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Previous Lecture Recap

• Data is a set of numbers that contains information. Images, audio, signals, tabular data and everything else 
must be represented as a vector of numbers to be used in ML.

• Information is the power to predict something – a lot of the challenge in ML is in transforming the data to 
make the desired information more obvious

• In machine learning, we have
Sample: a data point, such as a feature vector and label corresponding to the input and desired output of the model
Dataset: a collection of samples
Training set: a dataset used to train the model
Validation set: a dataset used to select which model to use or compare variants and manually set parameters
Test set: a dataset used to evaluate the final model

• In a classification problem, the goal is to map from features to a categorical label (or “class”)

• Nearest neighbor (or K-NN) algorithm can perform classification by retrieving the K nearest neighbors to the 
query features and assigning their most common label 

• We can measure error and confusion matrices to show the fraction of mistakes and what kinds of mistakes 
are made



Machine learning model maps from features to prediction

Examples
• Classification: predict label

• Is this a dog or a cat? 
• Is this email spam or not?

• Regression: predict value
• What will the stock price be tomorrow?
• What will be the high temperature tomorrow?

• Structured prediction: predict a set of related values
• What is the pose of this person?

𝑓𝑓 𝑥𝑥 → 𝑦𝑦
Features Prediction



Key principle of machine learning
Given feature/target pairs 𝑋𝑋1,𝑦𝑦1 , … , 𝑋𝑋𝑛𝑛,𝑦𝑦𝑛𝑛 :

  if 𝑋𝑋𝑖𝑖  is similar to 𝑋𝑋𝑗𝑗, then 𝑦𝑦𝑖𝑖 is probably similar to 𝑦𝑦𝑗𝑗 

Aggressive?

Aggressive Friendly

Probably 
Aggressive

Fundamentally, learning depends on:
1. Representation of samples
2. Similarity function



Today’s lecture

• Similarity measures

• Regression

• Generalization



Common Distance/Similarity Measures
• L2: Euclidean

𝑑𝑑2 𝒙𝒙,𝒚𝒚 = 𝒙𝒙 − 𝒚𝒚 2

= �
𝑖𝑖

𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖 2



Common Distance/Similarity Measures
• L1: City-Block

𝑑𝑑1 𝒙𝒙,𝒚𝒚 = 𝒙𝒙 − 𝒚𝒚 1

= �
𝑖𝑖

|𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖|



Common Distance/Similarity Measures
• Dot product, Cosine

𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑 𝒙𝒙,𝒚𝒚 = 𝒙𝒙𝑇𝑇𝒚𝒚 = �
𝑖𝑖

𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖

Dot product (or inner product) 

𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐 𝒙𝒙,𝒚𝒚 =
𝒙𝒙𝑇𝑇𝒚𝒚

𝒙𝒙 𝟐𝟐 𝒚𝒚 𝟐𝟐

Cosine similarity

Cosine similarity

Dot product: how far does one vector go 
in the direction of the other vector

Cosine similarity: how similar are the two 
directions



Which is closest to the red circle under L1, L2, and cosine 
distance?



Comparing distance/similarity functions

• L2 depends much more heavily than L1 on the coordinates 
with the biggest differences

 𝑑𝑑2 0 100 , 5 1 = 99.1
𝑑𝑑1 0 100 , 5 1 = 104

• Cosine and L2 are equivalent if the vectors are unit length
𝒙𝒙 − 𝒚𝒚 2

2 = 𝒙𝒙𝑇𝑇𝒙𝒙 − 2𝒙𝒙𝑇𝑇𝒚𝒚 + 𝒚𝒚𝑇𝑇𝒚𝒚 = 2(1 − 𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐 𝒙𝒙,𝒚𝒚 )
1 1
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KNN Regression

• Also retrieve the K-nearest neighbors

• But, instead of predicting the most common retrieved label, 
predict the average of the returned values
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• Root mean squared error 
1
N
∑𝑖𝑖 𝑓𝑓 𝑋𝑋𝑖𝑖 − 𝑦𝑦𝑖𝑖 2

• Mean absolute error 1
N
∑𝑖𝑖 𝑓𝑓 𝑋𝑋𝑖𝑖 − 𝑦𝑦𝑖𝑖

• R2: 1 − ∑𝑖𝑖 𝑓𝑓 𝑋𝑋𝑖𝑖 −𝑦𝑦𝑖𝑖 2

∑𝑖𝑖 𝑦𝑦𝑖𝑖−�𝒚𝒚 2

• RMSE/MAE are unit-dependent 
measures of accuracy, while R2 is a 
unitless measure of the fraction of 
explained variance

How do we measure and analyze regression error?

(unexplained variance)
(total variance)

Fig: https://medium.com/analytics-vidhya/mae-mse-rmse-coefficient-of-determination-
adjusted-r-squared-which-metric-is-better-cd0326a5697e 

𝑓𝑓 𝑥𝑥

https://medium.com/analytics-vidhya/mae-mse-rmse-coefficient-of-determination-adjusted-r-squared-which-metric-is-better-cd0326a5697e
https://medium.com/analytics-vidhya/mae-mse-rmse-coefficient-of-determination-adjusted-r-squared-which-metric-is-better-cd0326a5697e
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Introducing the Temperature Regression Dataset

• Input: temperature (C) from 83 US 
cities for each of previous 5 days
– Total of 415 = 83 ×  5 features

• Target: temperature of Cleveland 
for next day

• Datasets
– Train: 2555 samples (7 years of data, 

starting 2011-09-29)
– Val: 365 samples (next 1 year of data)
– Test: 365 samples (next 1 year of data)



KNN for Temperature Regression
def regress_KNN(X_query, X_train, y_train, K):
 
 # (1) Compute distances between X_query and each 

sample in X_train
 
 # (2) Get the K_smallest_idx: K indices 

corresponding to smallest distances(e.g. use 
np.argsort)

 
 # (3) Return the mean of y_train[K_smallest_idx] 

def RMSE(y_pred, y_true):
 return np.sqrt(np.mean((y_pred-y_true)**2))

Testing procedure:
 # Get y_pred[i] = regressKNN(X_test[i], X_train, 

y_train, K) for each ith sample in X_test

 # measure error: err = RMSE(y_pred, y_test)  



Some things to consider
• The temperatures will vary a lot over the year, which will 

reduce the number of examples with similar temperatures
– What can we do?



Some things to consider
• The temperatures will vary a lot over the year, which will 

reduce the number of examples with similar temperatures
– What can we do?
– Reframe the problem by making all of the temperatures relative to 

previous day’s Cleveland temperature

• How do we choose K?



Choosing K Using a Validation Set

For each candidate K, e.g. K=1, 3, 5, 9, 11, 25:
Evaluate error using the validation set

Select the K with the lowest validation error



Small K may “overfit” data, while large K may not be able to fit the true 
trend

K=1

K=5

K=25



Error and Bias Variance Trade-off

Complexity/Precision of Model

Er
ro

r

K=1K=25

K=1

K=5

K=25

K=5

Generalization 
Error

Test error

Train error

Under-fitting Overfitting



Error and Bias Variance Trade-off
When model parameters are fit to a training set and evaluated on a test set
• Training error: The error on the training set
• Test error: The error on the test set
• Generalization error: test error – training error

Test error has three important sources in common ML settings:
• Intrinsic: sometimes it is not possible to achieve zero error given available features (e.g. handwriting, weather 

prediction)
– Bayes optimal error: The error if the true function P(y|x) is known

• Model Bias: the model is limited so that it can’t fit perfectly to the true data distribution (e.g. there will be error, 
even if you have infinite training data)

• Model Variance: given finite training data, different parameters and predictions would result from different 
samplings of data

A more complex or specific model is expected to have
• Lower bias: better fit to training set
• Higher variance: more uncertainty in best parameters, so higher generalization error
• Could have higher or lower test error



Q4-Q7
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Things to remember
• Similarity/distance measures: L1, 

L2, cosine

• KNN can be used for either 
classification (return most 
common label) or regression 
(return average target value)

• Test error is composed of  
– Irreducible error (perfect prediction 

not possible given features)
– Bias (model cannot perfectly fit the 

true function) 
– Variance (parameters cannot be 

perfectly learned from training 
data)



Thursday
• Retrieval and clustering
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