


Upcoming events
* Sept 30: HW2 due

* | travel to Milan Sept 27-Oct 5
— | will not hold office hours on Sept 30
— Oct 1: no in-person class — see recording on schedule
— Oct 3: optional informal Q&A with TAs

 Oct 3-6: Exam 1 at CBTF (see pinned CampusWire post)

— Can reserve time now

* Oct 14: HW 3 due (assignment posted, but not on canvas yet)



| will describe three problems. Think about what they
have in common.



“Bad Annotators” Problem

You want to train an algorithm to predict whether a
photograph is attractive. You collect annotations from

Mechanical Turk. Some annotators try to give accurate
ratings, but others answer randomly.

Challenge: Determine which people to trust and the
average rating by accurate annotators.
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Foreground/Background Segmentation

You are given an image and want to assign
foreground/background pixels.

Challenge: Segment the image into figure and

ground without knowing what the foreground
looks like in advance.

Foreground

Background




Topic Models

Documents have a “topic” that is predictive of the words

Challenge: We don’t know what the topics are, or what
distribution of words each has
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https://theintelligenceofinformation.wordpress.com/2016/12/06/topic-modeling-latent-dirichlet-allocation-vs-correlation-explanation-alternative/

What do these problems have in common?

1. We think there is some underlying factor that is not known
— Whether annotator is good or bad
— Whether pixel is in foreground or background
— Topic of a document

2. We have some model for the probability of data given that
underlying factor

3. But we don’t know the parameters of the model

These are “missing data” or “latent variable” problems — a critical piece of information is not observed



Today’s Class

 Examples of problems with hidden or latent variables
— Untrustworthy annotators
— Pixel segmentation
— Topic models

* Background

— Maximum Likelihood Estimation
— Probabilistic Inference

* Dealing with Latent Variables (latent = hidden, not observed)

— EM algorithm, Bad annotator problem
— Hard EM



| have used EM in research and practice many times, e.g.

* Given multiple images and scene geometry,
estimate true color of each floor map pixel

— Latent variables: which pixels are occluded

Mellencamp Mellencamp
Crriginal Waterworld Recorded

* For an audio clip of music with background
noise, which extracted sound signatures are
due to music vs background noise?

— Latent variables: whether each extracted sound
signature at a given time is due to background

Oor music Time
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* Mixture of Gaussian probability model (next
class)



Bad Annotator Problem

You hire annotators to label attractiveness of images. Some
annotators do their best. Some are “bad” and assign
random scores.

Goal: We want to estimate the average score of good
annotators for each image

Assumptions

1.

2.

Bad annotators are always bad. Good annotators are always
good.

For each image i, the scores from §ood annotators follow a
Gaussian distribution s;,~N (u;, <)

1
P(Sialza — 1) — mo_ exp(_z 0.2 )

The scores from bad annotators always follow a uniform
distribution

P(s;;lz, =0) =1 (scoresrange from O to 1)

Notation
Siq € [0,1]: score for image i by
annotator a

z, € {0,1}: whether annotator a
is good

u;: true mean score for image i

o: standard deviation of true
scores, same for each image

n,. P(z, = 1), prior probability
that annotator is good




Latent Variable Problems: Bad Annotator

Challenge: Figure out which annotators are good and
estimate the true mean score for each image

Three steps:

1. If we knew which annotators were good, how would we
estimate the score distribution for each image?

2. Given the distribution parameters, how do we compute
the likelihood that an annotator is good?

3. How can we get annotator labels and score models at
once?
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Maximum Likelihood Estimation

1. If we knew which annotators were good, how would
we estimate the score distribution for each image?

MLE - ﬁta

S.s (e <.
Solve for parameters that A (S” e Sim 3 —
)

maximize the data likelihood

parameters

Scores are independent of é _ TT
each other, given the model - Wf}*‘é"‘i o P(.S'm. lQ)

Model is Gaussian F(C-'m'/‘\uﬂ" \r'ﬁ’ o _@* (.... )



Solving for mean

1 (‘5 )
(51 |, ) = & oy (-4 (S
Easier to take derivative of sum of
logs than a product, and f(x) and MB’““’-H P(Q;‘u. \6d
log(f(x)) are always maximized by the 9
same X
A
To find max wrt a variable, set the '—a- 2 Xl-a 1+ lo .2 “"‘"’A‘\ ] =0
partial derivative wrt that variable to 0 _‘:{rﬁ 3 ¢~z

Do the math ;(Si“‘w‘“’)/a"‘ =0 > ;gic\ ~ ;\A“ <0

Solve. M is number of “a’s /(L?. < Z Cia /M



Solving for standard deviation

Now take partial derivative wrt

sigma. Since sigma is the same _);Zz[l A ‘ 2] (Sfrﬂﬂz _
for all images, we are now bé". GBﬁTT * Wo 2 o 0
summing over all images and *
annotations St = AJ'L
“Z
2o T [co 2ot 4 BlsienT oo
L% Ha
Solution is average squared 2 2
difference from mean g = 2 (S{; "M") / (m ' M)

Ik



Annotated Scores
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Applying MLE in code

/(L;:nzlgi&,/m

0= % (si-a )2/ (M-N)

hk

# 1nitialize by assuming that all scores are good
score_mean = scores.mean(axis=1).reshape((len(scores), 1)) # mu i

score_std = np.sgrt(np.sum((scores-score mean)**2, axis=None)/N/M) # sigma
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Probabilistic Inference

2. Given the distribution parameters, how do we compute

the likelihood that an annotator is good?

Good annotators

(red, orange, blue)
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0.0

Bad annotators
(green, purple)

Note: In this example, | know what
is good and bad because | made
up the scores, but otherwise it
wouldn’t be obvious



Probabilistic Inference (general case)

Given the model parameters, compute the likelihood that a
particular model generated a sample

component or label

\

p(z,=m|x,,0) z, is the unknown label of data point x,,

General strategy: We know p(x,,|z,, = 0,60) and p(x,,|z,, = 1,6) and p(z,= 1|6)
We want to know p(Zn =m | X, ,(9)

Use probability rules to get from what we know to what we want to know.



Probabilistic Inference (general case)

Given the model parameters, compute the likelihood that a
particular model generated a sample

component or label

\

pCz, = x,,0) = Llia =kl o)

p(x, | 6)

Rule of conditional probability



Probabilistic Inference (general case)

Given the model parameters, compute the likelihood that a
particular model generated a sample

component or label

\

p(z, = m|x,.0) = P =M% 10n)

p(x, | 6)

P
Zp z =k,x, | Hk) Law of total probability
k



Probabilistic Inference (general case)

Given the model parameters, compute the likelihood that a
particular model generated a sample

component or label

\ (z =
plz =m,x |(9)
pz, =m|x ,0)= L no
plx, | 6)
(Zn :mﬂxn |Hm)

_ P
> plz, =k,x,|6,)
k

p(x” | “n = m’em )p(Z = m | 0 ) Chain rule of
P(xn | z = k Hk) (Z =k | G ) probability
k



Example: Inference for Annotator Labels

p(salze =1,0)p(z, = 1,0)
p(salze = 1,0)p(zq = 1,0) + p(salzg = 0,0)p(z, = 0,0)

17(;Za::=: ]-LSClJé9) —

p(Salzq = 1,0) = [1; N(Sia, ttiy ) (normal pdf)
p(sqlzg =0,0) =]11;1 (uniform)
p(z, =1,0) = 1, (prior)

p good = np.zeros((5,1)) # w a = P(z _a=1 | scores, theta t)
for a in range(M):
p s good = pz # P(s_ia | z=1, mu_ i, std)P(z_a=1)
p s bad = 1-pz # P(s_ia | z=0)P(z_a=0)
for 1 in range(N):
p_s_good *= 1/np.sqrt(2*np.pi)/score _std * np.exp(-1/2 * (scores[1,a]-score mean[1])**2/score std**2)
p_s bad *= 1 # uniform in range [©, 1]
p good[a] = p_s good / (p_s good + p_s_bad)



Dealing with Latent Variables

Annotated Scores
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Ql-2
https://tinyurl.com/441-fa24-L9

Of A0
Ll kol =

— Intuitive solution to solving for parameters and latent variables
— Derive that the intuitive solution is correct
— Demo for the untrustworthy annotator problem



https://tinyurl.com/441-fa24-L9

Simple solution

1. Initialize parameters

2. Compute the probability of each hidden variable given the
current parameters

3. Compute new parameters for each model, weighted by
likelihood of hidden variables

4. Repeat 2-3 until convergence



Annotator Problem: Simple Solution

1. Initialize parameters

- Estimate parameters assuming all annotators are good

2. Compute likelihood of hidden variables for current
parameters w, =p(z, = 1|s,, 1, 0,T,)

3. Estimate new parameters for each model, weighted by
likelihood

A §men/§ Vo 0°2: ;(Sim'ﬂi\tw“/él o, 1,2 2w/ m



Expectation Maximization (EM) Algorithm

Goal: Solve for distribution
parameters that maximize data
likelihood.

6 = argmax p(x|6)
0



Expectation Maximization (EM) Algorithm

Goal: Solve for distribution

parameters that maximize data
likelihood.

6 = argmax p(x|6)
0

But we don’t know the distribution of
p(x|8), only p(x|z, 8) for some

6 = argmax E p(x,z|0)
6
Z
latent variables z



Expectation Maximization (EM) Algorithm

Goal: Solve for distribution
parameters that maximize data
likelihood.

6 = argmax p(x|6)
0

But we don’t know the distribution of
p(x|0), only p(x|z, 8) for some
latent variables z

6 = argmax Zp(x,zw)
0
Z

Joint probability involves an intractable 5 _ argmax 1Og2p(x 2|0)
product of probabilities. Log it? 0 - '



Expectation Maximization (EM) Algorithm

Goal: 0 = argmax log(z p(x,z] H)j
0 Z
\

Log of sums is intractable

Jensen’s Inequality

f(ELx )= E[r (X)]

for concave functions f(x)

So we maximize the lower bound by maximizing a
sum of logs instead of a log of sums!



Expectation Maximization (EM) Algorithm
Goal: 0 = argmax log(z p(x,z]| 9))

1. E-step: compute
Zw()[log (x,z|6))] Zlog (x,z]0)) (Z|X9(t))

2. M-step: solve
6" =argmax y log(p(x,z|0))p(z| x.0")
o 7



Expectation Maximization (EIVI) Algorithm

log of expectation of p(x|z) over p(z)

\
Goal: 0 = arggnax log(zzl p(x,z]| 9)) fEX])=E[f(x)]

expectatlon of log of P(x|z) over estimated P(z)

1. E-step: compute
Zw()[log (x,z|6))] Zlog (x,z]0)) (Z|X9(t))

2. M-step: solve
6" =argmax y log(p(x,z|0))p(z| x.0")
o 7



A 0%, T,

EM fOF AnnOtatOr E-srep Ez.gem(@ﬂ%l‘eﬂfér'ap(ﬁj%‘g)?@l—"ﬁ“’)

Problem: E-Step

These sums over all
combinations of z and
joint probabilities are
complicated!

Ve, © 65 Coneny Cinpbe, of ©

2l s, 210)Az15,86) 8 o O
) O
O

First, let’s expand the
joint probabilities



f-h:}a"",'ﬂz
EM fOF AﬂnOtatOr E-srep Ez.gem(@ﬂ%l‘eﬂfér'ap(ﬁj%‘g)?@l—"ﬁ“’)
Problem: E-Step _

Dse. @ 65 urcery 2srbe, of ©
2 1o 5, 219) Az 1s,8)
Write joint as product of -
individual { =§ﬂoﬂ P(42,,0) P(z,\léﬂ Plzlsé)

= Z.[;: )Uj(P(giuIZa ;@) P(.Za\ QB)YP(;)E,&)
= A (o)
O

Log of product is sum of
logs

Now | want to deal

with this joint z and
complex sum over z




A 0%, T,

e
EM fOF AﬂnOtatOr E-srep Ez.gem(k_cﬂ%&‘@ﬂfér'ap(ﬁ@‘@)?@‘m“’)
Problem: E-Step _

Dse. @ 65 urcery 2srbe, of ©
Z lg A5, 210) A215,8)
=2 [oﬁ] P(¢alz,,0) P(z,\léﬂ Plz156)

: Z[Z‘ JOj(P(ﬁ,dzm ,0) Az Bﬁﬂf’(z

Rearrange sums — B T

] 321 1
Make it clear that sum L
over z is a series of sums A EZ[ ]

1~ Ze  Zm ool J% .

Rearrange again, pulling M [! LEN m ,0) ] Ptzqieﬂ Z‘ F’c-z, 15,6)
out the sum over z, - S 2 "Plaals.d) “_| This lets me marginalize

out the other zZ’s!



EM for Annotator
Problem: E-Step

Now, plug in the
functions for score
probabilities of good and
bad annotators
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And calculate how to get
(z|s), as we did before



EM for Annotator
Problem: E-Step

Writing out the
inference
computations

A za)15,8) Plzact 5,,6)
* Pzax), $a 1Y/ A(S016)
> P 1Zas),8) P(zr] 16) /[P[ﬁulzm ;Q)P(ZA"”)E’)
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P(-_.Eﬂ. | Z=0 ;‘5\.3 "'TJ (S ]Z‘\}DJ‘EJB =

L@J' P(Za:l Ié)é>: e >




EM for Annotator
Problem: M-Step

LEL}, P(Za:J ).%J'é’):wn.

Calculate parameters that
maximize the expression from
the E-step, given our current
estimates of P(z|s)

This is very similar to the MLE
derivation
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EM Annotator Problem Demo

https://colab.research.google.com/drive/1sutnFg-xe-

ljgiY8gAJt5UST2MEBZS2L?usp=sharing



https://colab.research.google.com/drive/1sutnFg-xe-IjgiY8qAJt5USf2MEBZS2L?usp=sharing
https://colab.research.google.com/drive/1sutnFg-xe-IjgiY8qAJt5USf2MEBZS2L?usp=sharing

EM Algorithm

e Maximizes a lower bound on the data likelihood at each iteration

* Each step increases the data likelihood
— Converges to local maximum

e Common tricks to derivation
— Find terms that sum or integrate to 1
— Lagrange multiplier to deal with constraints

e Although the derivation is long, it pretty much always boils down to iteratively

1. Estimating likelihood of latent variables given parameters

2. Computing estimates of parameters that are weighted by the latent variable
likelihoods



Q3-6
https://tinyurl.com/441-fa24-L9



https://tinyurl.com/441-fa24-L9

“Hard EM”

 Same as EM except compute z* as most likely values for hidden
variables

e K-means is an example

* Advantages
— Simpler: can be applied when cannot derive EM
— Sometimes works better if you want to make hard predictions at the end

* But
— Generally, pdf parameters are not as accurate as EM



What to remember

* EM is a widely applicable algorithm
to solve for latent variables and
parameters that make the
observed data likely

* While derivation is long and
somewhat complicated, the
application is simple

 We'll see other examples of EM
use in mixture of Gaussian and
topic models
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Next class

* Estimating probability density functions
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