
CS440/ECE448 Lecture 16:
Linear Classifiers

Mark Hasegawa-Johnson, 3/2019
Including Slides by

Svetlana Lazebnik, 10/2016

Linear Classifiers
• Naïve Bayes/BoW classifiers
• Linear Classifiers in General
• Perceptron
• Differential Perceptron/Neural Net

Naïve Bayes/Bag-of-Words
• Model parameters: feature likelihoods P(word | class) and priors

P(class)
• How do we obtain the values of these parameters?
• Need training set of labeled samples from both classes

• This is the maximum likelihood (ML) estimate, or estimate that
maximizes the likelihood of the training data:

P(word | class) =
of occurrences of this word in docs from this class

total # of words in docs from this class

ÕÕ
= =

D

d

n

i
idid

d

classwP
1 1

,,)|(

d: index of training document, i: index of a word

Indexing in BoW: Types vs. Tokens
• Indexing the training dataset: TOKENS
• ! = document token index, 1 ≤ ! ≤ $ (there are n

document tokens in the training dataset)
• % = word token index, 1 ≤ % ≤ & (there are n word

tokens in each document)
• Indexing the dictionary: TYPES
• ' = class type, 1 ≤ ' ≤ ((there are a total of C

different class types)
•) = word type, 1 ≤) ≤ * (there are a total of V

words in the dictionary, i.e., V different word types)

Two Different BoW Algorithms
• One bit per document, per word type:
• !"# = 1 if word “w” occurs anywhere in the i’th

document
• !"# = 0 otherwise

• One bit per word token, per word type:
• !$# = 1 if the j’th word token is “w”
• !$# = 0 otherwise

Example: “who saw who with who?”
!","#'(" = 1
!$,"#'(" = {1,0,1,0,1}

Feature = One Bit Per Document
• Features:

• !"# = 1 if word “w” occurs anywhere in the i’th document
• Parameters:

• $%# ≡ '(!"# = 1|* = ,)
• Note this means that ' !"# = 0 * = , = 1 − $%#

• Parameter Learning:

$%# =
(1 + # documents containing >)

1 + # documents containing > + (1 + # documents NOT containing >)

Feature = One Bit Per Word Token
• Features:

• !"# = 1 if the j’th word token is word “w”

• Parameters:
• $%# ≡ ' !"# = 1 (= * = '(," = w |(= *)
• Note this means that ' !"# = 0 (= * = ∑01# $%0

• Parameter Learning:

$%# = (1 + # tokens of < in the training database)
∑0DEF (1 + # tokens of G in the training database)

Feature = One Bit Per Document
Classification:

C* = argmax P(C=c|document)

= argmax P(C=c) P(Document|C=c)

= argmax' (')
*: ,-./0

1'*)
*: ,-./2

(1 − 1'*)

P(C=c) * prod_{words that occurred}P(word ooccus|C=c) * prod_{didn’t occur} P(didn’t occur|C=c)

Feature = One Bit Per Word Token
Classification:

C* = argmax P(C=c|document)

= argmax P(C=c) P(Document|C=c)

= argmax' (')
*+,

-
.'/0

P(C=c) prod_{words in the document} P(get that particular word | C=c)

Feature = One Bit Per Document
Classification:

!∗ = argmax) *)+
,-.

/ 0),
1 − 0),

345
(1 − 0),)

!∗ = argmax) 8) + :
,-.

/
;),<),

;), = log 0),
1 − 0),

, 8) = log *)+
,-.

/
(1 − 0),)

In a 2-dimensional
feature space (<)., <)@), this
is the equation for a line, with
intercept −8), and with slope
given by ;)./;)@

Feature = One Bit Per Word Token
Classification:

!∗ = argmax) *)+
,-.

/
0),12

Where 3, = number of times w occurred in the document!! So…

!∗ = argmax) 4) + 6
,-.

/
7),3),

7), = log 0), , 4) = log *)

In a 2-dimensional
feature space (<)., <)=), this
is the equation for a line, with
intercept −4), and with slope
given by 7)./7)=

Linear Classifiers
• Naïve Bayes/BoW classifiers
• Linear Classifiers in General
• Perceptron
• Differential Perceptron/Neural Net

Linear Classifiers in General
The function !" + ∑%&'()"%*"% is an affine function of the features
*"%. That means that its contours are all straight lines. Here is an
example of such a function, plotted as variations of color in a two-
dimensional space *' by *+:

*'

*+

Linear Classifiers in General
Consider the classifier

! = 1 if &' + ∑*+,- .'*/'* > 0

! = 0 if &' + 2
*+,

-
.'*/'* < 0

This is called a “linear classifier” because the boundary between the two classes is a line. Here is an
example of such a classifier, with its boundary plotted as a line in the two-dimensional space /, by
/4:

/,

/4
! = 1

! = 0

Linear Classifiers in General
Consider the classifier

! = argmax()(+ +
,-.

/
0(,1(,

• This is called a “multi-class linear
classifier.”
• The regions ! = 0, ! = 1, ! = 2

etc. are called “Voronoi regions.”
• They are regions with piece-wise

linear boundaries. Here is an
example from Wikipedia of
Voronoi regions plotted in the two-
dimensional space 1. by 15:

1.

15

! = 0

! = 1 ! = 2 ! = 3

! = 4
! = 5 ! = 6

! = 7

……
…

…

…

…

Linear Classifiers in General
When the features are binary (!" ∈
{0,1}), many (but not all!) binary
functions can be re-written as linear
functions. For example, the function

) = (!, ∨ !.)
can be re-written as

y=1 iff !, + !. − 0.5 > 0

!,

!.

Similarly, the function
) = (!, ∧ !.)

can be re-written as
y=1 iff !, + !. − 1.5 > 0

!,

!.

Linear Classifiers in General
•Not all logical functions can be written as linear

classifiers!
•Minsky and Papert wrote a book called Perceptrons in

1969. Although the book said many other things, the only
thing most people remembered about the book was that:
•“A linear classifier cannot learn an XOR function.”
•Because of that statement, most people gave up working

on neural networks from about 1969 to about 2006.
•Minsky and Papert also proved that a two-layer neural net

can learn an XOR function. But most people didn’t notice.

Linear Classifiers
Classification:

! = argmax()(+ +
,-.

/
0(,1(,

• Where 1(, are the features (binary, integer, or real), 0(, are the
feature weights, and)(is the offset

Linear Classifiers
• Naïve Bayes/BoW classifiers
• Linear Classifiers in General
• Perceptron
• Differential Perceptron/Neural Net

The Giant Squid Axon • 1909: Williams discovers that
the giant squid has a giant
neuron (axon 1mm thick)
• 1939: Young finds a giant

synapse (fig. shown: Llinás,
1999, via Wikipedia).
Hodgkin & Huxley put in
voltage clamps.
• 1952: Hodgkin & Huxley

publish an electrical current
model for the generation of
binary action potentials from
real-valued inputs.

Perceptron • 1959: Rosenblatt is granted a
patent for the “perceptron,”
an electrical circuit model of
a neuron.

Perceptron

x1

x2

xD

w1

w2

w3

x3

wD

Input

Weights

.

.

.

Output: sgn(w×x + b)

Can incorporate bias as
component of the weight
vector by always including a
feature with value set to 1

Perceptron model: action
potential = signum(affine function
of the features)

y = sgn(α1f1 + α2f2 + … + αVfV + β) =
sgn(!"$⃗)

Where ! = ['(, … , '+, ,]"
and $⃗ = [$(, … , $+, 1]"

Perceptron
Rosenblatt’s big innovation: the
perceptron learns from
examples.
• Initialize weights randomly
• Cycle through training

examples in multiple passes
(epochs)
• For each training example:
• If classified correctly, do

nothing
• If classified incorrectly,

update weights

Perceptron
For each training instance ! with label " ∈ {−1,1}:
• Classify with current weights: "’ = sgn(/02⃗)
• Notice "′ ∈ {−1,1} too.

• Update weights:
• if " = "’ then do nothing
• if " ≠ "’ then / = /+ η y 2⃗
• η (eta) is a “learning rate.” More about that later.

Perceptron: Proof of Convergence
• If the data are linearly separable (if there exists a ! vector

such that the true label is given by "’ = sgn(!)+⃗)), then
the perceptron algorithm is guarantee to converge, even
with a constant learning rate, even η=1.
• In fact, training a perceptron is often the fastest way to

find out if the data are linearly separable. If ! converges,
then the data are separable; if ! diverges toward infinity,
then no.
• If the data are not linearly separable, then perceptron

converges iff the learning rate decreases, e.g., η=1/n for
the n’th training sample.

Perceptron: Proof of Convergence
Suppose the data are linearly separable. For example,
suppose red dots are the class y=1, and blue dots are the
class y=-1:

!"

!#

Perceptron: Proof of Convergence
• Instead of plotting "⃗, plot y×"⃗. The red dots are

unchanged; the blue dots are multiplied by -1.
• Since the original data were linearly separable, the new

data are all in the same half of the feature space.

%"&

%"'

Perceptron: Proof of Convergence
•Remember the perceptron training rule: if any example is

misclassified, then we use it to update ! = ! + y #⃗.
• So eventually, ! becomes just a weighted average of y#⃗.
•… and the perpendicular line, !%#⃗ = 0, is the classifier

boundary.

()*

()+
!

Perceptron: Proof of Convergence: Conclusion
• If the data are linearly separable, then the perceptron will

eventually find the equation for a line that separates
them.
• If the data are NOT linearly separable, then perceptron

converges iff the learning rate decreases, e.g., η=1/n for
the n’th training sample. …. In this case, convergence is
trivially obvious, because y and "⃗ are finite, therefore the
weight updates η y "⃗ approach 0 as η approaches 0.

Implementation details
• Bias (add feature dimension with value fixed to 1) vs.

no bias
• Initialization of weights: all zeros vs. random
• Learning rate decay function
• Number of epochs (passes through the training data)
• Order of cycling through training examples (random)

Multi-class perceptrons

• One-vs-others framework: Need to keep a weight vector wc for each
class c
• Decision rule: y = argmaxc wc× f
• Update rule: suppose example from class c gets misclassified as c’

• Update for c: wc ß wc + ηf
• Update for c’: wc’ ß wc’ – ηf
• Update for all classes other than c and c’: no change

Review: Multi-class perceptrons

• One-vs-others framework: Need to keep a weight vector wc for each
class c
• Decision rule: y = argmaxc wc× f

Inputs
Perceptrons w/

weights wc

Max

Linear Classifiers
• Naïve Bayes/BoW classifiers
• Linear Classifiers in General
• Perceptron
• Differential Perceptron/Neural Net

Differentiable Perceptron
• Also known as a “one-layer feedforward neural network,” also known

as “logistic regression.” Has been re-invented many times by many
different people.
• Basic idea: replace the non-differentiable decision function

!’ = sign()*,⃗)
with a differentiable decision function

!’ = tanh()*,⃗)

Differentiable Perceptron
• Suppose we have n training vectors, "⃗#through "⃗$. Each one has an

associated label %& ∈ −1,1 . Then we replace the true loss function,

+(%#, … , %$, "⃗#, … , "⃗$) = 0
&1#

$
%& − sign(67"⃗&)

8

with a differentiable error

+(%#, … , %$, "⃗#, … , "⃗$) = 0
&1#

$
%& − tanh(67"⃗&)

8

Why Differentiable?
• Why do we want a differentiable loss function?

!(#$, … , #',)⃗$, … ,)⃗') = ,
-.$

'
#- − tanh(45)⃗-)

6

• Answer: because if we want to improve it, we can adjust the weight
vector in order to reduce the error:

4 = 4 − 7∇9!

• This is called “gradient descent.” We move 4 “downhill,” i.e., in the
direction that reduces the value of the loss L.

Differential Perceptron
The weights get updated according

to

! = ! − $∇&'

Differentiable Multi-class perceptrons
Same idea works for multi-class perceptrons. We replace the non-
differentiable decision rule c = argmaxc wc× f with the differentiable
decision rule c = softmaxc wc× f, where the softmax function is defined
as

Inputs
Perceptrons w/

weights wc

Softmax

Softmax:

! " $⃗ = &'()*⃗
∑,-.# 0123343 &'5)*⃗

Differentiable Multi-Class Perceptron
• Then we can define the loss to be:

! "#, … , "&, (⃗#, … , (⃗& = −+
,-#

&
ln 0 1 = ",|(⃗,

• And because the probability term on the inside is differentiable, we
can reduce the loss using gradient descent:

3 = 3 − 4∇6!

Summary
You now know SEVEN!! different types of linear classifiers. These 5 types are things you
should completely understand already now:
• One bit per document Naïve Bayes
• One bit per word token Naïve Bayes
• Linear classifier can implement some logical functions, like AND and OR, but not others,

like XOR
• Perceptron
• Multi-class Perceptron
These 2 types of linear classifiers have been introduced today, and you should know the
general idea, but you don’t need to understand the equations yet. We will spend lots
more time talking about those equations later in the semester.
• Differentiable Perceptron a.k.a. Logistic Regression
• Differentiable Multi-class perceptron

