pre-train on masked
text and image
completion for text,
images, and
image/caption pairs

Multitask training
on 80 datasets

27Unified-IO (June 2022)
https://unified-io.allenai.org/

https://unified-io.allenai.org/

28

Vision tasks
● Image synthesis from text /

inpainting / segmentation
● Image/object classification
● Object detection,

segmentation, keypoint
estimation

● Depth/normal estimation
Vision-language tasks
● VQA, image/region

captioning, referring
expressions
comprehension,
relationship detection

NLP tasks
● Question answering
● Text classification

Often performs similarly or better than SotA single-task models

30

Explore demo of Unified IO 2 which extends to audio and multiple
image inputs

https://unified-io-2.allenai.org/

https://unified-io-2.allenai.org/

HW 5

Things to remember
• Transformers are general data processors,

applicable to text, vision, audio, control, and
other domains

• Pre-training to generate missing tokens in
unsupervised text data learns a general
model that can be fine-tuned
- Same idea is also applicable to other domains

• Transformer architectures are state-of-art for
vision and language individually

• Arguably, the biggest benefit of transformers
is ability to combine information from
multiple domains

Next class: Foundation Models
• GPT-3
• CLIP

	Transformers in Vision and Language
	Transformers: general data processors
	Positional encodings
	Q1
	Remember from last class
	Language Transformer: Complete Architecture
	Application to Translation
	Results
	Today’s Lecture
	BERT (Devlin et al. 2019)
	Why is BERT worth knowing?
	Overview of BERT
	BERT: Input representation
	Pre-training with masked language modeling (MLM)
	Pre-training with next sentence prediction
	Pre-training and fine-tuning
	BERT results
	Key Take-aways from BERT
	ViT: Vision Transformers (Dosovitskiy et al. 2021)
	Why is ViT worth knowing about?
	ViT Overview
	Slide Number 22
	Slide Number 23
	Visualizing transformer (Chefer et al. 2021)
	CNNs vs. Transformers
	Q2-4
	Unified-IO: <text, image> to <text, image> (Lu et al. 2022)
	Slide Number 28
	Often performs similarly or better than SotA single-task models
	Explore demo of Unified IO 2 which extends to audio and multiple image inputs
	HW 5
	Things to remember
	Next class: Foundation Models

