802.11ax High Efficiency WLANs

Federico Cifuentes-Urtubey
CS 439

University of Illinois Urbana-Champaign

Legacy 802.11 Standards

Early Wi-Fi standards: 802.11a/b/g

802.11b

1999

802.11a

1999

802.11g

2003

2.4 GHz
Up to 11 Mbps
DSSS modulation

5 GHz Up to 54 Mbps OFDM modulation 2.4 + 5 GHz Up to 54 Mbps DSSS + OFDM

Trade-offs between range, speed, and frequency bands

802.11n – Precursor to Modern Wi-Fi

Introduced MIMO (Multiple input, Multiple output)

Dual-band operation on 2.4 GHz and 5 GHz

Theoretical max of 600 Mbps

MIMO

Multiplies the capacity of a link using multiple Tx and Rx antennas

802.11ac – The Bridge to Wi-Fi 6

Increased data rates to 3.5 Gbps

Operates only in the 5 GHz band

DL MU-MIMO: Router transmits to multiple clients

Downlink MU-MIMO

AP transmits separate spatial streams to multiple clients at once

DL MU-MIMO Constraints

- Only worked with up to 4 client devices
- Clients still need to take turns when transmitting
- Requires Channel State Information feedback from clients (management traffic overhead)
- No uplink synchronization

Limitations of Legacy Standards

- Multiuser scheduling only worked on the downlink
- Dense areas suffered from low throughput, interference
- High MAC layer overhead for short frames
- Power consumption vs. Higher data rates
- QoS for time-sensitive apps needed improvement

802.11ax – Wi-Fi Today

But first, a little more background

802.11 Channel Bands

APs and devices on the 2.4 GHz band should operate on these channels to reduce interference

802.11 Channel Bands

Wi-Fi 5 uses fixed bandwidth, but not all devices need it

802.11ax: High Efficiency WLANs

High Efficiency (HE) operation on both uplink and downlink

OFDMA: Divides subcarriers into Resource Units (RUs)

 Difference from MU-MIMO: divide bandwidth instead of different spatial streams

 Uplink OFDMA enables multiuser access without requiring an entire channel for each user

Key Features of 802.11ax

Speed improvement of up to 9.6 Gbps

Channel Capacity improvements

- OFDMA
- 160 MHz channels

Efficiency improvements

- BSS Coloring
- Target Wake Time

OFDMA

• Orthogonal Frequency Division Multiple Access

Splits subcarriers (frequencies) into groups of bandwidths

Shares the channel among multiple devices simultaneously

OFDM vs. ODFMA

	OFDM Orthogonal Frequency Division Multiplexing	OFDMA Orthogonal Frequency Division Multiple Access
Resource Granularity	All subcarriers act as one block for one STA	Subcarriers are partitioned into groups (RUs), allocated per STA
Efficiency	Idle airtime if a user has little data (wasted channel use)	Better efficiency, multiple small packets from different users fit in parallel
Latency	Higher, because users wait for their turn to use the full channel	Lower, since multiple users can transmit in the same time slot
Uplink Support	One STA per transmission, collisions possible without coordination	AP coordinates STAs via Trigger frames , synchronized uplink transmissions
Design Influence on Traffic patterns	Good for high-throughput single-user streams	Good for mixed traffic with many small packets

OFDM (Previous generations)

Previous standards have clients use the **entire channel** to transmit data

Previous standards have clients use the **entire channel** to transmit data

OFDMA configures traffic for **multiple user packets per time segment**, increasing spectrum efficiency

Resource Units

RUs are the allocation blocks of bandwidth in OFDMA

Vary in size depending on channel width

Adjacent subcarriers (tones) are grouped together into a resource unit (RU)

Assigning Bandwidths to Devices

RUs are allocated by the AP, determined by traffic demand Trigger Frames define the RUs that devices can use

Assigning Bandwidths to Devices

Spatial streams assigned to use (Number of antennas needed)

Transmission Time Utilization

BSS Coloring

Reduces interference from nearby APs

Improves coexistence between multiple APs

BSS Coloring

Problem!

Both BSS networks use the same color, a color collision

Problem!

Both BSS networks use the same color, a color collision

Solution:

Turn off the color, but fall back to legacy medium access

Problem!

Both BSS networks use the same color, a color collision

Better Solution:

Use a **Color Change Announcement**

Problem!

Both BSS networks use the same color, a color collision

Better Solution:

Use a **Color Change Announcement**

MU-MIMO Enhancements

• Increased from 4x4 (Rx:Tx antennas) in Wi-Fi 5 to 8x8 in Wi-Fi 6

Supports simultaneous communication with multiple devices

Enables both uplink and downlink MU-MIMO

Modulation Enhancements

Modulation Enhancements

25% higher capacity per symbol

Beamforming

• Enables dynamic adjustment of the wireless signal direction

Minimizes interference from nearby networks using BSS coloring

Beamforming Example

Beamforming Example

Beamforming Example

Wi-Fi 6E: Expanding to 6 GHz

Introduces a new 6 GHz band

Provides additional 1,200 MHz of bandwidth

Allows for faster data rates and lower latency

Offers more channels, reducing congestion in high-density areas

Wi-Fi 6E

That wraps up Wi-Fi 6!

Additional Resources

Wi-Fi 6

- Qualcomm whitepapers on MU-MIMO, Scheduling, and OFDMA <u>https://www.qualcomm.com/products/technology/wi-fi/wi-fi-6</u>
- Cisco whitepaper <u>https://www.cisco.com/c/en/us/products/collateral/wireless/white-paper-c11-740788.html</u>
- Aruba whitepaper <u>https://www.arubanetworks.com/resource/802-11ax-white-paper/</u>

Wi-Fi 7

- Comparison with Wi-Fi 6 https://www.tp-link.com/ae/blog/730/how-is-wifi-7-different-from-wifi-6-/
- TP-Link Wi-Fi 7 features <u>https://www.tp-link.com/us/wifi7/</u>
- Multi-link Operation https://www.tp-link.com/us/blog/1067/what-is-wifi-7-s-multi-link-operation-mlo-/
- 4096-QAM Modulation https://www.rfwireless-world.com/Articles/4096-QAM-Modulation-in-WiFi-7.html