Dall-E

CNNs and Key
Ingredients of
Deep
Learning

Applied Machine Learning
Derek Hoiem

Today’s Lecture

* Deep learning history
* Residual Networks

e SGD++

Brief history of deep learning

e 1958: neural nets (perceptron and MLP) invented by Rosenblatt
 1967: First use of SGD in deep-learning network (Amari)

e 1980’s/1990’s: Neural nets are popularized and then abandoned as being
interesting idea but too difficult to optimize or “unprincipled”, supplanted by
SVM

deep learning

e 1990’s: LeCun and colleagues achieve state-of-art performance on character
recognition with convolutional network

machine learning "

e 2000’s: Hinton, Bottou, Bengio, LeCun, Ng, and others keep trying stuff with
deep networks but without much traction/acclaim in most areas

e 2010-2011: Substantial progress in some areas, but vision community still
unconvinced

e 2012:shock at ECCV 2012 with ImageNet challenge

neural networks "

Google Book Ngram Plot

1940 1950 1960 1970 1980 1990 2000 2010

Slide: Lazebnik

The Perceptron

Weights

Output: sgn(w-x + b)

>

Xp

Rosenblatt, Frank (1958), The Perceptron: A Probabilistic Model for Information Storage and Organization
in the Brain, Cornell Aeronautical Laboratory, Psychological Review, v65, No. 6, pp. 386—408.

NEW NAVY DEVICE
LEARNS BY DOING

Psychologist Shows Embryo
of Computer Designed to
Read and Grow Wiser

WASHINGTON, July.- 7 (UPI)
—The Navy revealed the em-
bryo of an electronic computer
today that it expects will be
abla to walk, talk, see, write,
reproduce itself and be .con-
scious of its existence,

The embryo—the Weather
Bureau's $2,000,000 “704" com-
puter—learned to differentiate
between right and left after
fifty aftempts in the Navy's
demonstration for newsmen.,

The service said it would use
this principle to build the first
of its Perceptron thinking ma-
chines that will be able to read
and write, It is expected to be
finished in about a year at a
cost of $100,000.

Dr. Frank Rosenblatt, de-
‘signer of the Perceptron, con-
ducted the demonstration, He
said ‘the machine would be the
first device to think as the hu-
man brain. As do human be-

ings, Perceptron will make mis-
takes at first, but will grow
wiser as it gains experience, he
said, '

Dr. Rosenblatt, a research
psychologist at the -Cornell
Aeronautical Laboratory, Buf-
falo, said Perceptrons might be
fired to the planets as mechani-
cal space explorers, -

Without Human Controls .
- The Navy said the perceptron
would be the. first non-living
mechanism ‘“capable of receiv-
ing, recognizing and identifying

its surroundings without -any
human training or control.” |

The “brain” is designed to
remember images and informa-
tion it has perceived itself. Ordi-
nary computers remember only
what ig fed into them on punch
cards or magnetic tape. . |

Later Perceptrons will be able
to recognize people and call out
‘their names and instantly trans-
late speech in one language to’
speech or writing in another
language, it was predicted.

Mr. Rosenblatt said in prin-
ciple it would be possible to
build brains that could repro-
duce themselves on an assembly

!

line and which would be con-
scious of their existence. ‘

Slide: Lazebnik

1958 New York
Times...

In today’s demonstration, the
“704"” was fed two cards, one
with squares marked on the left
side and the other with squares
on the right side.

Learng by Doing

In the first fifty trials, the
machine made no distinction be-
tween them. It then started
registering a “Q” for the left
squares and “O" for the right

squares. v
Dr. Rosenblatt said he could
explain why the machine

learned only in highly technical
terms. But he said the computer
had undergone a ‘self-induced
change in the wiring diagram.”

The first Perceptron will
have about 1,000 electronic
“association cells” receiving
electrical impulses from an eye-
like scanning device with 400
photo-cells. The human brain
has 10,000,000,000 responsive
cells, including 100,000,000 con-
nections with the eyes.

ically learn
ions of complex functions but

nt

hidden laver 3

hidden layer 2

BT

o
T .

il

bl

7
2>

A P

R “ _‘_1. ! ._..'.
T N
[.

' F
7

o

A
-

+_.t-_ﬂw.n___..... ; ru...r

e F i 3

i :

=
Wi

o M o e e~
b Ly .-.1.1.___.

K
e
E3 N
Dy

=
i
4

ol

Deeper neural networks could theoret

compositional representat

were hard to opt

iImize

nt

hidden laver 1

input laver

Pure MLPs are not great for images

hidden layer 1 hidden laver 2 hidden layer 3

input layer

You could treat the image
like a vector of values and
add fully connected layers
(which we do in HW4)

But this doesn’t take
Image Fully connected layer advantage of the 2D

structure of images

Slide: Lazebnik

mages have local patterns that can appear at different
nositions

0.93 [0.92 | 0.99
0.81 [0.95 | 0.91
0.49 |1 0.91 | 0.92
0.90 | 0.97 | 0.95
0.89 | 0.79 [0.85
0.61 [0.45 | 0.33
0.91 | 0.49 [0.74
0.94 [0.82 | 0.93
0.71 | 0.90 | 0.99
0.73 | 0.93 | 0.97
0.89 | 0.99 | 0.93

|

00 philgBnit,edu

Linear filtering is a foundation of image processing
- Smoothing Filter

* Linear image filtering: at each pixel, output a
weighted sum of pixels in surrounding patch

— E.g. Gaussian-weighted smoothing filter (right), edge
detection (below), local pattern detection

3,| 0p| 1,
1| 5q| 8,091
e . O IR] B
2,500
§ 1(o]a] =
3n e
1 (0|1
|1]¢]|
I = | 3x3
| E ‘i it 4 x4

6x6

Ix1+1x1+2x14+0x0+5%x0+7x0+1x-14+8x-14+2x-1=-5

Animation: https://datahacker.rs/004-how-to-smooth-and-sharpen-an-image-in-opencv/

https://datahacker.rs/004-how-to-smooth-and-sharpen-an-image-in-opencv/

A CNN (convolutional network) learns filter weights to
create grids of features (“feature map”)

feature map

-/

learned
weights
\ T
——— \
=
L I S T

image Convolutional layer
Slide: Lazebnik

Convolution as feature extraction

Feature Map

Slide: Lazebnik

Multiple filters are learned, producing a map of

feature vectors

learned
weights

\
\\

feature map

/

image

Convolutional layer

Slide: Lazebnik

Following layers operate on the feature map from
the previous layer

next layer
image Convolutional layer

Slide: Lazebnik

Key operations in a CNN

i

Feature maps

i

[Spatial pooling }

i

)
—

[Input Image]

Feature Map

Source: R. Fergus, Y. LeCun Slide: Lazebnik

Key operations

i

[Feature maps }

i

Rectified Linear Unit (ReLU)

[Spatial pooling 1

Convolution
(Learned)

3

Input Image ' o »

Source: R. Fergus, Y. LeCun Slide: Lazebnik

Key operations

i

Feature maps

Spatial pooling

)
—

Max

[

Input Image]

Source: R. Fergus, Y. LeCun Slide: Lazebnik

Key idea: learn features and classifier that work
well together (“end-to-end training”)

Label

»E’H%

Convolution/pool

Convolution/pool
Convolution/pool
Convolution/pool

Convolution/pool

i

LeNet-5 for character/digit recognition

C3: f. maps 16@10x10

INPUT C1: feature maps S54:1. maps 16@5x5
6@28x28
S2: f. maps

32x32

l Full C{)n[lpem'[{]n | Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection MNIST
: results
* Average pooling Error Rate (%) (~1% test
e Sigmoid or tanh nonlinearity . error)
* Fully connected layers at the end
 Trained on MNIST digit dataset with 60K training examples = Test
0w e Training

o 4 E 1z 1E 24

Training set Iterations

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document
recognition, Proc. IEEE 86(11): 2278-2324, 1998.

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

Ql
https://tinyurl.com/441-fa24-L16

https://tinyurl.com/441-fa24-L16

For the next 10+ years, neural networks did not gain traction,
and they were dismissed as an interesting idea that just didn’t

work
* 2009 — Raina et al. train CNN with GPU
2011 — Glorot et al. found that using ReLUs improved training

* 2012...

Fast forward to the arrival of big visual data...

Created in 2006
 ~14 million labeled images, 20k classes
* Images gathered from Internet

e Human labels via Amazon MTurk

* ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC):
1.2 million training images, 1000 classes

www.image-net.org/challenges/LSVRC/

Slide: Lazebnik

http://www.image-net.org/challenges/LSVRC/

Surprise in the 2012 ImageNet
competition at ECCV

35

30

0 I I I I I

\A?s\P‘ o &o‘d

2

]

Error
N
o

1

u

1

o

(S,]

»@% *‘,gcl
v

Slide: Jia-bin Huang

Surprise in the 2012 ImageNet

35

30

25

2

o

Error

Slide: Jia-bin Huang

AlexNet: ILSVRC 2012 winner

. h | L j':":‘_ e -l — .
[- I 3 [-hx-'-'.‘,"_-_-,.
g 3| " M { B TNT sag \dense
\ o, AT 192 192 128 2048 204
27 128 R o]]
N N 13 \ 13
3 A P ‘I..' e i;,“ w-..____‘-
e K '-‘+__h b 1k SEETE ST
3|} o) | | . R
’ 5 e AP of| I 13 dense | |dense
3. 1000
192 192 128 Max L] L]
. 2048
Max 123 Max FJDDIHF'IQ Fd 2048
pooling pooling

3 48

e Similar framework to LeNet but:
* Max pooling, ReLU nonlinearity
* More data and bigger model (7 hidden layers, 650K units, 60M params)
 GPU implementation (50x speedup over CPU)
* Trained on two GPUs for a week
* Dropout regularization

A. Krizhevsky, |. Sutskever, and G. Hinton, ImageNet Classification with Deep
Convolutional Neural Networks, NIPS 2012

http://www.cs.toronto.edu/%7Efritz/absps/imagenet.pdf
http://www.cs.toronto.edu/%7Efritz/absps/imagenet.pdf

What enabled the
breakthrough?

1. RelU activation enabled
large models to be
optimized

2. ImageNet provided diverse
and massive annotation to
take advantage of the
models

3. GPU processing made the
optimization practicable

Even with RelU, it was hard to get very deep networks to
work well

GoogleNet: add bottlenecks and multiple stages of
supervision f

] B* &
3 = En .’S
g
3 w
3 o [- fa
=g 0 EoIE - o o £ a
5 z i ry F z i &)
L 3 T o [o B 3 i
hg E§ g £g B E EEall® z = g 3 = g .
F: 4 ¥ 2 3 ok 3 3
B BB T w41 E
= - ; = = g = o o i) w0 B ¥
3 b 5 ¥
N K &]
i P
EEMEg g 1

(N)E+SXS
joodabeiany
(S)IT+IXT
AUOD

Qxewyos

Auxiliary classifier

C. Szegedy et al., Going deeper with convolutions, CVPR 2015

https://arxiv.org/abs/1409.4842

What was the problem?

 Were deeper networks
L . 5
overfitting the training data- < 56-layer
S 20-layer
* Or was the problem just that % ol 4
we couldn’t optimize them? 7
 How could we answer this 0

0 1 2

. 3 4
guestion? iter. (1e4)

Look at the training error!

%]
=

= -
— X
- 5 20-layer
QD 10F g 10+ y
o0
= 56-layer =2
- v
= Q
E S
= 20-layer
% ! 2 5 6 % 1 2 5 6

iter? (1e4)4 iteri} (1e4)4
With deeper networks, the training error goes up!?!

Fig: He et al. 2016

https://arxiv.org/abs/1512.03385

Very deep networks, vanishing gradients,
and information propagation

Vanishing gradients

* Early weights have a long path to reach output
* Any zeros along that path kill the gradient

e Early layers cannot be optimized

* Multiple stages of supervision can help, but it’s
complicated and time-consuming

Information propagation

 Networks need to continually maintain and add
to information represented in previous layers

iy Fi kX KL EL

ek Wk wh ik it
E||E| (B |E] . E||E| (B |&] E|l(E] (E] |E] . |E = _ ﬁ

E El.IEL.IE|. IE el e E E =
Felffilnfles e e I HE I = g
el gl g (gl © el (g [[2] ® B |E ¥ [l ¥ |& L B
HEH R L 2| E] 5] |E B IE |5 E B

e

__ __ ___ : g
BB B (2] 2] (B B (e (#] |®] o |2 [
§l§ B lelE B |elf WIIMEIRIIR 1P O | PUSS— i 1
B ¥ iiiE gl (g || fg| °FF B

ResNet: the residual module

* Use skip or shortcut
connections around 2-3
layer MLPs or CNNs

weight layer
e Gradients can flow P : l revlu
quickly back through skip (x) . X
connections Welant ayer identity

 Each module needs only F(x) +x
add information to the
previous layers

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun, Deep Residual
Learning for Image Recognition, CVPR 2016 (Best Paper), 240K+ citations

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385

ResNet: Residual Bottleneck Module

Used in 50+ layer networks

I 256-d

!

1x1, 64
l relu

3x3, 64
l relu

1x1, 256

Directly performing 3x3
convolutions with 256 feature
maps at input and output:
256 x 256 x 3 x 3 ~ 600K

operations

Using 1x1 convolutions to
reduce 256 to 64 feature maps,
followed by 3x3 convolutions,
followed by 1x1 convolutions
to expand back to 256 maps:
256 x64x1x1~16K

64 x 64 x 3 x 3~ 36K

64 x 256 x1x1~ 16K

Total: ~70K

Kaiming He, Xiangyu Zhang, Shaoqging Ren, and Jian Sun, Deep Residual
Learning for Image Recognition, CVPR 2016

Slide: Lazebnik

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385

ResNet: going real deep

Revolution of Depth

A

AlexNet, 8 layers VGG, 19 layers . ResNet, 152 layers
(ILSVRC 2012) (ILSVRC 2014) == (ILSVRC 2015)

Despite depth, the residual connections enable error
gradients to “skip” all the way back to the beginning

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun, Deep Residual
Learning for Image Recognition, CVPR 2016

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385

Example COde: RESBIOCk ‘channels” = # feature maps

kernel_size = filter size, e.g. 3x3
stride = # pixels to skip when evaluating convolution
padding: to calculate filter values near edge of image/map

class ResBlock(nn.Module) :

def

def

~_init (self, in channels, out channels, downsample) :
super (). init ()
if downsample:
self.convl = nn.Conv2d(in channels, out channels, kernel size=3, stride=2, padding=1)
self.shortcut = nn.Sequential (
nn.Conv2d(in channels, out channels, kernel size=1, stride=2),
nn.BatchNorm2d (out channels) - @
)
elee: If downsampling, do it here too so dimensions match
self.convl = nn.Conv2d(in channels, out channels, kernel size=3, stride=1, padding=1)
self.shortcut = nn.Sequential ()
self.convZ = nn.Conv2d(out channels, out channels, kernel size=3, stride=1l, padding=1)
self.bnl = nn.BatchNorm2d(out channels)
self.bn2 = nn.BatchNorm2d (out channels)
forward(self, input):

shortcut = self.shortcut (input)
input = nn.RelU() (self.bnl (self.convl (input)))
input = nn.RelU() (self.bn2(self.conv2 (input)))

input = input + shortcut <¢_-_____________________—___

return an.ReLU) (Lnput) This ‘+’ is the skip connection!

Example code: ResNet-18 architecture for ImageNet

class Network (nn.Module) :

def init (self, num classes=1000): def forward(self, input):

super (). init () input = self.layerO (input)

resblock = ResBlock | input = self.layerl (input)

self.layer0 = nn.Sequential () B)
nn.Conv2d (3, 64, kernel size=7, stride=2, padding=3), lnput = self. layerz (lnput)
nn.MaxPool2d (kernel size=3, stride=2, padding=1), input = self. layer3 (alUt)
nn.BatchNorm2d (64), input = self.layer4d (input)
nn.ReLU () input = self.gap (input)

) . _ .

self.layerl - nn.Sequential (input = torch.flatten (input, 1)

64, downsample=False), lnput = self.fc (lnput)

resblock (64,
resblock (64, 64, downsample=False)

) _ return input
self.layer2 = nn.Sequential (

resblock (64,
(

4, 128, downsample=True),
128, 128, downsample=False)

resblock

)

self.layer3 nn.Sequential (

resblock (126, 256, downsamplo—True) Forward applies prediction, going through each layer
resblock (256, 256, downsample=False)
) Backward applies backpropagation to compute the loss

self.layer4 nn.Sequential (

56, 512, downsample=True), gradient with respect to parameters in each layer
12

resblock (2
(512, 512, downsample=False)

resblock

)
self.gap = torch.nn.AdaptiveAvgPool2d (1)

self.fc = torch.nn.Linear (512, num classes) Pretrained TorCh mOdels

https://github.com/facebookarchive/fb.resnet.torch/blob/master/pretrained/README.md

Batch Normalization

Input: Values of x over a mini-batch: B = {x1_,,.}:
] o Parameters to be learned: -, /3
* During training, the feature Output: {y; = BN, 5(z;)}
distribution at intermediate |
|ayers keep Changing as the 1B E.Zj:i // mini-batch mean
network learns |
— This destabilizes training U% — — ;(ﬂ:j — ;;,3)2 // mini-batch variance
. BatchNorm .normalizes feqtures 5 T bm 7 normalize
of each mini-batch according to Vgt |
itS mean and Variance and yi < vx; + 8 = BN, g(x;) // scale and shift
learned parameters y, Tp—— N —
* Using BatchNorm often i i
improves speed and %)) [wnouan .
effectiveness of training 7 oK 20K 0k a5k 72 &
(a) (b) Without BN (c) With BN

Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift [loffe and Szegedy 2015]

http://arxiv.org/pdf/1502.03167v3.pdf

ResNet Architectures and Results

layer name | output size 1 8-layer 34-layer 50-layer 101-layer 152-layer
conv | 112=112 T=T, 64, stride 2
3% 3 max pool, stride 2
L _ [1x1,64 [11,64] [1x1,64
/2 56%5 :
com2x | 36x36 [g“g'z]xz [i‘g'z]ﬂ Ix3.64 | x3 Ix3.64 | x3 3%3.64 | x3
e S | 1x1,256 | | 1x1,256 | | 1x1,256 |
- . - - [11,128 [11,128] [1x1,128
2 3,12 ;
comvi_x 2828 gig :q: %2 ;:1 :ﬁg =4 3x3, 128 | x4 3x3, 128 | x4 3x3, 128 | x8
L P es S | Ix1.512 | | 1x1.512 | | 1x1.512
- - - ; [1x1,256] [11,256 | [11,256 |
2 3,25 _ : _ P . _
convdx | 14x14 gigﬁgz x2 ;:1 ;2 x6 || 3x3,256 |x6|! 3x3,256 |x23|! 3x3,256 |x36
L P L =57] | 1x1, 1024 | [1,<1,1014_ [|x|_1024_
- : - _ [1x1,512] [1x1,512] { 1x1,512]
512 3,512 _
conv5x 7%7 3x3512 0 S| 332 A k3512 w3 3x3,512 | x3 Ix3,512 | x3
3%3, 512 33,512
L] L | 1x1, 2048 | 11, 2048 11, 2048
1x1 average pool, 1000-d fc, softmax
FLOPs 1.8 107 3.6x107 3.8x107 | 7.6x107 | 113107

method top-1 err. top-5 err.
VGG [41] (ILSVRC 14) - 8.437
GoogLeNet [44] (ILSVRC 14) - 7.89
VGG [41] (v5) 244 7.1
PReLU-net [13] 21.59 5.71
BN-inception [16] 21.99 5.81
ResNet-34 B 21.84 5.71
ResNet-34 C 21.53 5.60
ResNet-50 20.74 5.25
ResNet-101 19.87 4.60
ResNet-152 19.38 4.49

validation set (except f reported on the test set).

Table 4. Error rates (%) of single-model results on the ImageNet

Q2-3
https://tinyurl.com/441-fa24-L16

https://tinyurl.com/441-fa24-L16

Improvements to SGD

Great site by Lili Jiang

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-
adagrad-rmsprop-adam-f898b102325c¢

Gradient of loss wrt weights

Basic SGD: —
Awe = —ng(w)
Wep1 = W + Awy

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

SGD + Momentum

SGD + Momentum:

me=p-me+gwy) egfp=.9
Awy = —1n - my

Wep1 = W + Awy

Momentum (magenta)
converges faster and carries
the ball through a local
minimum

Figure source

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

AdaGrad: Adaptive Gradient

AdaGrad:
Isq (t) = YIsq (t—1)+ g(Wt)Z

Aw, = —ng(wi)/./gsq(t) (normalize each weight’s update by path length of all previous updates)

Wep1 = W + Awy

PR WS Step-by-Step
R (G |

| T~ » . Gradient Arrows
| Adjusted Gradient Arrows
Momentum Arrows
Sum of Gradient Squared
Fath

f Gradient Descent

Learning Rate: 1e -2

AdaGrad (white) avoids
moving in only one weight
direction, and can lead to
smoother convergence

Can be seen as setting a per-
weight learning rate

Figure source

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

RMSProp: Root Mean Squared Propagation

RMSProp:
Jsq(t) = €-gsqt —1) + (1 —¢) - g(wg)? (introducing decay rate turns this into moving avg)

Aw, = —ng(w;)/./gsq(t) (normalize by moving average length of previous updates)

Wep1 = W + Awy

|| Momentum Arrows

|| Sum of Gradient Squared
|| Path

| Gradient Descent

Learning Rate: 1e

| Momentum
Leeiing Rl T : RMSProp (green) moves
Decay rate: 500 3 faster than AdaGrad (Whlte)
B Adagrad

Learning Rate: 1e -2 I

Figure source

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

Adam: Adaptive Moment Estimation

Adam:
m;=8 -m;+ (1 —p) gws) [momentum, 8 = 0.9]
gsqt) =€-gsqt—1) + (1 —€)- g(w)* [RMSProp, € = 0.999]

Awy = —n 'mt/\/ YIsq (we)

Wep1 = W + Awy

AdamW is a fix on Adam to correctly update weight decay

Videos

AdamW is widely used and easier to
tune than SGD + momentum

Figure source

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

What to use?

« AdamW is less sensitive to hyperparameters (easier to get a
decent solution working)

 Many practitioners say SGD+momentum can achieve the best
performance, if you’re able to optimize over hyperparameters

* | commonly see either one used in research papers

What to remember magenet

* Deep networks provide huge gains in
performance -
— Large capacity, optimizable models
— Learn from new large datasets x

weight layer

]—"(x)) relu

weight layer

Y

X
identity

* RelLU and skip connections simplify Fox) 4 x
optimization

e SGD+momentum and AdamW are the
most commonly used optimizers

Next lecture

* More deep network optimization
— Batch Normalization
— Data Augmentation

* Re-using networks
— Linear probe
— Fine-tuning

e Mask RCNN line of work

	CNNs and Key Ingredients of Deep Learning
	Today’s Lecture
	Brief history of deep learning
	Slide Number 4
	Slide Number 5
	Deeper neural networks could theoretically learn compositional representations of complex functions but were hard to optimize
	Pure MLPs are not great for images
	Images have local patterns that can appear at different positions
	Linear filtering is a foundation of image processing
	A CNN (convolutional network) learns filter weights to create grids of features (“feature map”)
	Convolution as feature extraction
	Multiple filters are learned, producing a map of feature vectors
	Following layers operate on the feature map from the previous layer
	Key operations in a CNN
	Key operations
	Key operations
	Key idea: learn features and classifier that work well together (“end-to-end training”)
	LeNet-5 for character/digit recognition
	Q1
	Slide Number 23
	Fast forward to the arrival of big visual data…
	Slide Number 25
	Slide Number 26
	AlexNet: ILSVRC 2012 winner
	What enabled the breakthrough?
	Even with ReLU, it was hard to get very deep networks to work well
	What was the problem?
	Look at the training error!
	Very deep networks, vanishing gradients, and information propagation
	ResNet: the residual module
	ResNet: Residual Bottleneck Module
	ResNet: going real deep
	Example code: ResBlock
	Example code: ResNet-18 architecture for ImageNet
	Batch Normalization
	ResNet Architectures and Results
	Q2-3
	Improvements to SGD
	SGD + Momentum
	AdaGrad: Adaptive Gradient
	RMSProp: Root Mean Squared Propagation
	Adam: Adaptive Moment Estimation
	What to use?
	What to remember
	Next lecture

