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Previous Lecture Recap

 Datais a set of numbers that contains information. Images, audio, signals, tabular data and everything else
must be represented as a vector of numbers to be used in ML.

* Information is the power to predict something — a lot of the challenge in ML is in transforming the data to
make the desired information more obvious

* In machine learning, we have
Sample: a data point, such as a feature vector and label corresponding to the input and desired output of the model
Dataset: a collection of samples
Training set: a dataset used to train the model
Validation set: a dataset used to select which model to use or compare variants and manually set parameters
Test set: a dataset used to evaluate the final model

* In a classification problem, the goal is to map from features to a categorical label (or “class”)

* Nearest neighbor (or K-NN) algorithm can perform classification by retrieving the K nearest neighbors to the
guery features and assigning their most common label

e We can measure error and confusion matrices to show the fraction of mistakes and what kinds of mistakes
are made



Machine learning model maps from features to prediction

fx)—y
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Features Prediction

Examples

e C(Classification: predict label
* |Isthisadogoracat?
* Is this email spam or not?

* Regression: predict value
* What will the stock price be tomorrow?
* What will be the high temperature tomorrow?

e Structured prediction: predict a set of related values
 What is the pose of this person?




Key principle of machine learning

Given feature/target pairs (X1,v1), ..., (X;, ¥1,):
if X; is similar to X;, then y; is probably similar to y;

Fundamentally, learning depends on:
1. Representation of samples
2. Similarity function
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Today’s lecture

* Similarity measures
* Regression

e Generalization



Common Distance/Similarity
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Common Distance/Similarity Measures
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Common Distance/Similarity Measures

* Dot product, Cosine
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Which is closest to the red circle under L1, L2, and cosine

distance?
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Comparing distance/similarity functions

* L2 depends much more heavily than L1 on the coordinates
with the biggest differences

d,([0100],[5 1]) = 99.1
d,([0 100],[5 1]) = 104

* Cosine and L2 are equivalent if the vectors are unit length

l|x — _')’“% =x"x— ZxTy + yTy =2(1- Scos(er))
1 1
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KNN Regression

* Also retrieve the K-nearest neighbors

* But, instead of predicting the most common retrieved label,
predict the average of the returned values
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How do we measure and analyze regression error?

* Root mean squared error y
1 .
(EZG@) -9 o
* Mean absolute error ﬁZJf(Xi) — v;] :
e R2:1— %il(f (X))—-yi)? (unexplained variance) e >x

Y (yi—y)? (total variance)

 RMSE/MAE are unit-dependent
measures of accuracy, while R% is a
unitless measure of the fraction of
explained variance

Fig: https://medium.com/analytics-vidhya/mae-mse-rmse-coefficient-of-determination-

adjusted-r-squared-which-metric-is-better-cd0326a5697e



https://medium.com/analytics-vidhya/mae-mse-rmse-coefficient-of-determination-adjusted-r-squared-which-metric-is-better-cd0326a5697e
https://medium.com/analytics-vidhya/mae-mse-rmse-coefficient-of-determination-adjusted-r-squared-which-metric-is-better-cd0326a5697e

Q1-Q3

https://tinyurl.com/441-fa24-L.3

el
._|.:_|:|



https://tinyurl.com/441-fa24-L3

Introducing the Temperature Regression Dataset

* Input: temperature (C) from 83 US
cities for each of previous 5 days

— TOtal Of 415 — 83 X 5 featu res Predict Temp for Cleveland on 2018-09-27
24 - .__,x“ux Cleveland
* Target: temperature of Cleveland N N\ ricogo.
) — [Denver

for next day - ~ S tous
E

* Datasets 16 *
— Train: 2555 samples (7 years of data, ]

starting 2011-09-29) S ;

— Val: 365 samples (next 1 year of data)
— Test: 365 samples (next 1 year of data)



KNN for Temperature Regression

def regress KNN (X query, X train, y train, K):

# (1) Compute distances between X query and each
sample in X train

# (2) Get the K smallest idx: K indices
corresponding to smallest distances(e.g. use
np.argsort)

# (3) Return the mean of y train[K smallest idx]

def RMSE (y pred, y true):
return np.sqrt(np.mean((y pred-y true)**2))

Testing procedure:

# Get y pred[i] = regressKNN(X test[i], X train,
y _train, K) for each ith sample in X test

# measure error: err = RMSE(y pred, y test)



Some things to consider

* The temperatures will vary a lot over the year, which will
reduce the number of examples with similar temperatures

— What can we do?



Some things to consider

* The temperatures will vary a lot over the year, which will
reduce the number of examples with similar temperatures

— What can we do?

— Reframe the problem by making all of the temperatures relative to
previous day’s Cleveland temperature

e How do we choose K?



Choosing K Using a Validation Set

For each candidate K, e.g. K=1, 3, 5, 9, 11, 25:

Evaluate error using the validation set

Select the K with the lowest validation error



Small K may “overfit” data, while large K may not be able to fit the true
trend

K=1

v

\ 4

K=25

%




Error and Bias Variance Trade-off
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Error and Bias Variance Trade-off

When model parameters are fit to a training set and evaluated on a test set
* Training error: The error on the training set

* Test error: The error on the test set

* Generalization error: test error — training error

Test error has three important sources in common ML settings:

* Intrinsic: sometimes it is not possible to achieve zero error given available features (e.g. handwriting, weather
prediction)
— Bayes optimal error: The error if the true function P(y|x) is known

 Model Bias: the model is limited so that it can’t fit perfectly to the true data distribution (e.g. there will be error,
even if you have infinite training data)

* Model Variance: given finite training data, different parameters and predictions would result from different
samplings of data

A more complex or specific model is expected to have

* Lower bias: better fit to training set

* Higher variance: more uncertainty in best parameters, so higher generalization error
* Could have higher or lower test error
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Things to remember

Similarity/distance measures: L1,
L2, cosine

* KNN can be used for either
classification (return most
common label) or regression
(return average target value)

* Test error is composed of

— Irreducible error (perfect prediction
not possible given features)

— Bias (model cannot perfectly fit the
true function)

— Variance (parameters cannot be
perfectly learned from training
data)

Error

x2

X1

Under-fitting Overfitting

Test error

eneralizatior

1 Error

Train error

Complexity/Precision of Model
K=25 K=5 K=1



Thursday

* Retrieval and clustering
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