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Today’s Lecture

• Representing natural language text as integers
– Byte pair encoding
– WordPiece

• Representing text tokens with continuous vectors
– Word2Vec

• Attention and Transformers
– “Attention is all you need” transformers



Each pixel means little, but images can be interpreted by grouping and 
recognizing patterns in groups of groups of groups of pixels

https://www.istockphoto.com/photos/funny-animal



CNNs iteratively process 
pixels->edges/colors->textures->sub-parts->parts->objects/scenes

Examples 
of strongly 
activating 
regions



But in text, the meaning is already in the words… right?



What does this mean?

Usiadłem na kaktusie



Which of these is more similar?

He sat on the 
chair, and it broke.

The chair says the 
department is 
broke.

After sitting, the 
seat is broken.



Which of these is more similar?

He sat on the 
chair, and it broke.

The chair says 
the department is 
broke.

After sitting, the 
seat is broken.



He sat on the 
chair, and it broke.

The chair says 
the department is 
broke.

After sitting, the 
seat is broken.

• Same word (character 
sequence) may mean 
different things

• Different words may 
mean similar things

• Word meaning depends 
on surrounding words



To analyze text, need to convert text to tokens

“Token”: an integer or vector that represents 
a data element, a unit of processing
• With integer tokens, the values are not 

continuous (e.g. 5 is no closer to 10 than 5000)
• With vector tokens, similarity/distance (typically 

L2, dot product or cosine) is meaningful



Word  Integer
• Each unique space-delimited 

character string is assigned to a 
different integer
– To limit vocabulary size, assign only 

the most frequent words to integers
– Others are <unk> (unknown)

• Pros and cons
– Simple
– Possible to compare/retrieve 

documents based on count of tokens
– Many words map to unknown (e.g. 

1298, Bart’s, Area-52, anachronism, 
…)

– Large vocabulary needed
– Does not model similarity of related 

words like broke/broken

He sat on the 
chair, and it broke.

The chair says 
the department is 
broke.

After sitting, the 
seat is broken.



Character  Integer
• Each character is assigned to a 

unique integer
• Pros and cons

– Simple
– Every document within 

alphabet can be fully modeled
– Small vocabulary (< 100 integers 

needed for English)
– Sometimes, similar words will 

have similar sequences 
(broke/n)

– Count of tokens is not 
meaningful

– Character sequences are long



Subword  Integer
• Common sequences of 

characters are assigned to 
unique integers

• Pros and cons
– Every document within 

alphabet can be fully modeled
– Vocabulary size is flexible (e.g. 

30K for BERT, 50K for GPT-3)
– Sometimes, similar words will 

have similar sequences 
(broke/n)

– Need to solve for good subword 
tokenization



Character WordSubword
“Chair is broken” c, h, a, i, r, … ch##, ##air, is, brok##, ##en chair, is, broken

Vocabulary Size 256 4K-50K > 30K

Completeness Perfect Perfect Incomplete

Independent 
Meaningfulness

Bad OK Good

Encodes word 
similarity

Somewhat A little better Not at all

Sequence Length Long
Medium 

(e.g., 1.4 tokens per word) A little shorter



Subword Tokenizers: Byte Pair Encoding
1. Start with each character assigned to a unique token
2. Iteratively assign a new token to the most common pair of 

consecutive tokens, until max_tokens is reached

ZabdZabac 
Z=aa 

aaabdaaabac 

ZYdZYac 
Y=ab 
Z=aa 

XdXac 
X=ZY 
Y=ab 
Z=aa 

Example from Wikipedia

Initial array of 4 characters

Replace aa by Z

Replace ab by Y

Replace ZY by X

XZd  ZYZd  aaabaad

https://en.wikipedia.org/wiki/Byte_pair_encoding


WordPiece Tokenizer (Sennrich et al., Wu et al. 2016)
• Word: Jet makers feud over seat width with big orders at stake
• wordpieces: _J et _makers _fe ud _over _seat _width _with _big _orders _at _stake

https://arxiv.org/abs/1508.07909  
https://arxiv.org/pdf/1609.08144.pdf

For each merge:
1. Count token pair frequencies in dataset
2. Select most frequent pair
3. Merge that “best” pair

a. Assign best pair to new token
b. Replace all instances of best pair in dataset with that token

https://arxiv.org/abs/1508.07909
https://arxiv.org/pdf/1609.08144.pdf


Try it

Do first two merges of:
Your cat cannot do the can-can, can he?

_Your _cat _cannot _do _the _can-can, _can he?

_Your _Xt _Xnnot _do _the _Xn-Xn, _Xn _he?

_Your _Xt _Znot _do _the _Z-Z, _Z, _he?

For each merge:
1. Count token pair frequencies in 

dataset
2. Select most frequent pair
3. Merge that “best” pair

a. Assign best pair to new 
token

b. Replace all instances of 
best pair in dataset with that 
token



How can we better encode word similarity?

• Different words are related to each other

• Encode “meaning” in a continuous vector

• Learn these vectors based on surrounding words



Word2Vec (Mikolov et al. 2013)
For each word, solve for a continuous vector representation:
• CBOW: predict center word as average of surrounding words (after projecting each word to a vector)
• Skip-Gram: each word (after projecting to a vector) predicts each surrounding word with a linear 

model

https://arxiv.org/pdf/1301.3781.pdf 

https://arxiv.org/pdf/1301.3781.pdf


Train by gradient descent
• At the end, each 

word integer can 
be replaced by a 
fixed-length 
continuous vector

• These vectors can 
predict word 
relationships 



Word2Vec predicted relationship examples

E.g., Paris – France + Italy = Rome



Word2Vec demos

https://turbomaze.github.io/word2vecjson  (fastest)

https://www.cs.cmu.edu/~dst/WordEmbeddingDemo/

https://remykarem.github.io/word2vec-demo/

https://turbomaze.github.io/word2vecjson
https://www.cs.cmu.edu/%7Edst/WordEmbeddingDemo/
https://remykarem.github.io/word2vec-demo/


Q1-Q3

https://tinyurl.com/441-fa24-L18 

https://tinyurl.com/441-fa24-L18


A new type of data processing

• Linear: output is sum of weights times features

• Convolution: output at each position is sum of weights times 
features within a window

• Attention: given a set of <key, value> pairs and a <query>, 
output is sum of values weighted by key-query similarity



Cross-Attention
<key k, value v>: a data element, in which key is used for 
matching and value is used to output
<query q>: used to match keys and accumulate values

𝑜𝑜𝑜𝑜𝑜𝑜(𝑞𝑞) = �
𝑖𝑖

𝑠𝑠 𝑘𝑘𝑖𝑖 , 𝑞𝑞 𝑣𝑣𝑖𝑖 / �
𝑖𝑖

𝑠𝑠 𝑘𝑘𝑖𝑖 , 𝑞𝑞

Similarity of ith key and query ith value Make similarities sum to 1



Cross-attention simple example

𝑜𝑜𝑜𝑜𝑜𝑜(𝑞𝑞) = �
𝑖𝑖

𝑠𝑠 𝑘𝑘𝑖𝑖 , 𝑞𝑞 𝑣𝑣𝑖𝑖 / �
𝑖𝑖

𝑠𝑠 𝑘𝑘𝑖𝑖 , 𝑞𝑞

𝑆𝑆 𝑘𝑘, 𝑞𝑞 = 1
𝑘𝑘−𝑞𝑞 2+1

 

<key, value> pairs: < 1,1 >, < 7,−1 >, < 5,−1 >

query: 4

𝑜𝑜𝑜𝑜𝑜𝑜 =
1
10 1 + 1

10 −1 +12 −1
1
10+

1
10+

1
2

= −0.71 
query = 0

𝑜𝑜𝑜𝑜𝑜𝑜 =
1
2 1 + 1

50 −1 + 1
26 −1

1
2+

1
50+

1
26

= 0.79 



Self-attention
• Key=value
• Each key is also a query



Another example of self attention

Input 
(k,q,v) iter 1 iter 2 iter 3 iter 4

1.000 1.497 1.818 1.988 2.147

9.000 8.503 8.182 8.012 7.853

8.000 8.128 8.141 8.010 7.853

2.000 1.872 1.859 1.990 2.147

Self-attention performs a kind of clustering

Typically, this is applied to high-dimensional 
vectors



Attention
• Cross-Attention: query vectors are 

separate from <key, value> vectors
– Performs instance-based regression

• Self-Attention: query vectors are the same 
as the key and value vectors
– Performs soft clustering/aggregatio
– Adding multi-dimensional vectors can overlay 

multiple types of information, not just blend or 
replace

• Attention is extremely powerful and 
general when combined with learned 
similarity and non-linear feature 
transformations

https://homestarrunner.com/



Transformer (Vaswani et al. 2017)
• Define similarity via linear projection with softmax

𝑆𝑆 𝑘𝑘𝑖𝑖 , 𝑞𝑞 = exp(𝑘𝑘𝑖𝑖 ⋅ 𝑞𝑞)

Attention is all you need

Normalize by sqrt of dimensionality of keys

https://arxiv.org/abs/1706.03762


Transformer (Vaswani et al. 2017)
• One or more similarity functions 

can be learned with linear layers
– If there are K similarities and D 

dimensions to input, each parallel 
linear layer outputs D/K values

Attention is all you need

https://arxiv.org/abs/1706.03762


Transformers: general data processors
● Input tokens can represent anything: image 

patches, text tokens, audio, controls, etc.

● Invariant to order of tokens: add positional 
embedding to distinguish pos/type of input

● Transformer block: 
○ Apply multi-head attention 
○ Apply 2-layer MLP with ReLU to each token separately
○ Residual and layer norm (over all tokens) after each

● Can stack any number of transformer blocks

32
Attention is all you need

https://arxiv.org/abs/1706.03762


Positional encodings

● Transformer processing does not depend 
on position of token
○ This is kind of similar to convolution, as each 

“patch” or token vector is processed 
independently, but no overlap between 
patches

○ But to compare between tokens, relative 
position may be important

● Sinusoidal encoding (on right) is such that 
a dot product between encodings 
corresponds to positional similarity

● Learned or even fixed random encodings 
also work similarly in practice



Q4

https://tinyurl.com/441-fa24-L18 

https://tinyurl.com/441-fa24-L18


• WordPiece tokens (integers) are 
mapped to learned 512-d vectors

• Positional encoding added to each 
vector

• N=6 transformer blocks  applied to 
input

• Until <EOS> is output:
– Process input + output so far
– Output most likely word (after more 

attention blocks and linear model)

Attention is all you need

Language Transformer: Complete Architecture

Self-
Attention

Cross-
Attention

Self-Attention
(each token 
attends to 
earlier output 
tokens)

https://arxiv.org/abs/1706.03762






• English-German 
– 4.5M sentence pairs
– 37K tokens

• English-French
– 36M sentences
– 32K tokens

• Base models trained on 8 P100s for 12 
hours

• Big models (2x token dim, 3x training steps) 
trained for 3.5 days

• Adam optimizer: learning rate ramps up for 
4K iterations, then down

• Regularization: drop-out, L2 weight, label 
smoothing

Attention is all you need

Application to Translation

Self-
Attention

Cross-
Attention

Self-
Attention

https://arxiv.org/abs/1706.03762


Results



Things to remember
Sub-word tokenization based on byte-pair 
encoding is an effective way to turn natural 
text into a sequence of integers

Attention is a general processing 
mechanism that regresses or clusters values 

Input 
(k,q,v) iter 1 iter 2 iter 3 iter 4

1.000 1.497 1.818 1.988 2.147

9.000 8.503 8.182 8.012 7.853

8.000 8.128 8.141 8.010 7.853

2.000 1.872 1.859 1.990 2.147

Learned vector embeddings of these 
integers model the relationships between 
words

Stacked transformer blocks are a powerful 
network architecture that alternates 
attention and MLPs

Paris – France 
+ Italy = Rome

Chair is broken 
ch##, ##air, is, brok##, ##en

Further reading: http://nlp.seas.harvard.edu/annotated-transformer/ 

http://nlp.seas.harvard.edu/annotated-transformer/


Next class: Transformers in Language and Vision
• BERT
• ViT
• Unified-IO
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