
Optimization
and
Stochastic
Gradient
Descent

Applied Machine Learning
Derek Hoiem

Dall-E

Exam 1

Questions with < 65% mean score

Questions with < 65% mean score

Questions with < 65% mean score

Reminder about grading
• Lowest exam score dropped

• 3 credit: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝐸𝐸𝐸𝐸
𝑒00 +max 𝐸𝐸𝐸𝐸,500

• 4 credit: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝐸𝐸𝐸𝐸
𝑒00 +max 𝐸𝐸𝐸𝐸,6𝑒5

Example for 3 credit version:
• Exam scores: 70, 75, 85
• HW scores: 90, 120, 100, 130, 90
• Final project: 0
• Late days: 13 (-15 points)
• Participation points: 30
• EP = 90+120+100+130+90-15+30=545
• Grade = (75+85+545) / (200+545)=94.6%

Example for 4 credit version:
• Exam scores: 90, 75, 85
• HW scores: 120, 0, 120, 130, 110
• Final project: 100
• Late days: 10
• Participation points: 16
• EP = 120+0+120+130+110+125+16=596
• Grade = (90+85+596) / (200+625)=93.4%

Deep Learning
Deep learning is a way of learning effective representations, most
effective when the inputs have important structures, such as images,
audio, text
• Today: Stochastic Gradient Descent (SGD)
• Thurs: MLPs and backpropagation
• Oct 22: Convolutional networks, residual blocks, advanced SGD
• Oct 24: Training and adapting deep networks, computer vision
• Oct 29: Representing words, transformer blocks
• Oct 31: More transformers, use in vision and language
• Nov 5: Foundation models: CLIP and GPT

Machine learning optimization

Optimization Solution Depends on
Initialization or Randomized
Optimization?

Optimization Strategy is
Important to Effectiveness?

KNN N/A No No

K-means Coordinate Descent Yes No

Linear Regression Iterative No No

Logistic Regression Iterative No No

Linear SVM Iterative No No

Kernelized SVM Iterative No No

EM Algorithm Coordinate Descent Yes No

Decision Tree Greedy selection No No

• For methods we learned so far, one optimizer may be faster or more memory efficient than other, but they
will generally be able to achieve similar solutions.

Machine learning optimization
Optimization Solution Depends on

Initialization or Randomized
Optimization?

Optimization Strategy is
Important to Effectiveness?

KNN N/A No No

K-means Coordinate Descent Yes No

Linear Regression Iterative No No

Logistic Regression Iterative No No

Linear SVM Iterative No No

Kernelized SVM Iterative No No

EM Algorithm Coordinate Descent Yes No

Decision Tree Greedy selection No No

MLPs, Deep
Networks

Iterative Yes Yes

• For methods we learned so far, one optimizer may be faster or more memory efficient than other, but they
will generally be able to achieve similar solutions.

• For MLPs and deep networks, optimization is an important part of design.

This lecture

1. Batch gradient descent

2. PEGASOS: Stochastic Gradient Descent for SVM

3. Perceptrons

Gradient descent
gradient_descent(f’(x), x0, lr, niter)

 x = x0

 for t in range(niter):

 x = x – lr*f’(x)

 return x

Gradient descent
gradient_descent(f’(x), x0, lr, niter)

 x = x0

 for t in range(niter):

 x = x – lr*f’(x)

 return x

Example: https://towardsdatascience.com/gradient-descent-
algorithm-a-deep-dive-cf04e8115f21

Example:
𝑓𝑓 𝑥𝑥 = 𝑥𝑥𝑒 − 4𝑥𝑥 + 1

f ′ 𝑥𝑥 = 2𝑥𝑥 − 4

https://towardsdatascience.com/gradient-descent-algorithm-a-deep-dive-cf04e8115f21
https://towardsdatascience.com/gradient-descent-algorithm-a-deep-dive-cf04e8115f21

Gradient descent
gradient_descent(f’(x), x0, lr, niter)

 x = x0

 for t in range(niter):

 x = x – lr*f’(x)

 return x

Example: https://towardsdatascience.com/gradient-descent-
algorithm-a-deep-dive-cf04e8115f21

Example:
𝑓𝑓 𝑥𝑥 = 𝑥𝑥𝑒 − 4𝑥𝑥 + 1
𝑓𝑓′ 𝑥𝑥 = 2𝑥𝑥 − 4

https://towardsdatascience.com/gradient-descent-algorithm-a-deep-dive-cf04e8115f21
https://towardsdatascience.com/gradient-descent-algorithm-a-deep-dive-cf04e8115f21

Gradient descent challenge cases

Saddle points (gradient = 0 in some parts of solution space)

Fig: https://www.mltut.com/stochastic-gradient-descent-a-super-easy-complete-guide/ Example: https://towardsdatascience.com/gradient-descent-algorithm-a-deep-dive-cf04e8115f21

Multiple local minima

Many models we’ve learned so far (e.g., SVM, logistic regression, linear regression) are convex, so
they don’t have these challenges.

https://www.mltut.com/stochastic-gradient-descent-a-super-easy-complete-guide/
https://towardsdatascience.com/gradient-descent-algorithm-a-deep-dive-cf04e8115f21

Gradient Descent Visualization with Local Minima

Figure source

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

Learning rates and learning schedules

• Learning rate = step size that is multiplied by gradient
direction/magnitude
– Large rate allows big movements toward optimum but might over-step
– Small rate is less likely to over-step but could take longer

• Learning schedule: change learning rate over time
– Constant
– Exponential decay, e.g. lr = lr * 0.95
– Linear, e.g. lr = lr0 *(1 – iter / max_iter)

SVM Formulation

Optimization

Prediction

𝑦𝑦𝑛𝑛 = sign 𝒘𝒘𝑇𝑇𝑥𝑥𝑛𝑛 + 𝑏𝑏

Here, 𝑦𝑦 ∈ {−1,1} which is a common convention that simplifies notation for binary classifiers

𝑤𝑤∗ = argmin
𝒘𝒘

1
2
𝜆𝜆 𝑤𝑤 𝑒 +

1
𝑁𝑁
�
𝑛𝑛

𝑁𝑁

max(0, 1 −𝑦𝑦𝑛𝑛 𝒘𝒘𝑇𝑇𝑥𝑥𝑛𝑛 + 𝑏𝑏)

Known as “hinge loss”
Penalty is paid if margin is less than 1

Gradient descent with SVM
gradient_descent(f’(w,i,x,y), lr, niter)

 w = zeros(x.shape[1],)

 for t in range(niter):

 for i in range(len(w)):

 w[i] = w[i] – lr*f’(w,i,x,y)

 return x

𝑓𝑓 𝒘𝒘,𝒙𝒙,𝒚𝒚 =
1
2
𝜆𝜆 𝒘𝒘 𝑒 +

1
𝑁𝑁
�
𝑛𝑛

𝑁𝑁

max(0, 1 −𝑦𝑦𝑛𝑛 𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛)

𝑓𝑓′ 𝒘𝒘, 𝑖𝑖,𝒙𝒙,𝒚𝒚 = 𝜆𝜆𝑤𝑤𝑖𝑖 +
1
𝑁𝑁
�
𝑛𝑛

−𝛿𝛿(𝑦𝑦𝑛𝑛 𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛 < 1)𝑦𝑦𝑛𝑛𝑥𝑥𝑛𝑛𝑖𝑖

Only examples with score
of correct answer less
than 1 contribute to the
gradient

Slow with large datasets, because need to compute scores for all examples in each step

Pegasos: Primal Estimated sub-GrAdient SOlver for SVM
(2011)

https://home.ttic.edu/~nati/Publications/PegasosMPB.pdf

SVM problem that we want to solve
(Minimize weights square + sum of
hinge losses on all samples)

Problem in terms of one sample

Gradient in terms of one sample
- Direction to move to improve solution

https://home.ttic.edu/%7Enati/Publications/PegasosMPB.pdf

Pegasos algorithm: Stochastic Gradient Descent (SGD)

Notation

𝑆𝑆: training set
𝜆𝜆: regularization weight
𝑇𝑇: number iterations
𝒘𝒘𝑡𝑡: model weights
𝒙𝒙𝑖𝑖𝑡𝑡: features for example 𝑖𝑖𝑡𝑡
𝑦𝑦𝑖𝑖𝑡𝑡: label for example 𝑖𝑖𝑡𝑡
𝜂𝜂𝑡𝑡: step size (“learning rate”)

Pegasos with mini-batch
• Calculating gradient based on multiple examples reduces

variance of gradient estimate
𝑘𝑘: batch size
𝑚𝑚: number of training samples
𝐴𝐴𝑡𝑡: batch of examples
𝐴𝐴𝑡𝑡+: examples within margin

𝑆𝑆: training set
𝜆𝜆: regularization weight
𝑇𝑇: number iterations
𝒘𝒘𝑡𝑡: model weights
𝒙𝒙𝑖𝑖: features for example 𝑖𝑖
𝑦𝑦𝑖𝑖: label for example 𝑖𝑖
𝜂𝜂𝑡𝑡: step size (“learning rate”)

SGD applies to many losses

SVM (hinge loss)

Logistic regression / sigmoid loss

z is the score
for y=1

Hinge L1 regression

Margin loss between scores of
most likely and correct label

Variant of a logistic loss

SGD is fast compared to other optimization approaches

SDCA = stochastic dual
coordinate descent, another form
of stochastic gradient
optimization that chooses
learning rate dynamically

Experiments with Linear SVM

Training time and test error

Effect of mini-batch size

Effect of sampling procedure: randomly ordered epochs is best

Sampling with replacement

Use different random order for each “epoch”

Use same order for each epoch

Epoch: one run through the training set

Mini-Batch SGD vs. Full Batch Gradient Descent
• Mini-batch is faster

– Time to compute gradient is 𝑂𝑂(𝐵𝐵) for
batch size B, but standard error of
gradient direction is 𝑂𝑂 1/ 𝐵𝐵

– E.g. batch size of 10000 vs 100 will
take 100 times longer but reduce
standard deviation by factor of 10

• Full batch is more stable, but the
instability of SGD can help escape
local minima

• We’ll discuss enhancements to SGD,
such as momentum later

• SGD training is highly parallelizable
(good for GPU processing)

https://medium.com/analytics-vidhya/gradient-descent-
vs-stochastic-gd-vs-mini-batch-sgd-fbd3a2cb4ba4

Pegasos: take-ways and surprising facts

• SGD is very simple and effective optimization algorithm – step
toward better solution based on a small sample of training data

• Not very sensitive to mini-batch size (but larger batches can be
much faster with GPU parallel processing)

• The same learning schedule is effective across several problems

• A larger training set makes it faster to obtain the same test
performance

Q1-Q2

https://tinyurl.com/441-fa24-L14

https://tinyurl.com/441-fa24-L14

Perceptron

Fig source: CS 440

Perceptron = thresholded linear prediction model for
classification

Classically, the loss is a hinge loss (like SVM), but we’ll consider
MSE and logistic losses

sgn returns -1 for negative inputs and +1
for positive inputs

https://courses.grainger.illinois.edu/cs440/fa2019/Lectures/lect26.html

Perceptron Update Rule with MSE Loss
Prediction: 𝑓𝑓 𝒙𝒙 = 𝑤𝑤0𝑥𝑥0 + 𝑤𝑤𝑒𝑥𝑥𝑒 + … 𝑤𝑤𝑒𝑒𝑥𝑥𝑒𝑒 + 𝑏𝑏

Error: 𝐸𝐸 𝒙𝒙 = 𝑓𝑓 𝒙𝒙 − 𝑦𝑦 𝑒

Update 𝑤𝑤𝑖𝑖: take a step to decrease 𝐸𝐸 𝒙𝒙
𝜕𝜕𝐸𝐸 𝒙𝒙
𝜕𝜕𝑤𝑤𝑖𝑖

= 2 𝑓𝑓 𝒙𝒙 − 𝑦𝑦 [𝜕𝜕 𝑓𝑓 𝒙𝒙 −𝑦𝑦
𝜕𝜕𝑤𝑤𝑖𝑖

]
𝜕𝜕𝐸𝐸 𝒙𝒙
𝜕𝜕𝑤𝑤𝑖𝑖

= 2 𝑓𝑓 𝒙𝒙 − 𝑦𝑦 𝑥𝑥𝑖𝑖

 𝑤𝑤𝑖𝑖 = 𝑤𝑤𝑖𝑖 − 𝜂𝜂 𝑓𝑓 𝒙𝒙 − 𝑦𝑦 𝑥𝑥𝑖𝑖

prediction target

Chain Rule:
ℎ 𝑥𝑥 = 𝑓𝑓(𝑔𝑔 𝑥𝑥), then
ℎ′ 𝑥𝑥 = 𝑓𝑓′ 𝑔𝑔 𝑥𝑥 𝑔𝑔𝑔(𝑥𝑥)

Learning rateMake error lower

(the 2 is folded into the learning rate)

Perceptron Optimization by SGD (MSE Loss)
Randomly initialize weights, e.g. w ~ Gaus(mu=0, std=0.05)
For each iteration 𝑡𝑡:
 Split data into batches
 𝜂𝜂 = 0.1/𝑡𝑡
 For each batch 𝑋𝑋𝑏𝑏:
 For each weight 𝑤𝑤𝑖𝑖:

 𝑤𝑤𝑖𝑖 = 𝑤𝑤𝑖𝑖 − 𝜂𝜂 𝑒
𝑋𝑋𝑏𝑏

∑𝒙𝒙𝑛𝑛∈𝑋𝑋𝑏𝑏 𝑓𝑓 𝒙𝒙𝑛𝑛 − 𝑦𝑦𝑛𝑛 𝑥𝑥𝑛𝑛𝑖𝑖

With different loss, the update changes accordingly
Logistic loss:
 𝑓𝑓 𝒙𝒙 = 𝑤𝑤0𝑥𝑥0 + 𝑤𝑤𝑒𝑥𝑥𝑒 + … 𝑤𝑤𝑒𝑒𝑥𝑥𝑒𝑒 + 𝑏𝑏

 𝑃𝑃 𝑦𝑦|𝒙𝒙 = 𝑒
𝑒+exp −𝑦𝑦𝑓𝑓 𝑒𝑒

, 𝑦𝑦 ∈ {−1,1}

 𝐸𝐸 𝒙𝒙 = −log𝑃𝑃 𝑦𝑦|𝒙𝒙

 𝑤𝑤𝑖𝑖 = 𝑤𝑤𝑖𝑖 + 𝜂𝜂 𝑒
𝑋𝑋𝑏𝑏

∑𝒙𝒙𝑛𝑛∈𝑋𝑋𝑏𝑏 𝑦𝑦𝑛𝑛𝑥𝑥𝑛𝑛𝑖𝑖 1 − 𝑃𝑃(𝑦𝑦 = 𝑦𝑦𝑛𝑛|𝑥𝑥𝑛𝑛)

decrease –logP(y|x) increase logP(y|x)

Q3

https://tinyurl.com/441-fa24-L14

https://tinyurl.com/441-fa24-L14

Demo
https://colab.research.google.com/drive/1nKNJyolqgzW53Rz59
M2BZtyQM8bbrExb?usp=sharing

Which of these can a perceptron solve (fit with zero training error)?

(a) (b) (c)

https://colab.research.google.com/drive/1nKNJyolqgzW53Rz59M2BZtyQM8bbrExb?usp=sharing
https://colab.research.google.com/drive/1nKNJyolqgzW53Rz59M2BZtyQM8bbrExb?usp=sharing

Perceptron is often not enough
• Perceptron is linear, but we often need a non-linear prediction

function
Which of these can a perceptron solve (fit with zero training error)?

Yes No Not even close

Q4

https://tinyurl.com/441-fa24-L14

https://tinyurl.com/441-fa24-L14

Things to Remember

• Gradient descent iteratively steps
in direction of negative gradient of
loss

• Stochastic gradient descent
estimates gradient using small
batches of samples
– Faster than full gradient descent

• Linear models have limited ability
to fit the data – often need non-
linear models like multilayer
networks

Coming up
• Thursday: MLPs

	Optimization and Stochastic Gradient Descent
	Exam 1
	Questions with < 65% mean score
	Questions with < 65% mean score
	Questions with < 65% mean score
	Reminder about grading
	Deep Learning
	Machine learning optimization
	Machine learning optimization
	This lecture
	Gradient descent
	Gradient descent
	Gradient descent
	Gradient descent challenge cases
	Gradient Descent Visualization with Local Minima
	Learning rates and learning schedules
	SVM Formulation
	Gradient descent with SVM
	Pegasos: Primal Estimated sub-GrAdient SOlver for SVM (2011)
	Pegasos algorithm: Stochastic Gradient Descent (SGD)
	Pegasos with mini-batch
	SGD applies to many losses
	SGD is fast compared to other optimization approaches
	Experiments with Linear SVM
	Effect of mini-batch size
	Effect of sampling procedure: randomly ordered epochs is best
	Mini-Batch SGD vs. Full Batch Gradient Descent
	Pegasos: take-ways and surprising facts
	Q1-Q2
	Perceptron
	Perceptron Update Rule with MSE Loss
	Perceptron Optimization by SGD (MSE Loss)
	With different loss, the update changes accordingly
	Q3
	Demo
	Perceptron is often not enough
	Q4
	Things to Remember
	Coming up

