
Optimization 
and 
Stochastic 
Gradient 
Descent

Applied Machine Learning
Derek Hoiem

Dall-E



Exam 1



Questions with < 65% mean score



Questions with < 65% mean score



Questions with < 65% mean score



Reminder about grading
• Lowest exam score dropped

• 3 credit:  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝐸𝐸𝐸𝐸
𝑒00 +max 𝐸𝐸𝐸𝐸,500

• 4 credit:  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝐸𝐸𝐸𝐸
𝑒00 +max 𝐸𝐸𝐸𝐸,6𝑒5

Example for 3 credit version:
• Exam scores: 70, 75, 85
• HW scores: 90, 120, 100, 130, 90
• Final project: 0
• Late days: 13 (-15 points)
• Participation points: 30
• EP = 90+120+100+130+90-15+30=545
• Grade = (75+85+545) / (200+545)=94.6%

Example for 4 credit version:
• Exam scores: 90, 75, 85
• HW scores: 120, 0, 120, 130, 110
• Final project: 100
• Late days: 10
• Participation points: 16
• EP = 120+0+120+130+110+125+16=596
• Grade = (90+85+596) / (200+625)=93.4%



Deep Learning
Deep learning is a way of learning effective representations, most 
effective when the inputs have important structures, such as images, 
audio, text
• Today: Stochastic Gradient Descent (SGD)
• Thurs: MLPs and backpropagation
• Oct 22: Convolutional networks, residual blocks, advanced SGD
• Oct 24: Training and adapting deep networks, computer vision
• Oct 29: Representing words, transformer blocks
• Oct 31: More transformers, use in vision and language
• Nov 5: Foundation models: CLIP and GPT



Machine learning optimization

Optimization Solution Depends on 
Initialization or Randomized 
Optimization?

Optimization Strategy is 
Important to Effectiveness?

KNN N/A No No

K-means Coordinate Descent Yes No

Linear Regression Iterative No No

Logistic Regression Iterative No No

Linear SVM Iterative No No

Kernelized SVM Iterative No No

EM Algorithm Coordinate Descent Yes No

Decision Tree Greedy selection No No

• For methods we learned so far, one optimizer may be faster or more memory efficient than other, but they 
will generally be able to achieve similar solutions.  



Machine learning optimization
Optimization Solution Depends on 

Initialization or Randomized 
Optimization?

Optimization Strategy is 
Important to Effectiveness?

KNN N/A No No

K-means Coordinate Descent Yes No

Linear Regression Iterative No No

Logistic Regression Iterative No No

Linear SVM Iterative No No

Kernelized SVM Iterative No No

EM Algorithm Coordinate Descent Yes No

Decision Tree Greedy selection No No

MLPs, Deep 
Networks

Iterative Yes Yes

• For methods we learned so far, one optimizer may be faster or more memory efficient than other, but they 
will generally be able to achieve similar solutions.  

• For MLPs and deep networks, optimization is an important part of design.



This lecture

1. Batch gradient descent

2. PEGASOS: Stochastic Gradient Descent for SVM

3. Perceptrons



Gradient descent
gradient_descent(f’(x), x0, lr, niter)

  x = x0

  for t in range(niter):

 x = x – lr*f’(x)

  return x



Gradient descent
gradient_descent(f’(x), x0, lr, niter)

  x = x0

  for t in range(niter):

 x = x – lr*f’(x)

  return x

Example: https://towardsdatascience.com/gradient-descent-
algorithm-a-deep-dive-cf04e8115f21 

Example: 
𝑓𝑓 𝑥𝑥 =  𝑥𝑥𝑒 − 4𝑥𝑥 + 1

f ′ 𝑥𝑥 = 2𝑥𝑥 − 4

https://towardsdatascience.com/gradient-descent-algorithm-a-deep-dive-cf04e8115f21
https://towardsdatascience.com/gradient-descent-algorithm-a-deep-dive-cf04e8115f21


Gradient descent
gradient_descent(f’(x), x0, lr, niter)

  x = x0

  for t in range(niter):

 x = x – lr*f’(x)

  return x

Example: https://towardsdatascience.com/gradient-descent-
algorithm-a-deep-dive-cf04e8115f21 

Example: 
𝑓𝑓 𝑥𝑥 =  𝑥𝑥𝑒 − 4𝑥𝑥 + 1
𝑓𝑓′ 𝑥𝑥 = 2𝑥𝑥 − 4

https://towardsdatascience.com/gradient-descent-algorithm-a-deep-dive-cf04e8115f21
https://towardsdatascience.com/gradient-descent-algorithm-a-deep-dive-cf04e8115f21


Gradient descent challenge cases

Saddle points (gradient = 0 in some parts of solution space)

Fig: https://www.mltut.com/stochastic-gradient-descent-a-super-easy-complete-guide/ Example: https://towardsdatascience.com/gradient-descent-algorithm-a-deep-dive-cf04e8115f21 

Multiple local minima

Many models we’ve learned so far (e.g., SVM, logistic regression, linear regression) are convex, so 
they don’t have these challenges.

https://www.mltut.com/stochastic-gradient-descent-a-super-easy-complete-guide/
https://towardsdatascience.com/gradient-descent-algorithm-a-deep-dive-cf04e8115f21


Gradient Descent Visualization with Local Minima

Figure source

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c


Learning rates and learning schedules

• Learning rate = step size that is multiplied by gradient 
direction/magnitude
– Large rate allows big movements toward optimum but might over-step
– Small rate is less likely to over-step but could take longer

• Learning schedule: change learning rate over time
– Constant
– Exponential decay, e.g. lr = lr * 0.95
– Linear, e.g. lr = lr0 *(1 – iter / max_iter)



SVM Formulation

Optimization

Prediction

𝑦𝑦𝑛𝑛 = sign 𝒘𝒘𝑇𝑇𝑥𝑥𝑛𝑛 + 𝑏𝑏

Here, 𝑦𝑦 ∈ {−1,1} which is a common convention that simplifies notation for binary classifiers

𝑤𝑤∗ = argmin
𝒘𝒘

1
2
𝜆𝜆 𝑤𝑤 𝑒 +

1
𝑁𝑁
�
𝑛𝑛

𝑁𝑁

max(0, 1 −𝑦𝑦𝑛𝑛 𝒘𝒘𝑇𝑇𝑥𝑥𝑛𝑛 + 𝑏𝑏 ) 

Known as “hinge loss”
Penalty is paid if margin is less than 1



Gradient descent with SVM
gradient_descent(f’(w,i,x,y), lr, niter)

  w = zeros(x.shape[1],)

  for t in range(niter):

 for i in range(len(w)):

   w[i] = w[i] – lr*f’(w,i,x,y)

  return x

𝑓𝑓 𝒘𝒘,𝒙𝒙,𝒚𝒚 =
1
2
𝜆𝜆 𝒘𝒘 𝑒 +

1
𝑁𝑁
�
𝑛𝑛

𝑁𝑁

max(0, 1 −𝑦𝑦𝑛𝑛 𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛 )

𝑓𝑓′ 𝒘𝒘, 𝑖𝑖,𝒙𝒙,𝒚𝒚 = 𝜆𝜆𝑤𝑤𝑖𝑖 +
1
𝑁𝑁
�
𝑛𝑛

−𝛿𝛿(𝑦𝑦𝑛𝑛 𝒘𝒘𝑇𝑇𝒙𝒙𝑛𝑛 < 1)𝑦𝑦𝑛𝑛𝑥𝑥𝑛𝑛𝑖𝑖

Only examples with score 
of correct answer less 
than 1 contribute to the 
gradient

Slow with large datasets, because need to compute scores for all examples in each step



Pegasos: Primal Estimated sub-GrAdient SOlver for SVM 
(2011)

https://home.ttic.edu/~nati/Publications/PegasosMPB.pdf 

SVM problem that we want to solve
(Minimize weights square + sum of 
hinge losses on all samples)

Problem in terms of one sample

Gradient in terms of one sample
- Direction to move to improve solution

https://home.ttic.edu/%7Enati/Publications/PegasosMPB.pdf


Pegasos algorithm: Stochastic Gradient Descent (SGD)

Notation

𝑆𝑆: training set
𝜆𝜆: regularization weight
𝑇𝑇: number iterations
𝒘𝒘𝑡𝑡: model weights
𝒙𝒙𝑖𝑖𝑡𝑡: features for example 𝑖𝑖𝑡𝑡
𝑦𝑦𝑖𝑖𝑡𝑡: label for example 𝑖𝑖𝑡𝑡
𝜂𝜂𝑡𝑡: step size (“learning rate”)



Pegasos with mini-batch
• Calculating gradient based on multiple examples reduces 

variance of gradient estimate
𝑘𝑘: batch size
𝑚𝑚: number of training samples
𝐴𝐴𝑡𝑡: batch of examples
𝐴𝐴𝑡𝑡+: examples within margin

𝑆𝑆: training set
𝜆𝜆: regularization weight
𝑇𝑇: number iterations
𝒘𝒘𝑡𝑡: model weights
𝒙𝒙𝑖𝑖: features for example 𝑖𝑖
𝑦𝑦𝑖𝑖: label for example 𝑖𝑖
𝜂𝜂𝑡𝑡: step size (“learning rate”)



SGD applies to many losses

SVM (hinge loss)

Logistic regression / sigmoid loss

z is the score 
for y=1

Hinge L1 regression

Margin loss between scores of 
most likely and correct label

Variant of a logistic loss



SGD is fast compared to other optimization approaches

SDCA = stochastic dual 
coordinate descent, another form 
of stochastic gradient 
optimization that chooses 
learning rate dynamically



Experiments with Linear SVM

Training time and test error



Effect of mini-batch size



Effect of sampling procedure: randomly ordered  epochs is best

Sampling with replacement

Use different random order for each “epoch”

Use same order for each epoch

Epoch: one run through the training set



Mini-Batch SGD vs. Full Batch Gradient Descent
• Mini-batch is faster

– Time to compute gradient is 𝑂𝑂(𝐵𝐵) for 
batch size B, but standard error of 
gradient direction is 𝑂𝑂 1/ 𝐵𝐵

– E.g. batch size of 10000 vs 100 will 
take 100 times longer but reduce 
standard deviation by factor of 10

• Full batch is more stable, but the 
instability of SGD can help escape 
local minima

• We’ll discuss enhancements to SGD, 
such as momentum later

• SGD training is highly parallelizable 
(good for GPU processing)

https://medium.com/analytics-vidhya/gradient-descent-
vs-stochastic-gd-vs-mini-batch-sgd-fbd3a2cb4ba4



Pegasos: take-ways and surprising facts

• SGD is very simple and effective optimization algorithm – step 
toward better solution based on a small sample of training data

• Not very sensitive to mini-batch size (but larger batches can be 
much faster with GPU parallel processing)

• The same learning schedule is effective across several problems

• A larger training set makes it faster to obtain the same test 
performance



Q1-Q2

https://tinyurl.com/441-fa24-L14 

https://tinyurl.com/441-fa24-L14


Perceptron

Fig source: CS 440

Perceptron = thresholded linear prediction model for 
classification

Classically, the loss is a hinge loss (like SVM), but we’ll consider 
MSE and logistic losses

sgn returns -1 for negative inputs and +1 
for positive inputs

https://courses.grainger.illinois.edu/cs440/fa2019/Lectures/lect26.html


Perceptron Update Rule with MSE Loss
Prediction: 𝑓𝑓 𝒙𝒙 = 𝑤𝑤0𝑥𝑥0  + 𝑤𝑤𝑒𝑥𝑥𝑒  +  … 𝑤𝑤𝑒𝑒𝑥𝑥𝑒𝑒  +  𝑏𝑏

Error: 𝐸𝐸 𝒙𝒙 = 𝑓𝑓 𝒙𝒙 − 𝑦𝑦 𝑒

Update 𝑤𝑤𝑖𝑖: take a step to decrease 𝐸𝐸 𝒙𝒙
𝜕𝜕𝐸𝐸 𝒙𝒙
𝜕𝜕𝑤𝑤𝑖𝑖

= 2 𝑓𝑓 𝒙𝒙 − 𝑦𝑦 [𝜕𝜕 𝑓𝑓 𝒙𝒙 −𝑦𝑦
𝜕𝜕𝑤𝑤𝑖𝑖

]
𝜕𝜕𝐸𝐸 𝒙𝒙
𝜕𝜕𝑤𝑤𝑖𝑖

= 2 𝑓𝑓 𝒙𝒙 − 𝑦𝑦 𝑥𝑥𝑖𝑖
 
 𝑤𝑤𝑖𝑖 = 𝑤𝑤𝑖𝑖 − 𝜂𝜂 𝑓𝑓 𝒙𝒙 − 𝑦𝑦 𝑥𝑥𝑖𝑖 

prediction target

Chain Rule:
ℎ 𝑥𝑥 = 𝑓𝑓(𝑔𝑔 𝑥𝑥 ), then
ℎ′ 𝑥𝑥 = 𝑓𝑓′ 𝑔𝑔 𝑥𝑥 𝑔𝑔𝑔(𝑥𝑥) 

Learning rateMake error lower

(the 2 is folded into the learning rate)



Perceptron Optimization by SGD (MSE Loss)
Randomly initialize weights, e.g. w ~ Gaus(mu=0, std=0.05)
For each iteration 𝑡𝑡:
 Split data into batches 
 𝜂𝜂 = 0.1/𝑡𝑡 
 For each batch 𝑋𝑋𝑏𝑏:
  For each weight 𝑤𝑤𝑖𝑖: 

    𝑤𝑤𝑖𝑖 = 𝑤𝑤𝑖𝑖 − 𝜂𝜂 𝑒
𝑋𝑋𝑏𝑏

∑𝒙𝒙𝑛𝑛∈𝑋𝑋𝑏𝑏 𝑓𝑓 𝒙𝒙𝑛𝑛 − 𝑦𝑦𝑛𝑛 𝑥𝑥𝑛𝑛𝑖𝑖  



With different loss, the update changes accordingly
Logistic loss:
 𝑓𝑓 𝒙𝒙 = 𝑤𝑤0𝑥𝑥0  + 𝑤𝑤𝑒𝑥𝑥𝑒  +  … 𝑤𝑤𝑒𝑒𝑥𝑥𝑒𝑒  +  𝑏𝑏

 𝑃𝑃 𝑦𝑦|𝒙𝒙 = 𝑒
𝑒+exp −𝑦𝑦𝑓𝑓 𝑒𝑒

, 𝑦𝑦 ∈ {−1,1}

 𝐸𝐸 𝒙𝒙 = −log𝑃𝑃 𝑦𝑦|𝒙𝒙
 

 𝑤𝑤𝑖𝑖 = 𝑤𝑤𝑖𝑖 + 𝜂𝜂 𝑒
𝑋𝑋𝑏𝑏

∑𝒙𝒙𝑛𝑛∈𝑋𝑋𝑏𝑏 𝑦𝑦𝑛𝑛𝑥𝑥𝑛𝑛𝑖𝑖 1 − 𝑃𝑃(𝑦𝑦 = 𝑦𝑦𝑛𝑛|𝑥𝑥𝑛𝑛)

decrease –logP(y|x)  increase logP(y|x)



Q3

https://tinyurl.com/441-fa24-L14 

https://tinyurl.com/441-fa24-L14


Demo
https://colab.research.google.com/drive/1nKNJyolqgzW53Rz59
M2BZtyQM8bbrExb?usp=sharing 

Which of these can a perceptron solve (fit with zero training error)?

(a) (b) (c)

https://colab.research.google.com/drive/1nKNJyolqgzW53Rz59M2BZtyQM8bbrExb?usp=sharing
https://colab.research.google.com/drive/1nKNJyolqgzW53Rz59M2BZtyQM8bbrExb?usp=sharing


Perceptron is often not enough
• Perceptron is linear, but we often need a non-linear prediction 

function
Which of these can a perceptron solve (fit with zero training error)?

Yes No Not even close



Q4

https://tinyurl.com/441-fa24-L14 

https://tinyurl.com/441-fa24-L14


Things to Remember

• Gradient descent iteratively steps 
in direction of negative gradient of 
loss

• Stochastic gradient descent 
estimates gradient using small 
batches of samples
– Faster than full gradient descent

• Linear models have limited ability 
to fit the data – often need non-
linear models like multilayer 
networks



Coming up
• Thursday: MLPs
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