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Recap of classification and regression
• Nearest neighbor is widely used

– Super-powers: can instantly learn new classes and predict from one or many examples

• Naïve Bayes represents a common assumption as part of density estimation, more typical as 
part of an approach rather than the final predictor
– Super-powers: Fast estimation from lots of data; not terrible estimation from limited data

• Logistic Regression is widely used
– Super-powers: Effective prediction from high-dimensional features; good confidence estimates

• Linear Regression is widely used
– Super-powers: Can extrapolate, explain relationships, and predict continuous values from many 

variables

• Almost all algorithms involve nearest neighbor, logistic regression, or linear regression
– The main learning challenge is typically feature learning



• So far, we’ve seen two main 
choices for how to use features
1. Nearest neighbor uses all the 

features jointly to find similar 
examples

2. Linear models make predictions 
out of weighted sums of the 
features

• If you wanted to give someone a 
rule to split the ‘o’ from the ‘x’, 
what other idea might you try?
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If x2 < 0.6 and x2 > 0.2 and x2 < 0.7, ‘o’
Else ‘x’

Can we learn these kinds of rules automatically?



Decision trees

Fig Credit: Zemel, Urtasun, Fidler

• Training: Iteratively choose the attribute and split value that 
best separates the classes for the data in the current node

• Combines feature selection/modeling with prediction

https://www.cs.toronto.edu/%7Eurtasun/courses/CSC411_Fall16/06_trees_handout.pdf


Decision Tree Classification

Slide Credit: Zemel, Urtasun, Fidler

https://www.cs.toronto.edu/%7Eurtasun/courses/CSC411_Fall16/06_trees_handout.pdf


Example with discrete inputs

Slide Credit: Zemel, Urtasun, Fidler

https://www.cs.toronto.edu/%7Eurtasun/courses/CSC411_Fall16/06_trees_handout.pdf


Example with discrete inputs

Figure Source: Zemel, Urtasun, Fidler

https://www.cs.toronto.edu/%7Eurtasun/courses/CSC411_Fall16/06_trees_handout.pdf


Decision Trees

Figure Source: Zemel, Urtasun, Fidler

https://www.cs.toronto.edu/%7Eurtasun/courses/CSC411_Fall16/06_trees_handout.pdf


Decision tree algorithm

Training
Recursively, for each node in tree:

1. If labels in the node are mixed:
a. Choose attribute and split values 

based on data that reaches each 
node

b. Branch and create 2 (or more) 
nodes

2. Return
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Decision tree algorithm
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Prediction
1.Check conditions to descend tree
2.Return label of leaf node
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How do you choose what/where to split?

Slide Source: Zemel, Urtasun, Fidler

https://www.cs.toronto.edu/%7Eurtasun/courses/CSC411_Fall16/06_trees_handout.pdf


Quantifying Uncertainty: Coin Flip Example

Slide Source: Zemel, Urtasun, Fidler

https://www.cs.toronto.edu/%7Eurtasun/courses/CSC411_Fall16/06_trees_handout.pdf


Quantifying Uncertainty: Coin Flip Example

Slide Source: Zemel, Urtasun, Fidler

https://www.cs.toronto.edu/%7Eurtasun/courses/CSC411_Fall16/06_trees_handout.pdf


Quantifying Uncertainty: Coin Flip Example

Slide Source: Zemel, Urtasun, Fidler

Entropy: 

https://www.cs.toronto.edu/%7Eurtasun/courses/CSC411_Fall16/06_trees_handout.pdf


Entropy of a Joint Distribution

Slide Source: Zemel, Urtasun, Fidler

https://www.cs.toronto.edu/%7Eurtasun/courses/CSC411_Fall16/06_trees_handout.pdf


Specific Conditional Entropy

Slide Source: Zemel, Urtasun, Fidler

https://www.cs.toronto.edu/%7Eurtasun/courses/CSC411_Fall16/06_trees_handout.pdf


Conditional Entropy

Slide Source: Zemel, Urtasun, Fidler

https://www.cs.toronto.edu/%7Eurtasun/courses/CSC411_Fall16/06_trees_handout.pdf


Conditional Entropy

Slide Source: Zemel, Urtasun, Fidler

https://www.cs.toronto.edu/%7Eurtasun/courses/CSC411_Fall16/06_trees_handout.pdf


Conditional Entropy

Slide Source: Zemel, Urtasun, Fidler

https://www.cs.toronto.edu/%7Eurtasun/courses/CSC411_Fall16/06_trees_handout.pdf


Information Gain

Slide Source: Zemel, Urtasun, Fidler

https://www.cs.toronto.edu/%7Eurtasun/courses/CSC411_Fall16/06_trees_handout.pdf


Terminology Recap
• Entropy, 𝐻𝐻(𝑋𝑋): measures 

uncertainty of X
• Specific conditional entropy, 
𝐻𝐻(𝑋𝑋|𝑌𝑌 = 𝑦𝑦): measures 
uncertainty of 𝑋𝑋 if 𝑌𝑌 is known 
to have a particular value

• Conditional entropy 𝐻𝐻 𝑋𝑋 𝑌𝑌 : 
measures expected uncertainty 
of 𝑋𝑋 if I know 𝑌𝑌 

• Information gain 𝐼𝐼(𝑋𝑋|𝑌𝑌): 
measures how much knowing 𝑌𝑌 
would reduce my uncertainty in 
𝑋𝑋

𝐻𝐻 𝑋𝑋 = −�
𝑥𝑥

𝑃𝑃 𝑋𝑋 = 𝑥𝑥 log2 𝑃𝑃 𝑋𝑋 = 𝑥𝑥

𝐻𝐻 𝑋𝑋|𝑌𝑌 = 𝑦𝑦 = −�
𝑥𝑥

𝑃𝑃 𝑋𝑋 = 𝑥𝑥|𝑌𝑌 = 𝑦𝑦 log2 𝑃𝑃 𝑋𝑋 = 𝑥𝑥|𝑌𝑌 = 𝑦𝑦

𝐻𝐻 𝑋𝑋|𝑌𝑌 = −�
𝑦𝑦

𝐻𝐻 𝑋𝑋|𝑌𝑌 = 𝑦𝑦 𝑃𝑃(𝑌𝑌 = 𝑦𝑦)

I 𝑋𝑋|𝑌𝑌 = 𝐻𝐻 𝑋𝑋 − 𝐻𝐻(𝑋𝑋|𝑌𝑌)



Constructing decision tree

Training
Recursively, for each node in tree:

1. If labels in the node are mixed:
a. Choose attribute and split values 

based on data that reaches each 
node

b. Branch and create 2 (or more) 
nodes

2. Return

1. Measure information gain
• For each discrete attribute: compute 

information gain of split
• For each continuous attribute: select 

most informative threshold and 
compute its information gain. Can 
be done efficiently based on sorted 
values.

2. Select attribute / threshold with 
highest information gain



Q1-Q3

https://tinyurl.com/441-fa24-L12 

https://tinyurl.com/441-fa24-L12


Slide Source: Zemel, Urtasun, Fidler

https://www.cs.toronto.edu/%7Eurtasun/courses/CSC411_Fall16/06_trees_handout.pdf


What if you need to predict a continuous value?
• Regression Tree

– Same idea, but choose splits to minimize sum squared error 
∑𝑛𝑛∈𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑥𝑥𝑛𝑛 − 𝑦𝑦𝑛𝑛 2 

– 𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑥𝑥𝑛𝑛  typically returns the mean prediction value of data points 
in the leaf node containing 𝑥𝑥𝑛𝑛

– What are we minimizing?  

http://tinyurl.com/cs441tree 

http://tinyurl.com/cs441tree


Q4

https://tinyurl.com/441-fa24-L12 

https://tinyurl.com/441-fa24-L12


Variants

• Different splitting criteria, e.g. Gini index: 1 − ∑𝑖𝑖 𝑝𝑝𝑖𝑖2 (very 
similar result, a little faster to compute)

• Most commonly, split on one attribute at a time 
– In case of continuous vector data, can also split on linear projections 

of features

• Can stop early
– when leaf node contains fewer than Nmin points
– when max tree depth is reached

• Can also predict multiple continuous values or multiple classes



Decision Tree vs. 1-NN
• Both have piecewise-linear 

decisions
• Decision tree is typically  “axis-

aligned”
• Decision tree has ability for early 

stopping to improve generalization

• True power of decision trees arrives 
with ensembles (lots of small or 
randomized trees)

DT Boundaries

1-NN Boundaries



Regression Tree for Temperature Prediction 
• Min leaf size: 200
• RMSE= 3.42
• R2=0.88

Chicago, yesterday

Chicago, yesterday Chicago, yesterday

Milwaukee, yesterday Grand Rapids, yesterday

from sklearn import tree
from sklearn.tree import DecisionTreeRegressor
model = DecisionTreeRegressor(random_state=0, min_samples_leaf=200)
model.fit(x_train, y_train)
y_pred = model.predict(x_val)
tree_rmse = np.sqrt(np.mean((y_pred-y_val)**2))
tree_mae = np.sqrt(np.median(np.abs(y_pred-y_val)))
print('LR: RMSE={}, MAE={}'.format(tree_rmse, tree_mae))
print('R^2: {}'.format(1-tree_rmse**2/np.mean((y_pred-y_pred.mean())**2)))
plt.figure(figsize=(20,20))
tree.plot_tree(model)
plt.show()
for f in [334, 372, 405]:
print('{}: {}, {}'.format(f, feature_to_city[f], feature_to_day[f]))



from sklearn import tree
from sklearn.tree import DecisionTreeRegressor
model = DecisionTreeRegressor(random_state=0, min_samples_leaf=200)
model.fit(x_train, y_train)
y_pred = model.predict(x_val)
tree_rmse = np.sqrt(np.mean((y_pred-y_val)**2))
tree_mae = np.sqrt(np.median(np.abs(y_pred-y_val)))
print('LR: RMSE={}, MAE={}'.format(tree_rmse, tree_mae))
print('R^2: {}'.format(1-tree_rmse**2/np.mean((y_pred-
y_pred.mean())**2)))
plt.figure(figsize=(20,20))
tree.plot_tree(model)
plt.show()
for f in [334, 372, 405]:
print('{}: {}, {}'.format(f, feature_to_city[f], feature_to_day[f

]))



Classification/Regression Trees Summary
• Key Assumptions

– Samples with similar features have similar predictions
• Model Parameters

– Tree structure with split criteria at each internal node and prediction at each leaf 
node

• Designs
– Limits on tree growth
– What kinds of splits are considered
– Criterion for choosing attribute/split (e.g. gini impurity score is another common 

choice)
• When to Use

– Want an explainable decision function (e.g. for medical diagnosis)
– As part of an ensemble (as we’ll see Thursday)

• When Not to Use
– One tree is not a great performer, but a forest is



Q5-Q8

https://tinyurl.com/441-fa24-L12 

https://tinyurl.com/441-fa24-L12


Things to remember
• Decision/regression trees 

learn to split up the feature 
space into partitions with 
similar values

• Entropy is a measure of 
uncertainty

• Information gain measures 
how much particular 
knowledge reduces prediction 
uncertainty 



Thursday
• Ensembles: model averaging and forests
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