

Decision and Regression Trees

Applied Machine Learning Derek Hoiem

Dall-E: A dirt road splits around a large gnarly tree, fractal art

# Recap of classification and regression

- Nearest neighbor is widely used
  - Super-powers: can instantly learn new classes and predict from one or many examples
- Naïve Bayes represents a common assumption as part of density estimation, more typical as part of an approach rather than the final predictor
  - Super-powers: Fast estimation from lots of data; not terrible estimation from limited data
- Logistic Regression is widely used
  - Super-powers: Effective prediction from high-dimensional features; good confidence estimates
- Linear Regression is widely used
  - Super-powers: Can extrapolate, explain relationships, and predict continuous values from many variables
- Almost all algorithms involve nearest neighbor, logistic regression, or linear regression
  - The main learning challenge is typically feature learning

- So far, we've seen two main choices for how to use features
  - Nearest neighbor uses all the features jointly to find similar examples
  - 2. Linear models make predictions out of weighted sums of the features
- If you wanted to give someone a rule to split the 'o' from the 'x', what other idea might you try?



If x2 < 0.6 and x2 > 0.2 and x2 < 0.7, 'o' Else 'x'

Can we learn these kinds of rules automatically?

### **Decision trees**

- Training: Iteratively choose the attribute and split value that best separates the classes for the data in the current node
- Combines feature selection/modeling with prediction



#### **Decision Tree Classification**



Slide Credit: Zemel, Urtasun, Fidler

#### Example with discrete inputs

| Example           | Input Attributes |     |     |     |      |        |      |     |         | Goal  |                     |
|-------------------|------------------|-----|-----|-----|------|--------|------|-----|---------|-------|---------------------|
| Literipie         | Alt              | Bar | Fri | Hun | Pat  | Price  | Rain | Res | Type    | Est   | WillWait            |
| $\mathbf{x}_1$    | Yes              | No  | No  | Yes | Some | \$\$\$ | No   | Yes | French  | 0–10  | $y_1 = Yes$         |
| $\mathbf{x}_2$    | Yes              | No  | No  | Yes | Full | \$     | No   | No  | Thai    | 30–60 | $y_2 = No$          |
| $\mathbf{x}_3$    | No               | Yes | No  | No  | Some | \$     | No   | No  | Burger  | 0–10  | $y_3 = Yes$         |
| $\mathbf{x}_4$    | Yes              | No  | Yes | Yes | Full | \$     | Yes  | No  | Thai    | 10–30 | $y_4 = Yes$         |
| $\mathbf{x}_5$    | Yes              | No  | Yes | No  | Full | \$\$\$ | No   | Yes | French  | >60   | $y_5 = \mathit{No}$ |
| $\mathbf{x}_{6}$  | No               | Yes | No  | Yes | Some | \$\$   | Yes  | Yes | Italian | 0–10  | $y_6 = Yes$         |
| $\mathbf{x}_7$    | No               | Yes | No  | No  | None | \$     | Yes  | No  | Burger  | 0–10  | $y_7 = No$          |
| $\mathbf{x}_8$    | No               | No  | No  | Yes | Some | \$\$   | Yes  | Yes | Thai    | 0–10  | $y_8 = Yes$         |
| $\mathbf{x}_9$    | No               | Yes | Yes | No  | Full | \$     | Yes  | No  | Burger  | >60   | $y_9 = No$          |
| $\mathbf{x}_{10}$ | Yes              | Yes | Yes | Yes | Full | \$\$\$ | No   | Yes | Italian | 10–30 | $y_{10} = No$       |
| $\mathbf{x}_{11}$ | No               | No  | No  | No  | None | \$     | No   | No  | Thai    | 0–10  | $y_{11} = No$       |
| $\mathbf{x}_{12}$ | Yes              | Yes | Yes | Yes | Full | \$     | No   | No  | Burger  | 30–60 | $y_{12} = Yes$      |

- 1. Alternate: whether there is a suitable alternative restaurant nearby.
- 2. Bar: whether the restaurant has a comfortable bar area to wait in.
- 3. Fri/Sat: true on Fridays and Saturdays.
- 4. Hungry: whether we are hungry.
- 5. Patrons: how many people are in the restaurant (values are None, Some, and Full).
- 6. Price: the restaurant's price range (\$, \$\$, \$\$\$).
- 7. Raining: whether it is raining outside.
- 8. Reservation: whether we made a reservation.
- 9. Type: the kind of restaurant (French, Italian, Thai or Burger).
- 10. WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).

#### Slide Credit: Zemel, Urtasun, Fidler

Attributes:

#### Example with discrete inputs

• The tree to decide whether to wait (T) or not (F)

| Example                                    |                                                                                      |                                                                                 | Input Attributes |             |                |             |           |           |         |       |
|--------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------|-------------|----------------|-------------|-----------|-----------|---------|-------|
| Linumpic                                   | Alt                                                                                  | Bar                                                                             | Fri              | Hun         | Pat            | Price       | Rain      | Res       | Type    | Est   |
| $\mathbf{x}_1$                             | Yes                                                                                  | No                                                                              | No               | Yes         | Some           | \$\$\$      | No        | Yes       | French  | 0–10  |
| $\mathbf{x}_2$                             | Yes                                                                                  | No                                                                              | No               | Yes         | Full           | \$          | No        | No        | Thai    | 30–60 |
| $\mathbf{x}_3$                             | No                                                                                   | Yes                                                                             | No               | No          | Some           | \$          | No        | No        | Burger  | 0–10  |
| $\mathbf{x}_4$                             | Yes                                                                                  | No                                                                              | Yes              | Yes         | Full           | \$          | Yes       | No        | Thai    | 10–30 |
| $\mathbf{x}_5$                             | Yes                                                                                  | No                                                                              | Yes              | No          | Full           | \$\$\$      | No        | Yes       | French  | >60   |
| $\mathbf{x}_6$                             | No                                                                                   | Yes                                                                             | No               | Yes         | Some           | \$\$        | Yes       | Yes       | Italian | 0–10  |
| $\mathbf{x}_7$                             | No                                                                                   | Yes                                                                             | No               | No          | None           | \$          | Yes       | No        | Burger  | 0–10  |
| $\mathbf{x}_8$                             | No                                                                                   | No                                                                              | No               | Yes         | Some           | \$\$        | Yes       | Yes       | Thai    | 0–10  |
| $\mathbf{x}_9$                             | No                                                                                   | Yes                                                                             | Yes              | No          | Full           | \$          | Yes       | No        | Burger  | >60   |
| $\mathbf{x}_{10}$                          | Yes                                                                                  | Yes                                                                             | Yes              | Yes         | Full           | \$\$\$      | No        | Yes       | Italian | 10–30 |
| $\mathbf{x}_{11}$                          | No                                                                                   | No                                                                              | No               | No          | None           | \$          | No        | No        | Thai    | 0–10  |
| $\mathbf{x}_{12}$                          | Yes                                                                                  | Yes                                                                             | Yes              | Yes         | Full           | \$          | No        | No        | Burger  | 30–60 |
|                                            | 1.                                                                                   | Alterna                                                                         | te: wheth        | er there is | s a suitable : | alternative | restauran | t nearby. |         |       |
|                                            | 2.                                                                                   | Bar: whether the restaurant has a comfortable bar area to wait in.              |                  |             |                |             |           |           |         |       |
|                                            | З.                                                                                   | Fri/Sat: true on Fridays and Saturdays.                                         |                  |             |                |             |           |           |         |       |
|                                            | Hungry: whether we are hungry.                                                       |                                                                                 |                  |             |                |             |           |           |         |       |
|                                            | 5. Patrons: how many people are in the restaurant (values are None, Some, and Full). |                                                                                 |                  |             |                |             |           |           |         |       |
|                                            | 6. Price: the restaurant's price range (\$, \$\$, \$\$\$).                           |                                                                                 |                  |             |                |             |           |           |         |       |
| 7. Raining: whether it is raining outside. |                                                                                      |                                                                                 |                  |             |                |             |           |           |         |       |
|                                            | 8. Reservation: whether we made a reservation.                                       |                                                                                 |                  |             |                |             |           |           |         |       |
|                                            | 9.                                                                                   | 9. Type: the kind of restaurant (French, Italian, Thai or Burger).              |                  |             |                |             |           |           |         |       |
| nutes.                                     | 10.                                                                                  | WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60). |                  |             |                |             |           |           |         |       |

| Δ.  |    | 11  |     |        |
|-----|----|-----|-----|--------|
| - Δ | ++ | rıh | 111 | - oc · |
|     | LL | 111 | Ju  | LCS.   |



#### **Decision Trees**



- Internal nodes test attributes
- Branching is determined by attribute value
- Leaf nodes are outputs (class assignments)

#### Training

- 1. If labels in the node are mixed:
  - a. Choose attribute and split values
     based on data that reaches each
     node
  - b. Branch and create 2 (or more) nodes
- 2. Return



#### Training

- 1. If labels in the node are mixed:
  - a. Choose attribute and split values
     based on data that reaches each
     node
  - b. Branch and create 2 (or more) nodes
- 2. Return





#### Training

- 1. If labels in the node are mixed:
  - a. Choose attribute and split values
     based on data that reaches each
     node
  - b. Branch and create 2 (or more) nodes
- 2. Return



#### Training

- 1. If labels in the node are mixed:
  - a. Choose attribute and split values
     based on data that reaches each
     node
  - b. Branch and create 2 (or more) nodes
- 2. Return



#### Training

- 1. If labels in the node are mixed:
  - a. Choose attribute and split values based on data that reaches each node
  - b. Branch and create 2 (or more) nodes
- 2. Return



#### Prediction

1. Check conditions to descend tree

2. Return label of leaf node



#### How do you choose what/where to split?

• Which attribute is better to split on,  $X_1$  or  $X_2$ ?



**Idea:** Use counts at leaves to define probability distributions, so we can measure uncertainty

#### Quantifying Uncertainty: Coin Flip Example

```
Sequence 1:
000100000000000100...?
Sequence 2:
 10101110100110101...?
0
     16
                            10
                       8
              versus
         2
     0
                       0
          1
```

### Quantifying Uncertainty: Coin Flip Example

Entropy *H*:





- How surprised are we by a new value in the sequence?
- How much information does it convey?

#### Quantifying Uncertainty: Coin Flip Example

Entropy: 
$$H(X) = -\sum_{x \in X} p(x) \log_2 p(x)$$



### Entropy of a Joint Distribution

• Example:  $X = \{\text{Raining}, \text{Not raining}\}, Y = \{\text{Cloudy}, \text{Not cloudy}\}$ 

|             | Cloudy | Not Cloudy |
|-------------|--------|------------|
| Raining     | 24/100 | 1/100      |
| Not Raining | 25/100 | 50/100     |

$$H(X,Y) = -\sum_{x \in X} \sum_{y \in Y} p(x,y) \log_2 p(x,y)$$
  
=  $-\frac{24}{100} \log_2 \frac{24}{100} - \frac{1}{100} \log_2 \frac{1}{100} - \frac{25}{100} \log_2 \frac{25}{100} - \frac{50}{100} \log_2 \frac{50}{100}$   
 $\approx 1.56$  bits

### Specific Conditional Entropy

• Example:  $X = \{\text{Raining, Not raining}\}, Y = \{\text{Cloudy, Not cloudy}\}$ 

|             | Cloudy | Not Cloudy |
|-------------|--------|------------|
| Raining     | 24/100 | 1/100      |
| Not Raining | 25/100 | 50/100     |

• What is the entropy of cloudiness *Y*, given that it is raining?

$$H(Y|X = x) = -\sum_{y \in Y} p(y|x) \log_2 p(y|x)$$
  
=  $-\frac{24}{25} \log_2 \frac{24}{25} - \frac{1}{25} \log_2 \frac{1}{25}$   
 $\approx 0.24$  bits

• We used: 
$$p(y|x) = \frac{p(x,y)}{p(x)}$$
, and  $p(x) = \sum_{y} p(x,y)$  (sum in a row)

### **Conditional Entropy**

|             | Cloudy | Not Cloudy |
|-------------|--------|------------|
| Raining     | 24/100 | 1/100      |
| Not Raining | 25/100 | 50/100     |

• The expected conditional entropy:

$$H(Y|X) = \sum_{x \in X} p(x)H(Y|X = x)$$
$$= -\sum_{x \in X} \sum_{y \in Y} p(x, y) \log_2 p(y|x)$$

### **Conditional Entropy**

• Example:  $X = \{\text{Raining, Not raining}\}, Y = \{\text{Cloudy, Not cloudy}\}$ 

|             | Cloudy | Not Cloudy |
|-------------|--------|------------|
| Raining     | 24/100 | 1/100      |
| Not Raining | 25/100 | 50/100     |

• What is the entropy of cloudiness, given the knowledge of whether or not it is raining?

$$H(Y|X) = \sum_{x \in X} p(x)H(Y|X = x)$$
  
=  $\frac{1}{4}H(\text{cloudy}|\text{is raining}) + \frac{3}{4}H(\text{cloudy}|\text{not raining})$   
 $\approx 0.75 \text{ bits}$ 

## **Conditional Entropy**

• Some useful properties:

- ► *H* is always non-negative
- Chain rule: H(X, Y) = H(X|Y) + H(Y) = H(Y|X) + H(X)
- If X and Y independent, then X doesn't tell us anything about Y:
   H(Y|X) = H(Y)
- But Y tells us everything about Y: H(Y|Y) = 0
- By knowing X, we can only decrease uncertainty about Y: H(Y|X) ≤ H(Y)

#### **Information Gain**

|             | Cloudy | Not Cloudy |
|-------------|--------|------------|
| Raining     | 24/100 | 1/100      |
| Not Raining | 25/100 | 50/100     |

 How much information about cloudiness do we get by discovering whether it is raining?

> IG(Y|X) = H(Y) - H(Y|X) $\approx 0.25 \text{ bits}$

- Also called information gain in Y due to X
- If X is completely uninformative about Y: IG(Y|X) = 0
- If X is completely informative about Y: IG(Y|X) = H(Y)
- How can we use this to construct our decision tree?

# Terminology Recap

- Entropy, H(X): measures uncertainty of X
- Specific conditional entropy, H(X|Y = y): measures uncertainty of X if Y is known to have a particular value
- Conditional entropy H(X|Y): measures expected uncertainty of X if I know Y
- Information gain I(X|Y): measures how much knowing Y would reduce my uncertainty in X

$$H(X) = -\sum_{x} P(X = x) \log_2 P(X = x)$$

$$H(X|Y = y) = -\sum_{x} P(X = x|Y = y) \log_2 P(X = x|Y = y)$$

$$H(X|Y) = -\sum_{y} H(X|Y = y)P(Y = y)$$

$$I(X|Y) = H(X) - H(X|Y)$$

### Constructing decision tree

#### Training

- 1. If labels in the node are mixed:
  - a. Choose attribute and split valuesbased on data that reaches eachnode
  - b. Branch and create 2 (or more) nodes
- 2. Return

- 1. Measure information gain
  - For each discrete attribute: compute information gain of split
  - For each continuous attribute: select most informative threshold and compute its information gain. Can be done efficiently based on sorted values.
- 2. Select attribute / threshold with highest information gain

Q1-Q3

### https://tinyurl.com/441-fa24-L12





# What if you need to predict a continuous value?

- Regression Tree
  - Same idea, but choose splits to minimize sum squared error  $\sum_{n \in node} (f_{node}(x_n) y_n)^2$
  - $-f_{node}(x_n)$  typically returns the mean prediction value of data points in the leaf node containing  $x_n$
  - What are we minimizing?

http://tinyurl.com/cs441tree

Q4

# https://tinyurl.com/441-fa24-L12



#### Variants

- Different splitting criteria, e.g. Gini index:  $1 \sum_i p_i^2$  (very similar result, a little faster to compute)
- Most commonly, split on one attribute at a time
  - In case of continuous vector data, can also split on linear projections of features
- Can stop early
  - when leaf node contains fewer than N<sub>min</sub> points
  - when max tree depth is reached
- Can also predict multiple continuous values or multiple classes

# Decision Tree vs. 1-NN

- Both have piecewise-linear decisions
- Decision tree is typically "axisaligned"
- Decision tree has ability for early stopping to improve generalization
- True power of decision trees arrives with ensembles (lots of small or randomized trees)



#### **Regression Tree for Temperature Prediction**



```
from sklearn import tree
from sklearn.tree import DecisionTreeRegressor
model = DecisionTreeRegressor(random state=0, min samples leaf=200)
model.fit(x train, y train)
y pred = model.predict(x val)
tree rmse = np.sqrt(np.mean((y pred-y val)**2))
tree mae = np.sqrt(np.median(np.abs(y pred-y val)))
print('LR: RMSE={}, MAE={}'.format(tree rmse, tree mae))
print('R^2: {}'.format(1-tree rmse**2/np.mean((y pred-
y pred.mean())**2)))
plt.figure(figsize=(20,20))
tree.plot tree(model)
plt.show()
for f in [334, 372, 405]:
 print('{}: {}, {}'.format(f, feature to city[f], feature to day[f
]))
```

# Classification/Regression Trees Summary

- Key Assumptions
  - Samples with similar features have similar predictions
- Model Parameters
  - Tree structure with split criteria at each internal node and prediction at each leaf node
- Designs
  - Limits on tree growth
  - What kinds of splits are considered
  - Criterion for choosing attribute/split (e.g. gini impurity score is another common choice)
- When to Use
  - Want an explainable decision function (e.g. for medical diagnosis)
  - As part of an ensemble (as we'll see Thursday)
- When Not to Use
  - One tree is not a great performer, but a forest is

Q5-Q8

### https://tinyurl.com/441-fa24-L12



# Things to remember

- Decision/regression trees learn to split up the feature space into partitions with similar values
- Entropy is a measure of uncertainty
- Information gain measures how much particular knowledge reduces prediction uncertainty



$$H(X) = -\sum_{x \in X} p(x) \log_2 p(x)$$

$$IG(Y|X) = H(Y) - H(Y|X)$$

# Thursday

• Ensembles: model averaging and forests