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Linear Models

« A modelislinearin x if it is based on a weighted sum of the values of x (optionally,

plus a constant)
wa + b = [Z Wi X;
l
* Alinear classifier projects the features onto a score that indicates whether the label
is positive or negative (i.e., one class or the other). We often show the boundary
where that score is equal to zero.

+ b

* Alinear regressor finds a linear model that approximates the prediction value for
each set of features.

Target (y)

A score(y=1)=wlx+b
b ) Feature (x)



Today’s Lecture

* Linear logistic regression: maximize likelihood of target labels
given the features

* SVM: maximize the number of data points with confidently
correct predictions



Linear Classifiers and Linear Separability

* Linear classifier:y = 1ifw/x+ b > 0

* Linearly separable: a line (or hyperplane) in feature space can split the two labels

* Which of these are linearly separable?
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Linear Classifiers and Linear Separability

* |n high dimensions, a lot more things are linearly separable

* |f you have D dimensions, you can separate D+1 points with
any arbitrary labeling
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Linear Classifiers and Linear Separability

* But how do you choose which line is best?
* Different classifiers use different objectives toc\hc[)ose the line
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Linear Classifiers and Linear Separability

* Different classifiers use different objectives to choose the line

e Common principles are that you want training samples on the
correct side of the line (low classification error) by some
margin (high confidence)
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(Linear) Logistic Regression Model

maximize P(y|x), y € {—1,1}
< "Logistic function”

where P(y = 11%) = 4 o (—wix + B])

* To simplify notation, | may omit
o Py=1|x) . “Logit” the “b”, which can be avoided by
p(y — _1|x) adding a “1” to each feature vector

wix+b=lo

exp(—[wTx + b)) 1

Ply=-1lx) =Py =1|x) = 1+exp(—[wTx +b]) 1+exp([wx+ b))
Note: 1

Ply=Jlx) = 1+ exp(=9[w'x + b])




Linear Logistic Regression

* The further you are from the line, the more confident in a label

P(circle|x) is higher P(triangle|x) is higher
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P(circle|x)=P(triangle|x) on the line



Deriving the loss of logistic regression

Maximize probability of correct label

given features of each data point, w* = aremax P — Yo' W
assuming the data points are gW (y yn | n’ )
conditionally independent n

Maximizing log( f (x) ) is the same as
maximizing f(xg becguse log(x) w* = drgimax E lOg P(y — yn|xn; W)
w
n

monotonically increases with x

Log of product is the sum of logs.

Turn it into a minimization

* I _ ]
problem (as a convention) W = drgmin E lOgP(y T ynlxn’ W)
w
n



Linear Logistic Regression algorithm

* Training
w* = argmin — ), log P(y = y,|x,; w) + r(w)._
w \ regularization
log probability of all labels given features,
° Prediction assuming that each example is i.i.d.
y=1ifwlx >0
P(y = 1|x) — 1 _ exp(wa) <— Binary (two-class) case

1+exp(-wTx)  expwTx)+1

T <— Multiclass case (one w per class)
exp(wi x
P(y = klx) = 2B
., exp(w] )




Training Logistic Regression

w* = argmin _Zn log Pw(y — ynlxn) + T(W)
w

e L2 regularization: r(w) = A||w||5 = 13, w/
* L1 regularization: r(w) = Allwl|l; = 1X; |w;]

\ /

I|lI

L2 strongly penalizes really big weights
L1 penalizes increasing the magnitude of big and small weights the same
L1 leads to a sparse weight vector (many zeros) — why?

reg penalty

\ / L1 regularization can be used to select features!

When is regularization absolutely essential?

There are many optimizers for L2 and L1 logistic regression. You will want to use a library.



https://tminka.github.io/papers/logreg/minka-logreg.pdf

Inspecting weights for digits

model 1r2 = LogisticRegression(max_iter=588, penalty="12',C=1,verbose=2).fit(x_train[train_indices['m']],y_train[train_indices['m']]}
model 1rl = LogisticRegression(max_iter=568, penalty="11"',C=1,verbose=2,so0lver="saga').fit(x_train[train_indices['m']],y_train[train_indices['m"]])

for k in np.arange(18):
primt{model 1rl.classes [k])
display mnist(x_train[y_train==k].mean(axis=2))
display mnist{model 1lr2.coef _[k])
display mnist{model lrl.coef [k])

Average
Pixels

L2 weights

L1 weights




Logistic Regression Summary

* Key Assumptions

— The log odds ratio log ig}} z ll\iljyg

combination of features
* Model Parameters
— One coefficient per feature per class (plus bias term)
* Designs
— L1 or L2 or elastic (both L1 and L2) regularization weight
When to Use / Strengths

— Many features, some of which could be irrelevant or redundant
— Provides a good estimate of label likelihood

* When Not to Use / Weaknesses

— Features are low-dimensional (linear function not likely to be expressive
enough)

can be expressed as a linear




Linear logistic regression is typically the last layer of a
classification neural network



Ql

https://tinyurl.com/441-fa24-L7
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What is the best linear classifier?

* Logistic regression

— Maximize expected likelihood of
true label given data

— Every example contributes to loss X

* SVM

— Make all examples at least
minimally confident

— Base decision on a minimal set of

x1
examples



SVM Terminology

N

X
X
~<_ Support Vector: an example
H“"‘HJ( that lies on the margin
™~ = X X (circled points)

< Margin: the distance of
examples (in feature space)

(o el from the decision boundary
X2 m(x) _ y(wa+b)
> il
y €{-11}

X1



SVMs minimize w! w while preserving a margin of 1

Optimized SVM Model

x1

Decision boundary depends only on
“support vectors” (circled)

Optimized Linear Logistic Regression Model

X2

x1

Minimizes the sum of logistic error on all
samples, so boundary should be further
from dense regions



Why SVMs achieve good generalization

Maximizing the margin — if all examples are far

from the boundary, it is less likely that some test

sample will end up on the wrong side of the

boundary

— If classes are linearly separable, the scores can be

arbitrarily increased by scaling w, so optimization is
expressed as minimize w' w while preserving a
margin of 1

Dependence on few training samples — most
training data points could be removed without
affecting the decision boundary, which gives an
upper bound on the generalization error

E.g., expected test error is <= than the smaller of:
a. % of training samples that are support vectors

b. D?/m?/N, the diameter of the data compared to

the margin divided by the number of examples
(see proof)

Optimized SVM Model

x1


https://ocw.mit.edu/courses/18-465-topics-in-statistics-statistical-learning-theory-spring-2007/0d49e3d6b669cbbb13ef85b0e21357a8_l4.pdf

SVM in Linearly Separable Case

Prediction Optimization

* . 2
y,, = sign(w'x,, + b) W = argvf]nmllw”
subject to

v, (Wlx, + b) = 1 for all n

Here, y € {—1,1} which is a common convention that simplifies notation for binary classifiers



SVM in Non-Linearly Separable Case

Prediction

y, = sign(w!x,, + b)

Optimization Known as “hinge loss”

/ Penalty is paid if margin is less than 1

N
w* = argmin| ||w]|?+C z max (0,1 —y,,(w'x,, + b))
n

w

Here, y € {—1,1} which is a common convention that simplifies notation for binary classifiers



penalty (loss) size
A

E— 0 .
incorrectly classified ' correctly classified

. distance from boundary
Fig source


https://towardsdatascience.com/a-definitive-explanation-to-hinge-loss-for-support-vector-machines-ab6d8d3178f1

C =10 soft margin

Pays a “slack” penalty for

violating the margin
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Slide credit: Zisserman [link]


https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf

Representer theorem

Optimal weights for many L2-regularized classification and
regression functions can be expressed as a weighted
combination of training examples

*
W = z AnYnXn

n

a, = 0,y,€ {—1,1}

So linear SVM is a kind of weighted nearest neighbor with dot
product similarity

Conditions apply, e.g. function must be regularized in a Reproducing Kernel Hilbert Space (details)
Does not apply to L1 weight regularization because that can’t be expressed as a dot product of weights


https://davidrosenberg.github.io/mlcourse/Archive/2018/Lectures/04c.representer-theorem.pdf

Primal vs. Dual Formulations of SVM

Prediction Training Objective
Primal N
fx)=wix+b w* = argmin ||W||2+Cz max(0,1 —y,(wl'x,, + b))
w n
Dual
% 1
f(x) = Tnatayn(¥h) +b o = argmax ¥ a; — > 3 ey v (T x) |
a

st. 0<aq;<CVi and );a;y; =0

Primal: parameter for each feature
Dual: parameter for each training example




For SVM, « is sparse (most values are zero)
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Slide credit: Zisserman [link]


https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf

Non-linear SVMs use a different similarity measure, called
a “kernel function”, than dot product

* Linear: k(x;, x;) = xiij
d
* Polynomial: k(x;, x;) = (1 T xiij)

2
|2~

)

* Gaussian: k(x;,x;) = exp(———



SVM classifier with Gaussian kernel

N = size of training data

N
f(x) = Z a;y;k(X;,X) + b

I\

weight (may be
zero)

support vector

Gaussian kernel k(x,x’) = exp (—||x — X’||2/2c72)
Radial Basis Function (RBF) SVM

N
F(x) = aiexp (=[x — x;|2/202) + b
1
Slide credit: Zisserman [link]


https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf

Decreasing sigma makes it more like nearest neighbor
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https://www.robots.ox.ac.uk/%7Eaz/lectures/ml/lect3.pdf

Q2-3
https://tinyurl.com/441-fa24-L7
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Example application of SVM: Dalal-Triggs 2005

Input
image

Normalize
gamma &

colour

Compute
gradients

Weighted vote
into spatial &

orientation cells

* Detection by scanning window

* Resize image to multiple scales and extract overlapping windows

» Classify each window as positive or negative
* Very highly cited (40,000+) paper, mainly for HOG
* One of the best pedestrian detectors for several years

—»

Contrast normalize
over overlapping
spatial blocks

Collect HOGs
over detection
window

Linear
SVM

Person/
—» non—person
classification

https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf



https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf

Example application of SVM: Dalal-Triggs 2005

Input
image

—» gamma & [

R Tarims Weighted vote Contrast normalize Collect HOGs | Linear

gradients —>»| into spatial &  |—| over overlapping |[—>| over detection SVM

Person/
—» non—person
classification

colour orientation cells spatial blocks window

FLEEL NN

(f) (g)

Figure 6. Our HOG detectors cue mainly on silhouette contours (especially the head, shoulders and feet). The most active blocks are
centred on the image background just outside the contour. (a) The average gradient image over the training examples. (b) Each “pixel™
shows the maximum positive SVM weight in the block centred on the pixel. (c) Likewise for the negative SVM weights. (d) A test image.
(e) It's computed R-HOG descriptor. (f,g) The R-HOG descriptor weighted by respectively the positive and the negative SVM weights.

* Very highly cited (40,000+) paper, mainly for HOG
* One of the best pedestrian detectors for several years



Example application of SVM: Dalal-Triggs 2005

Input
image

miss rate

Normalize
gamma &

colour

Compute
gradients

Weighted vote
into spatial &

orientation cells

DET - different descriptors on MIT database

—»

Contrast normalize
over overlapping
spatial blocks

Collect HOGs
over detection
window

Linear
SVM

Person/
—» non—person
classification

DET - different descriptors on INRIA database
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Using SVMs

* Good broadly applicable classifier
— Strong foundation in statistical learning theory
— Works well with many weak features
— Requires parameter tuning for C

— Non-linear SVM requires defining a kernel, and slower optimization/prediction
* RBF: related to neural networks, nearest neighbor (requires additional tuning)
* Chi-squared, histogram intersection: good for histograms (but slower, esp. chi-squared)
e Can learn a kernel function

* Negatives
— Feature learning is not part of the framework (vs trees and neural nets)
— Slow training (especially for kernels) — until Pegasos!



Recap

* Nearest neighbor is widely used
— Super-powers: can instantly learn new classes and predict from one or many examples

* Logistic Regression is widely used
— Super-powers: Effective prediction from high-dimensional features

* Linear Regression is widely used

— Super-powers: Can extrapolate, explain relationships, and predict continuous values
from many variables

* Almost all algorithms involve nearest neighbor, logistic regression, or linear
regression
— The main learning challenge is typically feature learning



Things to remember

Linear logistic regression and linear SVM are
classification techniques that aims to split features
between two classes with a linear model

— Predict categorical values with confidence

Logistic regression maximizes confidence in the
correct label, while SVM just tries to be confident
enough

Non-linear versions of SVMs can also work well and
were once popular (but almost entirely replaced by
deep networks)

Nearest neighbor and linear models are the final
predictors of most ML algorithms — the complexity
lies in finding features that work well with NN or
linear models

P(circle|x) is higher

P(triangle|x) is higher

A A
A A,

A AAA ,

AAsdA
A AA

Optimized SVM Model

x1



Next class

* Naive Bayes Classifier
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