
Dall-E

Word
Representations
and
Transformers

Applied Machine Learning
Derek Hoiem

Today’s Lecture

• Representing natural language text as integers
– Byte pair encoding
– WordPiece

• Representing text tokens with continuous vectors
– Word2Vec

• Attention and Transformers
– “Attention is all you need” transformers

Each pixel means little, but images can be interpreted by grouping and
recognizing patterns in groups of groups of groups of pixels

https://www.istockphoto.com/photos/funny-animal

CNNs iteratively process
pixels->edges/colors->textures->sub-parts->parts->objects/scenes

Examples
of strongly
activating
regions

But in text, the meaning is already in the words… right?

What does this mean?

Usiadłem na kaktusie

Which of these is more similar?

He sat on the
chair, and it broke.

The chair says the
department is
broke.

After sitting, the
seat is broken.

Which of these is more similar?

He sat on the
chair, and it broke.

The chair says
the department is
broke.

After sitting, the
seat is broken.

He sat on the
chair, and it broke.

The chair says
the department is
broke.

After sitting, the
seat is broken.

• Same word (character
sequence) may mean
different things

• Different words may
mean similar things

• Word meaning depends
on surrounding words

To analyze text, need to convert text to tokens

“Token”: an integer or vector that represents
a data element, a unit of processing
• With integer tokens, the values are not

continuous (e.g. 5 is no closer to 10 than 5000)
• With vector tokens, similarity/distance (typically

L2, dot product or cosine) is meaningful

Word Integer
• Each unique space-delimited

character string is assigned to a
different integer
– To limit vocabulary size, assign only

the most frequent words to integers
– Others are <unk> (unknown)

• Pros and cons
– Simple
– Possible to compare/retrieve

documents based on count of tokens
– Many words map to unknown (e.g.

1298, Bart’s, Area-52, anachronism,
…)

– Large vocabulary needed
– Does not model similarity of related

words like broke/broken

He sat on the
chair, and it broke.

The chair says
the department is
broke.

After sitting, the
seat is broken.

Character Integer
• Each character is assigned to a

unique integer
• Pros and cons

– Simple
– Every document within

alphabet can be fully modeled
– Small vocabulary (< 100 integers

needed for English)
– Sometimes, similar words will

have similar sequences
(broke/n)

– Count of tokens is not
meaningful

– Character sequences are long

Subword Integer
• Common sequences of

characters are assigned to
unique integers

• Pros and cons
– Every document within

alphabet can be fully modeled
– Vocabulary size is flexible (e.g.

30K for BERT, 50K for GPT-3)
– Sometimes, similar words will

have similar sequences
(broke/n)

– Need to solve for good subword
tokenization

Character WordSubword
“Chair is broken” c, h, a, i, r, … ch##, ##air, is, brok##, ##en chair, is, broken

Vocabulary Size 256 4K-50K > 30K

Completeness Perfect Perfect Incomplete

Independent
Meaningfulness

Bad OK Good

Encodes word
similarity

Somewhat A little better Not at all

Sequence Length Long
Medium

(e.g., 1.4 tokens per word) A little shorter

Subword Tokenizers: Byte Pair Encoding
1. Start with each character assigned to a unique token
2. Iteratively assign a new token to the most common pair of

consecutive tokens, until max_tokens is reached

ZabdZabac
Z=aa

aaabdaaabac

ZYdZYac
Y=ab
Z=aa

XdXac
X=ZY
Y=ab
Z=aa

Example from Wikipedia

Initial array of 4 characters

Replace aa by Z

Replace ab by Y

Replace ZY by X

XZd ZYZd aaabaad

https://en.wikipedia.org/wiki/Byte_pair_encoding

WordPiece Tokenizer (Sennrich et al., Wu et al. 2016)
• Word: Jet makers feud over seat width with big orders at stake
• wordpieces: _J et _makers _fe ud _over _seat _width _with _big _orders _at _stake

https://arxiv.org/abs/1508.07909
https://arxiv.org/pdf/1609.08144.pdf

For each merge:
1. Count token pair frequencies in dataset
2. Select most frequent pair
3. Merge that “best” pair

a. Assign best pair to new token
b. Replace all instances of best pair in dataset with that token

https://arxiv.org/abs/1508.07909
https://arxiv.org/pdf/1609.08144.pdf

Try it

Do first two merges of:
Your cat cannot do the can-can, can he?

_Your _cat _cannot _do _the _can-can, _can he?

_Your _Xt _Xnnot _do _the _Xn-Xn, _Xn _he?

_Your _Xt _Znot _do _the _Z-Z, _Z, _he?

For each merge:
1. Count token pair frequencies in

dataset
2. Select most frequent pair
3. Merge that “best” pair

a. Assign best pair to new
token

b. Replace all instances of
best pair in dataset with that
token

How can we better encode word similarity?

• Different words are related to each other

• Encode “meaning” in a continuous vector

• Learn these vectors based on surrounding words

Word2Vec (Mikolov et al. 2013)
For each word, solve for a continuous vector representation:
• CBOW: predict center word as average of surrounding words (after projecting each word to a vector)
• Skip-Gram: each word (after projecting to a vector) predicts each surrounding word with a linear

model

https://arxiv.org/pdf/1301.3781.pdf

https://arxiv.org/pdf/1301.3781.pdf

Train by gradient descent
• At the end, each

word integer can
be replaced by a
fixed-length
continuous vector

• These vectors can
predict word
relationships

Word2Vec predicted relationship examples

E.g., Paris – France + Italy = Rome

Word2Vec demos

https://turbomaze.github.io/word2vecjson (fastest)

https://www.cs.cmu.edu/~dst/WordEmbeddingDemo/

https://remykarem.github.io/word2vec-demo/

https://turbomaze.github.io/word2vecjson
https://www.cs.cmu.edu/%7Edst/WordEmbeddingDemo/
https://remykarem.github.io/word2vec-demo/

Q1-Q3

https://tinyurl.com/441-fa24-L18

https://tinyurl.com/441-fa24-L18

A new type of data processing

• Linear: output is sum of weights times features

• Convolution: output at each position is sum of weights times
features within a window

• Attention: given a set of <key, value> pairs and a <query>,
output is sum of values weighted by key-query similarity

Cross-Attention
<key k, value v>: a data element, in which key is used for
matching and value is used to output
<query q>: used to match keys and accumulate values

𝑜𝑜𝑜𝑜𝑜𝑜(𝑞𝑞) = �
𝑖𝑖

𝑠𝑠 𝑘𝑘𝑖𝑖 , 𝑞𝑞 𝑣𝑣𝑖𝑖 / �
𝑖𝑖

𝑠𝑠 𝑘𝑘𝑖𝑖 , 𝑞𝑞

Similarity of ith key and query ith value Make similarities sum to 1

Cross-attention simple example

𝑜𝑜𝑜𝑜𝑜𝑜(𝑞𝑞) = �
𝑖𝑖

𝑠𝑠 𝑘𝑘𝑖𝑖 , 𝑞𝑞 𝑣𝑣𝑖𝑖 / �
𝑖𝑖

𝑠𝑠 𝑘𝑘𝑖𝑖 , 𝑞𝑞

𝑆𝑆 𝑘𝑘, 𝑞𝑞 = 1
𝑘𝑘−𝑞𝑞 2+1

<key, value> pairs: < 1,1 >, < 7,−1 >, < 5,−1 >

query: 4

𝑜𝑜𝑜𝑜𝑜𝑜 =
1
10 1 + 1

10 −1 +12 −1
1
10+

1
10+

1
2

= −0.71
query = 0

𝑜𝑜𝑜𝑜𝑜𝑜 =
1
2 1 + 1

50 −1 + 1
26 −1

1
2+

1
50+

1
26

= 0.79

Self-attention
• Key=value
• Each key is also a query

Another example of self attention

Input
(k,q,v) iter 1 iter 2 iter 3 iter 4

1.000 1.497 1.818 1.988 2.147

9.000 8.503 8.182 8.012 7.853

8.000 8.128 8.141 8.010 7.853

2.000 1.872 1.859 1.990 2.147

Self-attention performs a kind of clustering

Typically, this is applied to high-dimensional
vectors

Attention
• Cross-Attention: query vectors are

separate from <key, value> vectors
– Performs instance-based regression

• Self-Attention: query vectors are the same
as the key and value vectors
– Performs soft clustering/aggregatio
– Adding multi-dimensional vectors can overlay

multiple types of information, not just blend or
replace

• Attention is extremely powerful and
general when combined with learned
similarity and non-linear feature
transformations

https://homestarrunner.com/

Transformer (Vaswani et al. 2017)
• Define similarity via linear projection with softmax

𝑆𝑆 𝑘𝑘𝑖𝑖 , 𝑞𝑞 = exp(𝑘𝑘𝑖𝑖 ⋅ 𝑞𝑞)

Attention is all you need

Normalize by sqrt of dimensionality of keys

https://arxiv.org/abs/1706.03762

Transformer (Vaswani et al. 2017)
• One or more similarity functions

can be learned with linear layers
– If there are K similarities and D

dimensions to input, each parallel
linear layer outputs D/K values

Attention is all you need

https://arxiv.org/abs/1706.03762

Transformers: general data processors
● Input tokens can represent anything: image

patches, text tokens, audio, controls, etc.

● Invariant to order of tokens: add positional
embedding to distinguish pos/type of input

● Transformer block:
○ Apply multi-head attention
○ Apply 2-layer MLP with ReLU to each token separately
○ Residual and layer norm (over all tokens) after each

● Can stack any number of transformer blocks

32
Attention is all you need

https://arxiv.org/abs/1706.03762

Positional encodings

● Transformer processing does not depend
on position of token
○ This is kind of similar to convolution, as each

“patch” or token vector is processed
independently, but no overlap between
patches

○ But to compare between tokens, relative
position may be important

● Sinusoidal encoding (on right) is such that
a dot product between encodings
corresponds to positional similarity

● Learned or even fixed random encodings
also work similarly in practice

Q4

https://tinyurl.com/441-fa24-L18

https://tinyurl.com/441-fa24-L18

• WordPiece tokens (integers) are
mapped to learned 512-d vectors

• Positional encoding added to each
vector

• N=6 transformer blocks applied to
input

• Until <EOS> is output:
– Process input + output so far
– Output most likely word (after more

attention blocks and linear model)

Attention is all you need

Language Transformer: Complete Architecture

Self-
Attention

Cross-
Attention

Self-Attention
(each token
attends to
earlier output
tokens)

https://arxiv.org/abs/1706.03762

• English-German
– 4.5M sentence pairs
– 37K tokens

• English-French
– 36M sentences
– 32K tokens

• Base models trained on 8 P100s for 12
hours

• Big models (2x token dim, 3x training steps)
trained for 3.5 days

• Adam optimizer: learning rate ramps up for
4K iterations, then down

• Regularization: drop-out, L2 weight, label
smoothing

Attention is all you need

Application to Translation

Self-
Attention

Cross-
Attention

Self-
Attention

https://arxiv.org/abs/1706.03762

Results

Things to remember
Sub-word tokenization based on byte-pair
encoding is an effective way to turn natural
text into a sequence of integers

Attention is a general processing
mechanism that regresses or clusters values

Input
(k,q,v) iter 1 iter 2 iter 3 iter 4

1.000 1.497 1.818 1.988 2.147

9.000 8.503 8.182 8.012 7.853

8.000 8.128 8.141 8.010 7.853

2.000 1.872 1.859 1.990 2.147

Learned vector embeddings of these
integers model the relationships between
words

Stacked transformer blocks are a powerful
network architecture that alternates
attention and MLPs

Paris – France
+ Italy = Rome

Chair is broken
ch##, ##air, is, brok##, ##en

Further reading: http://nlp.seas.harvard.edu/annotated-transformer/

http://nlp.seas.harvard.edu/annotated-transformer/

Next class: Transformers in Language and Vision
• BERT
• ViT
• Unified-IO

	Word Representations and Transformers
	Today’s Lecture
	Each pixel means little, but images can be interpreted by grouping and recognizing patterns in groups of groups of groups of pixels
	CNNs iteratively process �pixels->edges/colors->textures->sub-parts->parts->objects/scenes
	But in text, the meaning is already in the words… right?
	What does this mean?
	Which of these is more similar?
	Which of these is more similar?
	Slide Number 9
	To analyze text, need to convert text to tokens
	Word Integer
	Character Integer
	Subword Integer
	Slide Number 14
	Subword Tokenizers: Byte Pair Encoding
	WordPiece Tokenizer (Sennrich et al., Wu et al. 2016)
	Try it
	How can we better encode word similarity?
	Word2Vec (Mikolov et al. 2013)
	Train by gradient descent
	Word2Vec predicted relationship examples
	Word2Vec demos
	Q1-Q3
	A new type of data processing
	Cross-Attention
	Cross-attention simple example
	Self-attention
	Another example of self attention
	Attention
	Transformer (Vaswani et al. 2017)
	Transformer (Vaswani et al. 2017)
	Transformers: general data processors
	Positional encodings
	Q4
	Language Transformer: Complete Architecture
	Slide Number 36
	Slide Number 37
	Application to Translation
	Results
	Things to remember
	Next class: Transformers in Language and Vision

