CS440/ECE 448 Lecture 4

Search Intro

Modified by Mark Hasegawa-Johnson, 1/2019

Slides by Svetlana Lazebnik, 9/2016

Types of agents

Reflex agent Goal-directed agent

Al
\e_a\
\

-_—
g

-_
=N
- .
il

-
=
—
e
—

e Consider how the world IS

* Choose action based on
current percept

Consider how the world WOULD BE

Decisions based on (hypothesized)
consequences of actions

Must have a model of how the world
e Do not consider the future evolves in response to actions

consequences of actions Must formulate a goal

Source: D. Klein, P. Abbeel

Outline of today’s lecture

1. How to turn ANY problem into a SEARCH problem:
1. Initial state, goal state, transition model
2. Actions, path cost

2. General algorithm for solving search problems
1. First data structure: a frontier list
2. Second data structure: a search tree
3. Third data structure: a “visited states” list

3. Depth-first search: very fast, but not guaranteed
4. Breadth-first search: guaranteed optimal
5. Uniform cost search = Dijkstra’s algorithm = BFS with variable costs

Search

* We will consider the problem of designing goal-based
agents in fully observable, deterministic, discrete, static,
known environments

Start state

7

4= Goal state

Search

We will consider the problem of designing goal-based agents in
fully observable, deterministic, discrete, known environments
* The agent must find a sequence of actions that reaches the goal

* The performance measure is defined by (a) reaching the goal and (b)
how “expensive” the path to the goal is

* The agent doesn’t know the performance measure. This is a goal-
directed agent, not a utility-directed agent

* The programmer (you) DOES know the performance measure. So
you design a goal-seeking strategy that minimizes cost.

* We are focused on the process of finding the solution; while executing
the solution, we assume that the agent can safely ignore its percepts
(static environment, open-loop system)

Search problem components

* |nitial state Initial
state

* Actions
: 1

* Transition model

* What state results from
performing a given action
in a given state?

* Goal state
e Path cost
e Assume that it is a sum of Goal
nonnegative step costs state

* The optimal solution is the sequence of actions that gives the
lowest path cost for reaching the goal

Knowledge Representation: State

e State = description of the world
* Must have enough detail to decide whether or not you’re currently in the

initial state
* Must have enough detail to decide whether or not you’ve reached the goal
state

e Often but not always: “defining the state” and “defining the transition model”
are the same thing

Example: Romania

On vacation in Romania; currently in Arad
Flight leaves tomorrow from Bucharest

Initial state
e Arad

] Oradea

Actions 75
* Go from one city to another Aradf}

Transition model

* If you go from city A to
city B, you end up in city B

113

Goal state
e Bucharest

Path cost

* Sum of edge costs (total distance
traveled)

HCraiova

State space

* The initial state, actions, and
transition model define the state
space of the problem

* The set of all states reachable from initial
state by any sequence of actions

e Can be represented as a directed graph
where the nodes are states and links
between nodes are actions

 What is the state space for the
Romania problem?

 State Space = O{# cities}

Traveling Salesman Problem

* Goal: visit every city in the ,-»’J\-\},__ .;'

_— 4,

United States pEASN I N

) \) _/_‘- -
f \ [7 —_—
J | J— \
/ 5 | By \

* Path cost: total miles | { N9 \
traveled ,3 1 ‘-.

| TN .--\ Ay ’%,—UL*‘\.—J 2y /
* Initial state: Champaign, Ks[" [R
* Action: travel from one S T N Y S

city to another \

«:.{ T~
* Transition model: when | - ¢
you visit a city, mark it as R |

“visited.” | N

* State Space = O{2 #cities}

A : .
t fL, = a
| A - N
e T '~l“Y/ A
| L/ LI (—/ <
N TNA
S WA o
,J"r \‘l.l \\V"IA I ‘|'. ;’f‘/ B—— _I‘l‘_& 1l
/ . ! S N
) \ - R N
/\l,;-.’_——k:—
I
\'—

Example: Vacuum world

A ;B

038 | o8

* States
* Agent location and dirt location
* How many possible states?

* What if there are n possible locations?

* The size of the state space grows exponentially with the “size”
of the world!

e Actions
 Left, right, suck
e Transition model

Vacuum world state space graph

(& | T [&)1
@{63 (=

LCAQ T | =
O O

S

Complexity of the State Space

* Many “video game” style problems can be subdivided:

* There are M different things your character needs to pick up: 2™ different
world states

* There are N locations you can be in while carrying any subset of those M
objects: total number of world states = 0{2" N}

 Why a maze is nice: you don’t need to pick anything up
* Only N different world states to consider

Example: The 8-puzzle

* States
. . 7 2
* Locations of tiles
* 8-puzzle: 181,440 states (9!/2) 5
* 15-puzzle: ~10 trillion states
* 24-puzzle: ~10% states 8 3
° Actions Start State
* Move blank left, right, up, down 1
 Path cost 3l 4
* 1 per move 6 ||| 7

Goal State

* Finding the optimal solution of n-Puzzle is NP-hard

http://www.aaai.org/Papers/AAAI/1986/AAAI86-027.pdf

Example: Robot motion planning

- - - R/\“‘R

), %

u

“ N
* States

* Real-valued joint parameters (angles, displacements)

* Actions
* Continuous motions of robot joints

e Goal state
* Configuration in which object is grasped

* Path cost
* Time to execute, smoothness of path, etc.

Outline of today’s lecture

2.

3.
4.
5.

General algorithm for solving search problems
1. First data structure: a frontier list

2. Second data structure: a search tree

3. Third data structure: a “visited states” list

Depth-first search: very fast, but not guaranteed
Breadth-first search: guaranteed optimal
Uniform cost search = Dijkstra’s algorithm = BFS with variable costs

First data structure: a frontier list

* Let’s begin at the start state and expand it by making a list of all
possible successor states

* Maintain a frontier or a list of unexpanded states

* At each step, pick a state from the frontier to expand:
* Check to see if it’s a goal state
* If not, find the other states that can be reached from this state, and add
them to the frontier, if they’re not already there

* Keep going until you reach a goal state

Second data structure: a search tree

* “What if” tree of sequences of actions Stsat;ttigg
and outcomes
Action /™
* The root node corresponds to the Successor
starting state state ()

* The children of a node correspond to the
successor states of that node’s state () ()

* A path through the tree corresponds to a
seqguence of actions
* A solution is a path ending in the goal state . Goal state

Knowledge Representation: States and Nodes

e State = description of the world
* Must have enough detail to decide whether or not you’re currently in the

initial state
* Must have enough detail to decide whether or not you’ve reached the goal
state

e Often but not always: “defining the state” and “defining the transition model”
are the same thing
* Node = a point in the search tree
* Private data: ID of the state reached by this node
* Private data: the ID of the parent node

Tree Search Algorithm Outline

* Initialize the frontier using the starting state

* While the frontier is not empty

* Choose a frontier node according to search strategy and take it off the
frontier

* If the node contains the goal state, return solution
* Else expand the node and add its children to the frontier

 Search strategy determines
* |s this process guaranteed to return an optimal solution?
* |s this process guaranteed to return ANY solution?
* Time complexity: how much time does it take?
* Space complexity: how much RAM is consumed by the frontier?

* For now: assume that search strategy = random

Tree search example

Start: Arad
Goal: Bucharest

Cralova

366=0+366

Straight-line distance

© Bucharest
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Ias

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vikea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

86
0
160
232
161
176
T7
151
226
2+
241
134
A0
1O
193
2153
329

Start: Arad
Goal: Bucharest

Goal: Bucharestpy menadia

Dobreta [

Cralova

(] Hirsova

Eforie

<=»

447=118+329

A RIS AR R R AL A

© Bucharest
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Ias

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vikea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

86
0
160
232
161
176
T7
151
226
2+
241
134
A0
1O
193
2153
329

Tree search example

Start: Arad
Goal: Bucharest

646=280+366 415=239+176 671=291+4380 413=220+193

447=118+329

Straight-line distance

© Bucharest
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Ias

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vikea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

86
0
160
232
161
176
77
151
226

241

Tree search example

Start: Arad
Goal: Bucharest

<=
Q‘bm‘)
447=118+329

646=280+366 415=239+176 GI1 2914380

526=366+160 417=317+100 553=300+253

© Bucharest
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti

Sibiu
Timisoara
Urziceni
Vaslui
Zerind

Rimnicu Vikea

Straight-line distance

86
0
160
232
161
176
77
151
226

241

Tree search example

Start: Arad
Goal: Bucharest

D

@,.u—_;
447=118+329

646=280+366 6/1 2914380

591=338+253 450=450+40 526=366+160 41/-31:+100 553=300+253

© Bucharest
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Ias

Lugoj
Mehadia
Neamt
Oradea
Pitesti

Sibiu
Timisoara
Urziceni
Vaslui
Zerind

Rimnicu Vikea

Straight-line distance

86
0
160
232
161
176
T7
151
226
2+
241
134
A0
10
193
253
329

449=754374

Tree search example

Start: Arad
Goal: Bucharest

Qst

646=280+366 /)
D ‘ @ -

591=338+253 450=450+0

611 2914380

526=366+ 160

>CB

=D

imisoara

447=118+329

5534CD+253

418=418+40 615=455+160 607=414+193

Straight-line distance

© Bucharest
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Ias

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vikea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

86

0
160
232
161
176

i

151
226

241

Handling repeated states

* Initialize the frontier using the starting state

* While the frontier is not empty
* Choose a frontier node according to search strategy and take it off the frontier
* If the node contains the goal state, return solution
* Else expand the node and add its children to the frontier

* To handle repeated states:

* Every time you expand a node, add that state to the
explored set

* When adding nodes to the frontier, CHECK FIRST to see if they’ve already been
explored

Time Complexity

* Without explored set :
* 0{1}/node
* 0{b™} = # nodes expanded
* b = branching factor (number of children each node might have)
* m = length of the longest possible path

* With explored set :
* 0{1}/node using a hash table to see if node is already in explored set
* O{|S|} = # nodes expanded

 Usually, O{|S|} < 0{b™}. I'll continue to talk about O0{b™}, but
remember that it’s upper-bounded by O{|S|}.

Tree search w/o repeats

Start: Arad
Goal: Bucharest

Cralova

366=0+366

Straight-line distance

© Bucharest
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Ias

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vikea
Sibiu
Timisoara
Urziceni
Vashn

Zerind

86
0
160
232
161
176
T7
151
226
2+
241
134
A0
1O
193
2153
329

Tree search w/o repeats

Explored:
Arad

Start: Arad
Goal: Bucharest

Cralova

D

393=140+253

<=»

447=118+329

A RIS AR R R AL A

© Bucharest
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Ias

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vikea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

86
0
160
232
161
176
T7
151
226
2+
241
134
A0
1O
193
2153
329

Tree search example

Explored:
Arad
Sibiu

Start: Arad
Goal: Bucharest

A &> cEoraD

646=280+366 415=239+176 671=291+380 413=220+193

=D

imisoara

447=118+329

Straight-line distance

© Bucharest
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Ias

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vikea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

Ched >

e 447=118+329

Tree search example W = @

526=366+160 417=317+100 553=300+253

Explored:
Arad
. Straight-line distance

Sibiu o Bugchan:st

Rimnicu Vilcea Arad %6
Bucharest 0
Crailova 160
Dobreta 2142
Eforie 161
Fagaras 176
Giurgiu T7
Hirsova 151
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 830

Start: Arad Pitesti 10

Goal: Bucharest Rimnicu Vikea |03
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199

Zerind 174

Tree search example

Explored:
Arad

Sibiu

Rimnicu Vilces
Fagaras

Start: Arad
Goal: Bucharest

e

N

~~.

-

Rimnicu Vikea

646—!&)-&366

Céb-D

6/1 2914380

=D

imisoara

447=118+329

@@

526=366+160 417=317+100 553=3004253

5913384253 450=450+0

(] Vaslui

-

~o. -

] Hirsova

Eforie

Straight-line distance

© Bucharest
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vikea
Sibiu
Timisoara
Urziceni
Vaslui

Zerind

366

0
160
232
161
176

i

151
226

241

Tree search example

Explored:
Arad

Sibiu

Rinnicu Vilces
Fagaras
Pitesti

Start: Arad

Goal: Bucharest

e

N

~~.

-

Rimnicu Vikea

646=280+366

C‘san

59123384253 450=450+0

611 2914380

@

526=366+160_

(] vasiui

- -

1) Hirsova

Eforie

=P

imisoara

447-118+329

<§>
| _553=300%253
e

418-41840 615-455+160 6074144193

Straight-line distance

© Bucharest
Arad
Bucharest
Crailova
Dobreta
Eforie
Fagal'ﬂs
Giurgiu
Hirsova
Ias

Lugoj
Mehadia
Neamt
Oradea
Pitesti

Rimnicu Vikea

Sibiu
Timisoara
Urzicen
Vaslui
Zerind

366

0
160
232
161
176

[N

151
226

241

Outline of today’s lecture

3. Depth-first search: very fast, but not guaranteed

4. Breadth-first search: guaranteed optimal
5. Uniform cost search = Dijkstra’s algorithm = BFS with variable costs

Depth-First Search

* Basic idea
try to find a solution as fast as possible

* How:
From the frontier, always choose a node which is
AS FAR FROM THE STARTING POINT AS POSSIBLE
* How:
Frontier is a LIFO queue.

The node you expand = whichever node has been most recently
placed on the queue.

Depth-first search

* Expand deepest unexpanded node
* Implementation: frontier is LIFO (a stack)

Example state space
graph for a tiny search
problem

Depth-first search

Expansion order:

(s,d,b,a,

c,a,

e,h,p,q,

q,

rf,c,a,
G)

PREPARING FRADATE:[] [~ ¥~ ¥ "V "\ (A~~~ Sy L/V\N\/Vm_l
OKAY, WHAT KINDS OF HM. WHICH SNAKES ARE
WHAT SITUATIONS EMERGENCIES CANHAPPEN? DANGEROUS? LET'S SEE... THE RESEARCH (OMPARING

MIGHT T PREPPRE. RR?) A) SNAKEBITE DA DANGER SNAKE VENOMS 15 SCATTERED
1) MEDICAL EMERGENCY B) LIGHTNING STRIKE))3 mﬂm Z PND WCONSISTENT. TLL MAKE
2) DANCING O FALLRM GHAR W A SPREADSHEET T ORGANIZE IT:

% ®) e))

;) ; =~
A

TMHERETOPKK. BY Dy, THE INCAND
YOUUP. YOURE TAIPAN HAS THE DEADUIEST
NOTDR&ED\ ? VENOM OF ANY SNAKE

)

IS

http://xkcd.com/761/ |

T REALY NEED To STop
USING DEPTH-FIRST SEARCHES.

http://xkcd.com/761/

Analysis of search strategies

 Strategies are evaluated along the following criteria:
* Completeness: does it always find a solution if one exists?
* Optimality: does it always find a least-cost solution?
* Time complexity: number of nodes generated
* Space complexity: maximum number of nodes in memory

* Time and space complexity are measured in terms of
e b: maximum branching factor of the search tree
* d: depth of the optimal solution
* m: maximum length of any path in the state space (may be
infinite)
* |S| : number of distinct states

Properties of depth-first search

* Complete? (always finds a solution if one exists?)
Fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
- complete in finite spaces

e Optimal? (always finds an optimal solution?)
No — returns the first solution it finds

* Time? (how long does it take, in terms of b, d, m?)
Could be the time to reach a solution at maximum depth m: O{b™}
Terrible if m is much larger than d
But VERY FAST if there are LOTS of solutions

e Space? (how much storage space, in terms of b, d, m?)
O(bm), i.e., linear space!

Outline of today’s lecture

4. Breadth-first search: guaranteed optimal
5. Uniform cost search = Dijkstra’s algorithm = BFS with variable costs

Breadth-first search

* Initialize the frontier using the starting state

* While the frontier is not empty

* Search strategy: choose one of the hodes which is
CLOSEST to the starting state

* If the node contains the goal state, return solution
* Else expand the node and add its children to the

frontier

Breadth-first search

* Expand shallowest unexpanded node
* Implementation: frontier is FIFO (a queue)

Breadth-first search

Expansion order:
(s,

d,e,p,

b,c,e,h,r,q,
a,a,h,r,p,q,f,
p,a,f,a,c,G)

Properties of breadth-first search

e Complete?

Yes (if branching factor b is finite).

Even w/o repeated-state checking, it still works!!!
e Optimal?

Yes — if cost = 1 per step (uniform cost search will fix this)
* Time?

Number of nodes in a b-ary tree of depth d: 0{b%}

(d is the depth of the optimal solution)

e Space?
O{b%}. --- much larger than DFS!

Outline of today’s lecture

1. How to turn ANY problem into a SEARCH problem:
1. Initial state, goal state, transition model
2. Actions, path cost

2. General algorithm for solving search problems
1. First data structure: a frontier list
2. Second data structure: a search tree
3. Third data structure: a “visited states” list

3. Depth-first search: very fast, but not guaranteed
4. Breadth-first search: guaranteed optimal
5. Uniform cost search = Dijkstra’s algorithm = BFS with variable costs

Uniform-cost search = Dijkstra’s algorithm

* For each frontier node, save the total cost of the path
from the initial state to that node

* Expand the frontier node with the lowest path cost

* Implementation: frontier is a priority queue ordered by
path cost

* Equivalent to breadth-first if step costs all equal

e Equivalent to Dijkstra’s algorithm, if Dijkstra’s algorithm
is modified so that a node’s value is computed only
when it becomes nonzero

Uniform-cost search example

Uniform-cost search example

Expansion order:

(s,p(1),
d(3),b(4),
e(5),r(7),f(8)
e(9),
0
G(10)) 5 ___T=umenwE
3 9 1
SO B G
Cost |6 | ()13 7 & \f
contours @ 2 N @ F|) a N
;l) q (F)8 q <|3 G
q 11 @/\@10 a

Properties of uniform-cost search

e Complete?
Yes (if branching factor b is finite).
Even w/o repeated-state checking, it still works!!!
* Optimal?
Yes
* Time?
Number of nodes in a b-ary tree of depth d: 0{b%}
Priority queue is O{log, d}/node

e Space?

O0{b?} --- much larger than DFS! This might be a reason to
use DFS.

Search strategies so far

Algorithm Complete? Optimal? Time Space Implement the
complexity complexity Frontier as a..

If all step costs are

d d

m— 0{b*} 0{b*} Queue
DFS No No o{b™} O{bm} Stack
UCS Yes Yes 0{b?log, d} 0{b?} Priority Queue

Next time

* Already we know how far it is, from the start point, to each node on the
frontier.

e What if we also have an ESTIMATE of the distance from each node to the
GOAL?

